EP0702129A2 - Cooling the rotor of an axial gasturbine - Google Patents

Cooling the rotor of an axial gasturbine Download PDF

Info

Publication number
EP0702129A2
EP0702129A2 EP95810542A EP95810542A EP0702129A2 EP 0702129 A2 EP0702129 A2 EP 0702129A2 EP 95810542 A EP95810542 A EP 95810542A EP 95810542 A EP95810542 A EP 95810542A EP 0702129 A2 EP0702129 A2 EP 0702129A2
Authority
EP
European Patent Office
Prior art keywords
rotor
turbine
cooling air
compressor
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810542A
Other languages
German (de)
French (fr)
Other versions
EP0702129B1 (en
EP0702129A3 (en
Inventor
Robert Marmilic
René Wälchli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0702129A2 publication Critical patent/EP0702129A2/en
Publication of EP0702129A3 publication Critical patent/EP0702129A3/en
Application granted granted Critical
Publication of EP0702129B1 publication Critical patent/EP0702129B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • F05D2240/63Glands for admission or removal of fluids from shafts

Definitions

  • the invention relates to an axially flow-through gas turbine according to the preamble of claim 1, consisting essentially of a multi-stage turbine which drives a compressor arranged on a common shaft, the shaft part lying between the turbine and the compressor being a drum.
  • Such gas turbines are known.
  • the entire rotor-side cooling air is z. B. removed from the compressor end. The majority of it flows through separate lines and through a swirl grille, which is usually on the same radius as the rotor cooling channels on the front side of the turbine rotor and e.g. is known from GB 2 189 845, in these rotor cooling channels.
  • the smaller proportion of cooling air is used to cool the last compressor disc, the drum and the first turbine disc.
  • the invention tries to avoid all of these disadvantages. It is based on the task of reducing the axial thrust in an axially flow-through gas turbine of the type mentioned at the outset, the effectiveness of the blade and disk cooling to improve and achieve a uniform temperature distribution.
  • this is achieved in an axially flow-through gas turbine according to the preamble of claim 1 in that at least one suction device for the leakage air and part of the cooling air is arranged in the region of the drum labyrinth.
  • the ring channel in the area of the suction device is expanded to a collecting space for the leakage or cooling air, because this ensures better suction.
  • the suction device consists of a line which is connected on one side to the collecting space for the leakage or cooling air and on the other side to the cooling air extraction ring space in the compressor housing.
  • the suction device is advantageously connected to the cooling air devices for the rear turbine stages, because as a result the extracted air is mixed with the cooling air for the rear turbine stages and is therefore usefully used for the process.
  • At least one feed to the ring channel is arranged in the part of the rotor drum on the compressor side for part of the cooling air, which feed has at least one swirl nozzle at its respective end.
  • the hot leakage air can also be mixed with cooling air, so that the air temperature in this area is reduced to the permissible level.
  • the cooling air pressure after the swirl grille is advantageously chosen so that the usual labyrinth seal between the turbine disk and the disk cover can be dispensed with, so that the pressure near the disk is determined by the pressure of the main turbine flow in the gas duct. If the rotor drum labyrinth is damaged, the disc labyrinth is eliminated and the enlarged leakage air is sucked out, which prevents a large increase in pressure on the turbine disc, so that the axial thrust of the rotor changes only slightly. The drum and disc temperatures also remain relatively stable in the case of an increase in the labyrinth clearance.
  • FIG. 1 shows that the turbine 1 through which the axial flow flows essentially consists of the rotor 3 equipped with moving blades 2 and the blade carrier 5 equipped with guide blades 4. In Fig. 1 only the first axially flow stage of the turbine 1 is shown.
  • the blade carrier 5 is suspended in the turbine housing 6.
  • the turbine housing 6 also includes the collecting space 7 for the compressed combustion air.
  • the combustion air passes from the collecting space 7 into the annular combustion chamber 8, which opens into the turbine inlet.
  • the compressed air flows from the diffuser 9 of the compressor 10 into the collecting space 7.
  • the rotor blades of the compressor 10 and the turbine 1 sit on a common shaft 13, the part of which is located between the turbine 1 and the compressor 10 is designed as a drum 14.
  • the drum 14 is surrounded by a drum cover 15 which is connected to the diffuser outer housing 17 via ribs 16.
  • the wheel side space 19 forms the end of an annular channel 20 which runs between the drum 14 and the drum cover 15.
  • a labyrinth seal 21 which seals against the drum cover 15 is arranged in this annular channel 20.
  • a line 22 coming from the compressor end for guiding the turbine rotor cooling air opens into the wheel side space 19.
  • Swirl nozzles 23 are arranged at their end.
  • the swirl nozzle 23 for the main turbine rotor cooling air is preferably arranged on the same radius as the rotor cooling channels 24 or the inlet opening of the rotor cooling channels 24, while one or more further swirl nozzles 23 are arranged at a smaller radial distance from the main turbine axis and for admixing cooling air for the end face 18 of the turbine rotor 3 serve.
  • two suction devices 25 for the leakage air and part of the cooling air are arranged in the region of the drum labyrinth 21.
  • FIG. 2 shows in detail a possible embodiment variant of the suction device 25.
  • the ring channel 20 is expanded to two collecting spaces 26 in the area of the suction devices 25.
  • the two suction devices 25 here are lines which are connected on the one hand to the collecting spaces 26 of the leakage air and on the other hand to the cooling air extraction ring spaces 28 in the compressor housing. Lines 22a lead from the cooling air extraction ring spaces 28 to the cooling system of the rear turbine stages.
  • the arrangement of the collecting spaces 26 in the drum labyrinth 21 is chosen such that the resulting pressure drop between the spaces 26 and 28 and the cross sections of the lines 25 result in the required amounts of suction air.
  • the suction device 25 can also be designed differently.
  • a feed 27 to the ring channel 20 can also be arranged in the compressor-side part of the rotor drum 14 for a small part of the cooling air, which also has at least one swirl nozzle 23 at its end facing the ring channel 20.
  • the swirl nozzles 23 are acceleration grids with a slight curvature of the skeleton line. The admixture of the cooling air into the hot leakage air mass flow leads to the fact that the air temperature in the compressor-side part of the rotor drum 14 is reduced to an admissible level.
  • FIG 3 shows that only one suction device 25 or more than two suction devices 25 for the leakage or cooling air can be arranged.
  • the cooling air required for the rotor cooling is removed at the end of the compressor.
  • the main part of the rotor cooling air flows via the line 22 and via the swirl nozzle 23 into the wheel side space 19.
  • Most of this swirling cooling air flows into the cooling channels 24 of the rotor 3 via the inlet openings located at the same height, while a small proportion between the turbine disk and the disk cover flows into the gas channel of the turbine 1.
  • the cooling air pressure after the swirl grille can now be selected so that the labyrinth seal normally arranged between the turbine disk and the disk cover can be dispensed with.
  • the pressure near the disc is determined by the pressure of the main turbine flow in the gas duct.

Abstract

The multi-stage turbine (1) drives a compressor (10) mounted on a common shaft (13). The shaft part between turbine and compressor is a drum (14) enclosed by a cover (15) forming a ring channel (20) containing a labyrinth seal (21) which seals against the cover (15). The drum cover together with the end side (18) of the turbine rotor (3) define a radially wheel side chamber (19). At least one separate pipe (22) leading the rotor cooling air from the compressor to the end side of the rotor is connected to the wheel side chamber by at least two vortex nozzles (23). Cooling devices (24) are provided from the rotor and rotor vane rim. The entire cooling air on the rotor side for the turbine is removed from the compressor at the compressor outlet.

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine axialdurchströmte Gasturbine gemäss Oberbegriff des Patentanspruchs 1, im wesentlichen bestehend aus einer mehrstufigen Turbine, welche einen auf einer gemeinsamen Welle angeordneten Verdichter antreibt, wobei der zwischen Turbine und Verdichter liegende Wellenteil eine Trommel ist.The invention relates to an axially flow-through gas turbine according to the preamble of claim 1, consisting essentially of a multi-stage turbine which drives a compressor arranged on a common shaft, the shaft part lying between the turbine and the compressor being a drum.

Stand der TechnikState of the art

Derartige Gasturbinen sind bekannt. Die gesamte rotorseitige Kühlluft wird dabei z. B. dem Verdichterende entnommen. Der überwiegende Teil davon strömt durch seperate Leitungen und über ein Drallgitter, welches sich in der Regel auf dem gleichen Radius wie die Rotorkühlkanäle an der Stirnseite des Turbinenrotors befindet und z.B. aus GB 2 189 845 bekannt ist, in diese Rotorkühlkanäle ein. Der kleinere Anteil an Kühlluft dient zur Kühlung der letzten Verdichterscheibe, der Trommel und der ersten Turbinenscheibe.Such gas turbines are known. The entire rotor-side cooling air is z. B. removed from the compressor end. The majority of it flows through separate lines and through a swirl grille, which is usually on the same radius as the rotor cooling channels on the front side of the turbine rotor and e.g. is known from GB 2 189 845, in these rotor cooling channels. The smaller proportion of cooling air is used to cool the last compressor disc, the drum and the first turbine disc.

In EP 0 447 886 wird die gesamte für die Rotorkühlung erforderliche Kühlluft nach der letzten Laufreihe des Verdichters an dessen Nabe entnommen und mit dem ihr anhafteten Drall unmittelbar in den sich zwischen Rotortrommel und Trommelabdekkung befindenden Ringkanal geleitet. Sie strömt bis vor das Trommellabyrinth. Durch das Labyrinth strömt die unvermeidliche Leckmenge, während der Hauptteil der Rotorkühlluft in ein Drallgitter geführt wird. Dort erfolgt eine Beschleunigung der Kühlluft bei gleichzeitiger Umlenkung in Rotordrehrichtung. Die Abströmung aus dem Drallgitter erfolgt dabei nahezu tangential. Der Leckagemassenstrom durch das Trommellabyrinth unter dem Drallgitter mischt sich im Bereich der Turbinenscheibe mit der Kühlluft nach dem Drallgitter.In EP 0 447 886, all the cooling air required for the rotor cooling is removed from the hub after the last running row of the compressor and, with the swirl attached to it, is passed directly into the ring channel located between the rotor drum and the drum cover. It flows up to that Drum labyrinth. The inevitable amount of leakage flows through the labyrinth, while the main part of the rotor cooling air is led into a swirl grille. There the cooling air is accelerated with simultaneous deflection in the direction of rotation of the rotor. The outflow from the swirl grille is almost tangential. The leakage mass flow through the drum labyrinth under the swirl grille mixes with the cooling air after the swirl grille in the area of the turbine disk.

Bei Gasturbinen mit einem hohen Druckverhältnis tritt hieraber folgendes Problem auf. Da die Luft nach der letzten Verdichterlaufreihe für die Kühlung der Turbinenschaufeln zu heiss ist, muss diese zuerst rückgekühlt werden, bevor sie durch das Drallgitter in die Turbinenrotorkühlluftkanäle gelangt. Der grosse Temperaturunterschied zwischen der Kühlluft und der Labyrinthleckageluft entlang der Rotortrommel führt zu hohen Spannungen im Rotortrommel- und Turbinenscheibenbereich. Ausserdem führt die Mischung der kalten Kühlluft mit der heissen Leckageluft nach dem Drallgitter zu einer unerwünschten Aufheizung der Kühlluft und zur Abschwächung des Dralls.With gas turbines with a high pressure ratio, however, the following problem arises. Since the air after the last row of compressor runs is too hot to cool the turbine blades, it must first be recooled before it reaches the turbine rotor cooling air ducts through the swirl grille. The large temperature difference between the cooling air and the labyrinth leakage air along the rotor drum leads to high tensions in the rotor drum and turbine disc area. In addition, the mixture of the cold cooling air with the hot leakage air after the swirl grille leads to an undesirable heating of the cooling air and to a weakening of the swirl.

Um den notwendigen Druck im Rotorkühlluftsystem zu erreichen, ist normalerweise eine Labyrinthdichtung zwischen Turbinenrotorscheibe und Scheibenabdeckung oberhalb des Drallgitters notwendig. Dadurch nimmt bei einer Beschädigung des Trommellabyrinths der Druck entlang der Turbinenscheibe zu und führt zu einer massiven Erhöhung des Rotoraxialschubes.In order to achieve the necessary pressure in the rotor cooling air system, a labyrinth seal between the turbine rotor disk and the disk cover above the swirl grille is normally necessary. As a result, if the drum labyrinth is damaged, the pressure along the turbine disk increases and leads to a massive increase in the axial thrust of the rotor.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer axialdurchströmten Gasturbine der eingangs genannten Art den Axialschub zu verringern, die Effektivität der Schaufel- und Scheibenkühlung zu verbessern und eine gleichmässige Temperaturverteilung zu erreichen.The invention tries to avoid all of these disadvantages. It is based on the task of reducing the axial thrust in an axially flow-through gas turbine of the type mentioned at the outset, the effectiveness of the blade and disk cooling to improve and achieve a uniform temperature distribution.

Erfindungsgemäss wird dies bei einer axialdurchströmten Gasturbine gemäss Oberbegriff des Anspruchs 1 dadurch erreicht, dass im Bereich des Trommellabyrinths mindestens eine Absaugvorrichtung für die Leckageluft und einen Teil der Kühlluft angeordnet ist.According to the invention, this is achieved in an axially flow-through gas turbine according to the preamble of claim 1 in that at least one suction device for the leakage air and part of the cooling air is arranged in the region of the drum labyrinth.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Turbinenscheibe und ein Teil der Rotortrommel nur noch von der Kühlluft bestrichen werden. Daraus ergibt sich eine tiefere und vor allem gleichmässigere Temperaturverteilung, welche sich positiv auf die Festigkeit im Rotor-Scheibenübergang auswirkt. Da mit dem Absaugen der Leckageluft auch ein Mischen mit der Kühlluft vermieden wird, wird die Kühlluft nicht erwärmt und der Drall der Kühlluft bleibt ungestört.The advantages of the invention can be seen, inter alia, in the fact that the turbine disk and part of the rotor drum are only coated by the cooling air. This results in a deeper and, above all, more uniform temperature distribution, which has a positive effect on the strength in the rotor-disc transition. Since mixing with the cooling air is also avoided when the leakage air is extracted, the cooling air is not heated and the swirl of the cooling air remains undisturbed.

Es ist vorteilhaft, wenn der Ringkanal im Bereich der Absaugvorrichtung zu einem Sammelraum für die Leckage- bzw. Kühlluft erweitert ist, weil dadurch eine bessere Absaugung gewährleistet ist.It is advantageous if the ring channel in the area of the suction device is expanded to a collecting space for the leakage or cooling air, because this ensures better suction.

Ferner ist es zweckmässig, wenn die Absaugvorrichtung aus einer Leitung besteht, welche auf der einen Seite mit dem Sammelraum für die Leckage- bzw. Kühlluft und auf der anderen Seite mit dem Kühlluftentnahmeringraum im Verdichtergehäuse verbunden ist.It is also expedient if the suction device consists of a line which is connected on one side to the collecting space for the leakage or cooling air and on the other side to the cooling air extraction ring space in the compressor housing.

Weiterhin wird mit Vorteil die Absaugvorrichtung mit den Kühllufteinrichtungen für die hinteren Turbinenstufen in Verbindung gebracht, weil dadurch die abgesaugte Luft der Kühlluft für die hinteren Turbinenstufen beigemischt wird und somit für den Prozess sinnvoll weiterverwendet wird.Furthermore, the suction device is advantageously connected to the cooling air devices for the rear turbine stages, because as a result the extracted air is mixed with the cooling air for the rear turbine stages and is therefore usefully used for the process.

Es ist zweckmässig, wenn im verdichterseitigen Teil der Rotortrommel für einen Teil der Kühlluft mindestens eine Zuführung zum Ringkanal angeordnet ist, welche an ihrem jeweiligen Ende mindestens eine Dralldüse aufweist. Dadurch kann der heissen Leckageluft ebenfalls Kühlluft zugemischt werden, so dass in diesem Bereich die Lufttemperatur auf das zulässige Mass gesenkt wird.It is expedient if at least one feed to the ring channel is arranged in the part of the rotor drum on the compressor side for part of the cooling air, which feed has at least one swirl nozzle at its respective end. As a result, the hot leakage air can also be mixed with cooling air, so that the air temperature in this area is reduced to the permissible level.

Schliesslich wird mit Vorteil der Kühlluftdruck nach dem Drallgitter so gewählt, dass auf die normalerweise übliche Labyrinthdichtung zwischen Turbinenscheibe und Scheibenabdeckung verzichtet werden kann, so dass der Druck in Scheibennähe vom Druck des Turbinenhauptstromes im Gaskanal bestimmt wird. Bei einer Beschädigung des Rotortrommellabyrinths wird durch den Wegfall des Scheibenlabyrinths und durch die Absaugung der vergrösserten Leckageluft ein grosser Druckanstieg an der Turbinenscheibe verhindert, sodass sich der Rotoraxialschub nur gering ändert. Auch die Trommel- und Scheibentemperaturen bleiben im Falle einer Labyrinthspielvergrösserung relativ stabil.Finally, the cooling air pressure after the swirl grille is advantageously chosen so that the usual labyrinth seal between the turbine disk and the disk cover can be dispensed with, so that the pressure near the disk is determined by the pressure of the main turbine flow in the gas duct. If the rotor drum labyrinth is damaged, the disc labyrinth is eliminated and the enlarged leakage air is sucked out, which prevents a large increase in pressure on the turbine disc, so that the axial thrust of the rotor changes only slightly. The drum and disc temperatures also remain relatively stable in the case of an increase in the labyrinth clearance.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind Ausführungsbeispiele der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.In the drawing, exemplary embodiments of the invention are shown on the basis of a single-shaft gas turbine with axial flow.

Es zeigen:

Fig. 1
einen Teillängsschnitt der Gasturbine;
Fig. 2
einen vergrösserten Teillängsschnitt im Bereich des Trommellabyrinths und der Absaugvorrichtung;
Fig. 3a-c
drei verschiedene Anordnungsmöglichkeiten der Absaugvorrichtung.
Show it:
Fig. 1
a partial longitudinal section of the gas turbine;
Fig. 2
an enlarged partial longitudinal section in the area of the drum labyrinth and the suction device;
3a-c
three different arrangements of the suction device.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the exhaust gas casing of the gas turbine with the exhaust pipe and chimney, and the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Nachfolgend wird die Erfindung anhand der Figuren und anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to the figures and with the aid of exemplary embodiments.

Fig. 1 ist zu entnehmen, dass die axialdurchströmte Turbine 1 im wesentlichen aus den mit Laufschaufeln 2 bestückten Rotor 3 und dem mit Leitschaufeln 4 bestückten Schaufelträger 5 besteht. In Fig. 1 ist lediglich die erste axialdurchströmte Stufe der Turbine 1 dargestellt. Der Schaufelträger 5 ist im Turbinengehäuse 6 eingehängt. Das Turbinengehäuse 6 umfasst auch den Sammelraum 7 für die verdichtete Brennluft.1 shows that the turbine 1 through which the axial flow flows essentially consists of the rotor 3 equipped with moving blades 2 and the blade carrier 5 equipped with guide blades 4. In Fig. 1 only the first axially flow stage of the turbine 1 is shown. The blade carrier 5 is suspended in the turbine housing 6. The turbine housing 6 also includes the collecting space 7 for the compressed combustion air.

Die Brennluft gelangt aus dem Sammelraum 7 in die Ringbrennkammer 8, welche in den Turbineneinlass mündet. In den Sammelraum 7 strömt die verdichtete Luft aus dem Diffusor 9 des Verdichters 10. Vom Verdichter 10 ist in Fig. 1 nur die letzte Stufe mit den Laufschaufeln 11 und den Leitschaufeln 12 dargestellt. Die Laufbeschaufelungen des Verdichters 10 und der Turbine 1 sitzen auf einer gemeinsamen Welle 13, deren sich zwischen Turbine 1 und Verdichter 10 befindendes Teil als Trommel 14 ausgebildet ist.The combustion air passes from the collecting space 7 into the annular combustion chamber 8, which opens into the turbine inlet. The compressed air flows from the diffuser 9 of the compressor 10 into the collecting space 7. Of the compressor 10, only the last stage with the moving blades 11 and the guide blades 12 is shown in FIG. 1. The rotor blades of the compressor 10 and the turbine 1 sit on a common shaft 13, the part of which is located between the turbine 1 and the compressor 10 is designed as a drum 14.

Die Trommel 14 ist von einer Trommelabdeckung 15 umgeben, die über Rippen 16 mit dem Diffusoraussengehäuse 17 verbunden ist. Turbinenseitig begrenzt die Trommelabdeckung 15 zusammen mit der Stirnseite 18 des Turbinenrotors 3 einen radial verlaufenden Radseitenraum 19.The drum 14 is surrounded by a drum cover 15 which is connected to the diffuser outer housing 17 via ribs 16. On the turbine side, the drum cover 15, together with the end face 18 of the turbine rotor 3, delimits a radially running wheel side space 19.

Der Radseitenraum 19 bildet das Ende eines Ringkanales 20, der zwischen der Trommel 14 und der Trommelabdeckung 15 verläuft. In diesem Ringkanal 20 ist eine gegen die Trommelabdeckung 15 dichtende Labyrinthdichtung 21 angeordnet.The wheel side space 19 forms the end of an annular channel 20 which runs between the drum 14 and the drum cover 15. A labyrinth seal 21 which seals against the drum cover 15 is arranged in this annular channel 20.

In den Radseitenraum 19 mündet eine vom Verdichterende kommende Leitung 22 zur Führung der Turbinenrotorkühlluft. An ihrem Ende sind Dralldüsen 23 angeordnet. Die Dralldüse 23 für die Turbinenrotorhauptkühlluft ist dabei vorzugsweise auf dem gleichen Radius angeordnet wie die Rotorkühlkanäle 24 bzw. die Eintrittsöffnung der Rotorkühlkanäle 24, während eine oder mehrere weitere Dralldüsen 23 in geringerem radialen Abstand von der Turbinenhauptachse angeordnet sind und zur Beimischung von Kühlluft für die Stirnseite 18 des Turbinenrotors 3 dienen.A line 22 coming from the compressor end for guiding the turbine rotor cooling air opens into the wheel side space 19. Swirl nozzles 23 are arranged at their end. The swirl nozzle 23 for the main turbine rotor cooling air is preferably arranged on the same radius as the rotor cooling channels 24 or the inlet opening of the rotor cooling channels 24, while one or more further swirl nozzles 23 are arranged at a smaller radial distance from the main turbine axis and for admixing cooling air for the end face 18 of the turbine rotor 3 serve.

Im Bereich des Trommellabyrinths 21 sind in diesem Ausführungsbeispiel zwei Absaugvorrichtungen 25 für die Leckageluft und einen Teil der Kühlluft angeordnet.In this exemplary embodiment, two suction devices 25 for the leakage air and part of the cooling air are arranged in the region of the drum labyrinth 21.

Fig. 2 zeigt im Detail eine mögliche Ausführungsvariante der Absaugvorrichtung 25. Der Ringkanal 20 ist im Bereich der Absaugvorrichtungen 25 zu zwei Sammelräumen 26 erweitert. Die beiden Absaugvorrichtungen 25 sind hier Leitungen, welche einerseits mit den Sammelräumen 26 der Leckageluft und andererseits mit den Kühlluftentnahmeringräumen 28 im Verdichtergehäuse verbunden sind. Von den Kühlluftentnahmeringräumen 28 führen Leitungen 22a zum Kühlsystem der hinteren Turbinenstufen. Die Anordnung der Sammelräume 26 im Trommellabyrinth 21 wird dabei so gewählt, dass das resultierende Druckgefälle zwischen den Räumen 26 und 28 und die Querschnitte der Leitungen 25 die erforderlichen Absaugeluftmengen ergeben. Selbstverständlich ist die Erfindung nicht auf diese Ausführungsvariante beschränkt, die Absaugvorrichtung 25 kann auch anders ausgebildet sein.FIG. 2 shows in detail a possible embodiment variant of the suction device 25. The ring channel 20 is expanded to two collecting spaces 26 in the area of the suction devices 25. The two suction devices 25 here are lines which are connected on the one hand to the collecting spaces 26 of the leakage air and on the other hand to the cooling air extraction ring spaces 28 in the compressor housing. Lines 22a lead from the cooling air extraction ring spaces 28 to the cooling system of the rear turbine stages. The arrangement of the collecting spaces 26 in the drum labyrinth 21 is chosen such that the resulting pressure drop between the spaces 26 and 28 and the cross sections of the lines 25 result in the required amounts of suction air. Of course, the invention is not limited to this embodiment variant, the suction device 25 can also be designed differently.

Ausserdem kann zusätzlich im verdichterseitigen Teil der Rotortrommel 14 für einen geringen Teil der Kühlluft noch eine Zuführung 27 zum Ringkanal 20 angeordnet sein, welche an ihrem dem Ringkanal 20 zugewandten Ende ebenfalls mindestens eine Dralldüse 23 aufweist. Bei den Dralldüsen 23 handelt es sich um Beschleunigungsgitter mit geringer Krümmung der Skelettlinie. Die Zumischung der Kühlluft in den heissen Leckageluftmassenstrom führt dazu, dass im verdichterseitigen Teil der Rotortrommel 14 die Lufttemperatur auf ein zulässiges Mass gesenkt wird.In addition, a feed 27 to the ring channel 20 can also be arranged in the compressor-side part of the rotor drum 14 for a small part of the cooling air, which also has at least one swirl nozzle 23 at its end facing the ring channel 20. The swirl nozzles 23 are acceleration grids with a slight curvature of the skeleton line. The admixture of the cooling air into the hot leakage air mass flow leads to the fact that the air temperature in the compressor-side part of the rotor drum 14 is reduced to an admissible level.

Fig. 3 zeigt, dass auch nur eine Absaugungvorrichtung 25 bzw. mehr als zwei Absaugvorrichtungen 25 für die Leckage- bzw. Kühlluft angeordnet sein können.3 shows that only one suction device 25 or more than two suction devices 25 for the leakage or cooling air can be arranged.

Die Wirkungsweise der Erfindung wird nachstehend erläutert: Die für die Rotorkühlung benötigte Kühlluft wird am Verdichterende entnommen. Der Hauptteil der Rotorkühlluft strömt über die Leitung 22 und über die Dralldüse 23 in den Radseitenraum 19. Der grösste Teil dieser drallbehafteten Kühlluft strömt über die sich auf gleicher Höhe befindenden Eintrittsöffnungen in die Kühlkanäle 24 des Rotors 3, während ein geringer Anteil zwischen Turbinenscheibe und Scheibenabdeckung in den Gaskanal der Turbine 1 strömt. Durch eine weitere Dralldüse 23, welche in einem geringeren radialen Abstand von der Turbinenhauptachse als die o.g. Dralldüse 23 angeordnet ist, wird weitere Kühlluft in den Radseitenraum 19 geführt. Diese strömt in Richtung Ringkanal 20 und wird zusammen mit dem aus der anderen Richtung vom Verdichter 10 kommenden, nach der letzten Laufschaufel 11 entnommenen Leckageluftmassenstrom in den im Bereich des Trommellabyrinths 21 angeordneten Absaugvorrichtungen 25 abgesaugt. Selbstverständlich kann der Leckageluftmassenstrom auch an einer anderen Stelle entnommen werden, beispielsweise nach der letzten Leitschaufel 12 des Verdichters 10. Die abgesaugte Luft wird dann auf Grund ihres geringen Druckes beispielsweise der Kühlluft für die hinteren Turbinenstufen beigemischt und somit für den Prozess weiter sinnvoll verwendet.The operation of the invention is explained below: The cooling air required for the rotor cooling is removed at the end of the compressor. The main part of the rotor cooling air flows via the line 22 and via the swirl nozzle 23 into the wheel side space 19. Most of this swirling cooling air flows into the cooling channels 24 of the rotor 3 via the inlet openings located at the same height, while a small proportion between the turbine disk and the disk cover flows into the gas channel of the turbine 1. A further swirl nozzle 23, which is arranged at a smaller radial distance from the main turbine axis than the above-mentioned swirl nozzle 23, leads additional cooling air into the wheel side space 19. This flows in the direction of the ring channel 20 and is sucked together with the leakage air mass flow coming from the other direction from the compressor 10 and taken after the last rotor blade 11 into the suction devices 25 arranged in the area of the drum labyrinth 21. Of course, the leakage air mass flow can also be taken at another point, for example after the last guide vane 12 of the compressor 10. The extracted air then becomes Due to its low pressure, for example, the cooling air for the rear turbine stages is mixed in and thus used for the process.

Dadurch, dass der Leckageluftmassenstrom und ein geringer Teil der durch eine oder mehrere Dralldüsen 23 beigemischten Kühlluft beim Trommellabyrinth 21 abgesaugt wird, wird die Turbinenscheibe und ein Teil der Rotortrommel 14 nur noch von der Kühlluft bestrichen. Das hat den Vorteil einer gleichmässigeren und tieferen Temperaturverteilung, was sich günstig auf die Festigkeit im Rotor-Scheibenbereich auswirkt.Because the leakage air mass flow and a small part of the cooling air admixed by one or more swirl nozzles 23 are sucked off in the drum labyrinth 21, the turbine disk and part of the rotor drum 14 are only coated by the cooling air. This has the advantage of a more uniform and lower temperature distribution, which has a favorable effect on the strength in the rotor disc area.

Mit dem Absaugen der Leckageluft wird auch das Mischen mit der Kühlluft nach der Dralldüse 23 vermieden. Der Drall der Kühlluft nach der Dralldüse 23 wird nicht mehr durch die Leckageluft beeinflusst und es findet auch keine Erwärmung der Kühlluft durch die heissere Leckageluft statt; dadurch sind die Eintrittsbedingungen ins Rotorkühlsystem nahezu konstant, die Leistung der Kühlluft ist besser und die Eintrittsverluste in das Rotorkühlsystem werden minimiert.With the suction of the leakage air, mixing with the cooling air after the swirl nozzle 23 is also avoided. The swirl of the cooling air after the swirl nozzle 23 is no longer influenced by the leakage air and there is also no heating of the cooling air by the hotter leakage air; As a result, the entry conditions into the rotor cooling system are almost constant, the performance of the cooling air is better and the entry losses into the rotor cooling system are minimized.

Der Kühlluftdruck nach dem Drallgitter kann nun so gewählt werden, dass auf die normalerweise zwischen Turbinenscheibe und Scheibenabdeckung angeordnete Labyrinthdichtung verzichtet werden kann. Dadurch wird der Druck in Scheibennähe vom Druck des Turbinenhauptstromes im Gaskanal bestimmt.The cooling air pressure after the swirl grille can now be selected so that the labyrinth seal normally arranged between the turbine disk and the disk cover can be dispensed with. As a result, the pressure near the disc is determined by the pressure of the main turbine flow in the gas duct.

Bei einer Beschädigung des Rotortrommellabyrinths 21 wird durch den Wegfall des Scheibenlabyrinths und durch die vergrösserte Leckageluftmenge ein grosser Druckanstieg an der Turbinenscheibe verhindert, sodass sich der Rotoraxialschub nur gering ändert. Die Trommel- und Scheibentemperaturen bleiben im Falle einer Labyrinthspielvergrösserung relativ stabil.If the rotor drum labyrinth 21 is damaged, the omission of the disk labyrinth and the increased amount of leakage air prevent a large increase in pressure on the turbine disk, so that the axial thrust of the rotor changes only slightly. The drum and disc temperatures remain relatively stable in the case of a labyrinth clearance increase.

BezugszeichenlisteReference list

11
Turbineturbine
22nd
Laufschaufel der TurbineTurbine blade
33rd
Rotorrotor
44th
Leitschaufel der TurbineTurbine guide vane
55
SchaufelträgerShovel carrier
66
TurbinengehäuseTurbine casing
77
SammelraumGathering room
88th
RingbrennkammerAnnular combustion chamber
99
DiffusorDiffuser
1010th
Verdichtercompressor
1111
Laufschaufel des VerdichtersBlade of the compressor
1212th
Leitschaufel des VerdichtersGuide vane of the compressor
1313
Wellewave
1414
Trommeldrum
1515
TrommelabdeckungDrum cover
1616
RippenRibs
1717th
DiffusoraussengehäuseDiffuser outer casing
1818th
Stirnseite des TurbinenrotorsFront of the turbine rotor
1919th
RadseitenraumWheel side space
2020th
RingkanalRing channel
2121
LabyrinthdichtungLabyrinth seal
2222
Leitungen für TurbinenrotorkühlluftLines for turbine rotor cooling air
22a22a
Leitungen zum Kühlluftsystem der hinteren TurbinenstufenLines to the cooling air system of the rear turbine stages
2323
DralldüseSwirl nozzle
2424th
RotorkühlkanäleRotor cooling channels
2525th
AbsaugvorrichtungSuction device
2626
SammelraumGathering room
2727
Zuführung für geringen KühlluftteilSupply for a small part of the cooling air
2828
KühlluftentnahmeringraumCooling air extraction annulus

Claims (6)

Axialdurchströmte Gasturbine, im wesentlichen bestehend aus einer mehrstufigen Turbine (1), welche einen auf einer gemeinsamen Welle (13) angeordneten Verdichter (10) antreibt, - bei welcher der zwischen der Turbine (1) und dem Verdichter (10) liegende Wellenteil eine Trommel (14) ist, die von einer Trommelabdeckung (15) unter Bildung eines Ringkanals (20) umgeben ist, wobei im Ringkanal (20) eine gegen die Trommelabdeckung (15) dichtende Labyrinthdichtung (21) angeordnet ist, und die Trommelabdeckung (15) zusammen mit der Stirnseite (18) des Turbinenrotors (3) einen radial verlaufenden Radseitenraum (19) begrenzt, - bei der mindestens eine separate Leitung (22) zur Führung der Turbinenrotorkühlluft vom Verdichter (10) zur Stirnseite (18) des Turbinenrotors (3) angeordnet ist und die Verbindung zwischen dieser Leitung (22) und dem Radseitenraum (19) über mindestens zwei Dralldüsen (23) erfolgt, - bei der Kühleinrichtungen (24) für den Turbinenrotor (3) und seine Laufschaufelkränze vorhanden sind und - die gesamte rotorseitige Kühlluft für die Turbine (1) dem Verdichter (10) im Bereich des Verdichteraustritts entnommen wird, dadurch gekennzeichnet, dass im Bereich des Trommellabyrinths (21) mindestens eine Absaugvorrichtung (25) für die Leckageluft und einen Teil der Kühlluft angeordnet ist.Axial gas turbine, essentially consisting of a multi-stage turbine (1) which drives a compressor (10) arranged on a common shaft (13), - In which the between the turbine (1) and the compressor (10) lying shaft part is a drum (14) which is surrounded by a drum cover (15) to form an annular channel (20), one in the annular channel (20) the drum cover (15) sealing labyrinth seal (21) is arranged, and the drum cover (15) together with the end face (18) of the turbine rotor (3) delimits a radially running wheel side space (19), - The at least one separate line (22) for guiding the turbine rotor cooling air from the compressor (10) to the end face (18) of the turbine rotor (3) is arranged and the connection between this line (22) and the wheel side space (19) via at least two swirl nozzles (23) takes place, - Are present in the cooling devices (24) for the turbine rotor (3) and its rotor blades and - the entire rotor-side cooling air for the turbine (1) is taken from the compressor (10) in the region of the compressor outlet, characterized in that at least one suction device (25) for the leakage air and part of the cooling air is arranged in the region of the drum labyrinth (21). Axialdurchströmte Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass der Ringkanal (20) im Bereich der Absaugvorrichtung (25) zu einem Sammelraum (26) für die Leckage- bzw. Kühlluft erweitert ist.Axial-flow gas turbine according to claim 1, characterized in that the annular duct (20) in the area of the suction device (25) is expanded to a collecting space (26) for the leakage or cooling air. Axialdurchströmte Gasturbine nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Absaugvorrichtung (25) aus einer Leitung besteht, welche auf der einen Seite mit dem Sammelraum (26) für die Leckage- bzw. Kühlluft und auf der anderen Seite mit dem Kühlluftentnahmeringraum (28) im Verdichtergehäuse verbunden ist.Axial gas turbine according to claim 1 and 2, characterized in that the suction device (25) consists of a line which on one side with the collecting space (26) for the leakage or cooling air and on the other side with the cooling air extraction annulus (28 ) is connected in the compressor housing. Axialdurchströmte Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass die Absaugvorrichtung (25) mit den Kühleinrichtungen (24) der hinteren Turbinenstufen in Verbindung steht.Axial gas turbine according to claim 1, characterized in that the suction device (25) is connected to the cooling devices (24) of the rear turbine stages. Axialdurchströmte Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass im verdichterseitigen Teil der Rotortrommel (14) für einen Teil der Kühlluft mindestens eine Zuführung (27) zum Ringkanal (20) angeordnet ist, welche an ihrem jeweiligen Ende mindestens eine Dralldüse (23) aufweist.Axial gas turbine according to claim 1, characterized in that in the compressor-side part of the rotor drum (14) for part of the cooling air at least one feed (27) to the annular channel (20) is arranged, which has at least one swirl nozzle (23) at its respective end. Axialdurchströmte Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlluftdruck nach dem Drallgitter (23) im Radseitenraum (19) so gewählt wird, dass auf eine Labyrinthdichtung zwischen Turbinenscheibe und Scheibenabdeckung verzichtet werden kann.Axial gas turbine according to claim 1, characterized in that the cooling air pressure after the swirl grille (23) in the wheel side space (19) is selected so that a labyrinth seal between the turbine disk and the disk cover can be dispensed with.
EP95810542A 1994-09-19 1995-09-01 Cooling the rotor of an axial gasturbine Expired - Lifetime EP0702129B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4433289A DE4433289A1 (en) 1994-09-19 1994-09-19 Axial gas turbine
DE4433289 1994-09-19

Publications (3)

Publication Number Publication Date
EP0702129A2 true EP0702129A2 (en) 1996-03-20
EP0702129A3 EP0702129A3 (en) 1998-11-11
EP0702129B1 EP0702129B1 (en) 2002-06-05

Family

ID=6528562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810542A Expired - Lifetime EP0702129B1 (en) 1994-09-19 1995-09-01 Cooling the rotor of an axial gasturbine

Country Status (5)

Country Link
US (1) US5575617A (en)
EP (1) EP0702129B1 (en)
JP (1) JPH08105330A (en)
CN (1) CN1056909C (en)
DE (2) DE4433289A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632038A1 (en) * 1996-08-08 1998-02-12 Asea Brown Boveri Device for separating dust particles
EP2011963A1 (en) * 2007-07-04 2009-01-07 ALSTOM Technology Ltd Gas turbine with axial thrust balance

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738488A (en) * 1996-11-12 1998-04-14 General Electric Co. Gland for transferring cooling medium to the rotor of a gas turbine
JP3310907B2 (en) * 1997-06-12 2002-08-05 三菱重工業株式会社 Seal structure of gas turbine flange joint surface
JP3567065B2 (en) * 1997-07-31 2004-09-15 株式会社東芝 gas turbine
US6968696B2 (en) * 2003-09-04 2005-11-29 Siemens Westinghouse Power Corporation Part load blade tip clearance control
US7096673B2 (en) * 2003-10-08 2006-08-29 Siemens Westinghouse Power Corporation Blade tip clearance control
US7743613B2 (en) * 2006-11-10 2010-06-29 General Electric Company Compound turbine cooled engine
US7934901B2 (en) * 2006-12-20 2011-05-03 General Electric Company Air directing assembly and method of assembling the same
US8277170B2 (en) * 2008-05-16 2012-10-02 General Electric Company Cooling circuit for use in turbine bucket cooling
US8192151B2 (en) * 2009-04-29 2012-06-05 General Electric Company Turbine engine having cooling gland
US9593590B2 (en) * 2013-03-01 2017-03-14 Siemens Energy, Inc. Active bypass flow control for a seal in a gas turbine engine
EP3006668A1 (en) * 2014-10-07 2016-04-13 Siemens Aktiengesellschaft Gas turbine with two vortex feeds for cooling the rotor
WO2018165455A1 (en) 2017-03-09 2018-09-13 Johnson Controls Technology Company Back to back bearing sealing systems
US10669893B2 (en) * 2017-05-25 2020-06-02 General Electric Company Air bearing and thermal management nozzle arrangement for interdigitated turbine engine
US10941664B2 (en) * 2019-03-18 2021-03-09 General Electric Company Turbine engine component and method of cooling
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189845A (en) 1986-04-30 1987-11-04 Gen Electric Gas turbine cooling air transferring apparatus
EP0447886A1 (en) 1990-03-23 1991-09-25 Asea Brown Boveri Ag Axial flow gas turbine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE585101C (en) * 1930-07-25 1933-09-28 Wilhelm Beyer Dipl Ing Labyrinth seal against saturated steam under excess pressure, especially in high-pressure steam systems
DE974790C (en) * 1952-11-19 1961-04-27 Kuehnle Ag Gas turbine cooperating with a fan
NL232684A (en) * 1958-10-01
CH443821A (en) * 1966-01-14 1967-09-15 Escher Wyss Ag Device for sealing the shaft of a turbo machine for thermal power plants, the gaseous working medium of which is heated in an atomic nuclear reactor
AT290927B (en) * 1968-10-28 1971-06-25 Elin Union Ag Cooling the drum rotor of gas turbines
US3602605A (en) * 1969-09-29 1971-08-31 Westinghouse Electric Corp Cooling system for a gas turbine
CA939521A (en) * 1970-04-28 1974-01-08 Bruce R. Branstrom Turbine coolant flow system
US3826084A (en) * 1970-04-28 1974-07-30 United Aircraft Corp Turbine coolant flow system
US4296599A (en) * 1979-03-30 1981-10-27 General Electric Company Turbine cooling air modulation apparatus
JPS5951109A (en) * 1982-09-17 1984-03-24 Hitachi Ltd Condenser vacuum holder of steam power plant
US4574584A (en) * 1983-12-23 1986-03-11 United Technologies Corporation Method of operation for a gas turbine engine
US4645415A (en) * 1983-12-23 1987-02-24 United Technologies Corporation Air cooler for providing buffer air to a bearing compartment
DE3627306A1 (en) * 1986-02-28 1987-09-03 Mtu Muenchen Gmbh DEVICE FOR VENTILATING ROTOR COMPONENTS FOR COMPRESSORS OF GAS TURBINE ENGINE PLANTS
US4666368A (en) * 1986-05-01 1987-05-19 General Electric Company Swirl nozzle for a cooling system in gas turbine engines
CA1309873C (en) * 1987-04-01 1992-11-10 Graham P. Butt Gas turbine combustor transition duct forced convection cooling
FR2690482B1 (en) * 1992-04-23 1994-06-03 Snecma CIRCUIT FOR VENTILATION OF COMPRESSOR AND TURBINE DISCS.
DE4225625A1 (en) * 1992-08-03 1994-02-10 Asea Brown Boveri Exhaust gas turbo-charger with compression and turbine on common shaft - has increased space round ribbed cross-section and jacketed intermediate wall between compressor and turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189845A (en) 1986-04-30 1987-11-04 Gen Electric Gas turbine cooling air transferring apparatus
EP0447886A1 (en) 1990-03-23 1991-09-25 Asea Brown Boveri Ag Axial flow gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632038A1 (en) * 1996-08-08 1998-02-12 Asea Brown Boveri Device for separating dust particles
US5837019A (en) * 1996-08-08 1998-11-17 Asea Brown Boveri Ag Device for separating dust particles
EP2011963A1 (en) * 2007-07-04 2009-01-07 ALSTOM Technology Ltd Gas turbine with axial thrust balance
US8092150B2 (en) 2007-07-04 2012-01-10 Alstom Technology Ltd. Gas turbine with axial thrust balance

Also Published As

Publication number Publication date
CN1129278A (en) 1996-08-21
EP0702129B1 (en) 2002-06-05
DE59510224D1 (en) 2002-07-11
JPH08105330A (en) 1996-04-23
DE4433289A1 (en) 1996-03-21
US5575617A (en) 1996-11-19
EP0702129A3 (en) 1998-11-11
CN1056909C (en) 2000-09-27

Similar Documents

Publication Publication Date Title
EP0447886B1 (en) Axial flow gas turbine
EP0702129B1 (en) Cooling the rotor of an axial gasturbine
EP2123860B1 (en) Combined vortex reducer
EP0581978B1 (en) Multi-zone diffuser for turbomachine
EP0924386B1 (en) Method and device to seal off the space between a rotor and a stator
EP0536575B1 (en) Shroud band for axial flow turbine
DE60133629T2 (en) METHOD FOR OPERATING A GAS TURBINE WITH ADJUSTABLE RODS
DE19834376B4 (en) Method, device and application of the method for cooling vanes in a gas turbine plant
DE4422700A1 (en) Diffuser for turbomachinery
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
EP0834646A1 (en) Containment device for the radial turbine of a turbocharger
EP0638725A1 (en) Device for secondary air bleeding from an axial compressor
EP0417433B1 (en) Axial turbine
DE1220204B (en) Axial turbo machine, in particular axial gas turbine
DE2554010A1 (en) DEVICE AND METHOD FOR SUPPLYING COOLING AIR TO TURBINE VANES
DE3627306A1 (en) DEVICE FOR VENTILATING ROTOR COMPONENTS FOR COMPRESSORS OF GAS TURBINE ENGINE PLANTS
DE102005025244A1 (en) Air guiding system between compressor and turbine for gas-turbine engine operated at high pressure ratio has compressor and air chamber whereby first turbine cooling air is flowed through air chamber
DE2319743A1 (en) ROTOR BLADE FOR FLOW MACHINERY
EP0704603A2 (en) Sealing and cooking method for the hot side of a gas turbine shaft
DE3825744A1 (en) FLUID SEALING AND GAS TURBINE ARRANGEMENT AND METHOD FOR PREVENTING THE LEAKAGE OF WORKING FLUID FROM A TURBO MACHINE
DE2633291B2 (en) Gas turbine system with cooling by two independent cooling air flows
EP0118769B1 (en) Shrouded multistage turbine
EP0491966A1 (en) Support device of a thermal turbomachine
EP0590310A1 (en) Gas turbine with flanged exhaust casing
DE19814627C2 (en) Extraction of cooling air from the diffuser part of a compressor in a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19990423

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010801

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59510224

Country of ref document: DE

Date of ref document: 20020711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020816

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510224

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510224

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20121008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140919

Year of fee payment: 20

Ref country code: FR

Payment date: 20140919

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59510224

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150831