EP0692421A1 - Control method for steering of running gears with orientable wheels of a set rolling on rail and set using this method - Google Patents

Control method for steering of running gears with orientable wheels of a set rolling on rail and set using this method Download PDF

Info

Publication number
EP0692421A1
EP0692421A1 EP95109772A EP95109772A EP0692421A1 EP 0692421 A1 EP0692421 A1 EP 0692421A1 EP 95109772 A EP95109772 A EP 95109772A EP 95109772 A EP95109772 A EP 95109772A EP 0692421 A1 EP0692421 A1 EP 0692421A1
Authority
EP
European Patent Office
Prior art keywords
rolling
angles
variable
angle
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95109772A
Other languages
German (de)
French (fr)
Other versions
EP0692421B1 (en
Inventor
Daniel Pouyt
Laurent Donato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEVEY TECHNOLOGIES SA
Original Assignee
VEVEY TECHNOLOGIES SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VEVEY TECHNOLOGIES SA filed Critical VEVEY TECHNOLOGIES SA
Publication of EP0692421A1 publication Critical patent/EP0692421A1/en
Application granted granted Critical
Publication of EP0692421B1 publication Critical patent/EP0692421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D13/00Tramway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/38Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles
    • B61F5/386Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles fluid actuated

Definitions

  • the present invention relates to a method for adjusting the orientation of rolling devices with steerable wheels of a rolling assembly on rails comprising at least two rolling units, wagons or boxes making up a wagon, articulated and / or coupled one to the other. 'other, the assembly being arranged on the rails by means of rolling devices with steerable wheels whose main planes make variable angles with a direction parallel to the longitudinal axis of the rolling unit on which they are mounted, the method being carried out by adjusting said variable angles as a function of the curvature of the rails so that the main planes of the wheels are substantially coincident with tangents to the rails.
  • Such an articulated railway vehicle is known in which the rolling devices are guided so mechanical thanks to a guide pulley cooperating with a side rail.
  • This device requires the installation of an additional guide rail and therefore cannot be applied to all possible urban uses.
  • the device is very expensive.
  • the object of the present invention is to remedy these drawbacks and the invention is characterized in that the relative angle between the longitudinal axes of at least two rolling units is measured, in that the said said are calculated variable angles for at least one of the rolling devices as a function of said measured relative angle and that its wheels are oriented in accordance with said calculated variable angles.
  • an articulated railway vehicle is obtained in which the wheels are at all times in tangency with the rails.
  • Derailment safety is increased.
  • the characteristic squeaking noise of curved trams is greatly reduced, if not eliminated, and wheel wear is significantly reduced.
  • the process is also easily carried out and of a relatively low cost price. Due to the orientation of the wheels given by the calculation and not by a mechanical control, the adjustment of the wheels can be adapted to all routes and can be modified and improved later at very little cost.
  • An advantageous variant is characterized by the fact that the position of the rolling devices is identified according to a coordinate system, that an arc of circle function of at least one osculating circle passing through the centers of three is determined. rolling devices and that the value of said variable angles is determined from the derivative of said arc function.
  • variable angles obtained by the osculator circle (s) are corrected by means of empirical correction functions based on the variation of said relative angles for a distance traveled.
  • the method can be adapted to rolling assemblies comprising at least three rolling units and at least four rolling devices. It is then characterized by the fact that a first relative angle is measured between a first and a second rolling unit and a second relative angle between the second and a third rolling unit, by the fact that at least these two are used relative angles for determining at least two functions of arcs of a circle of at least two osculating circles, a first passing through the centers of the first three rolling devices, the second passing through the centers of the last three rolling devices, and through the fact that the value of said variable angles is determined from the derivatives of the two arc-of-a-circle functions, the value of the variable angles of the rolling devices belonging to two osculating circles being obtained by averaging the values obtained by each of the osculating circles.
  • the method can also be adapted to rolling assemblies comprising a number of rolling units greater than three, it is then characterized by the fact that several osculating circles are determined by group of three rolling devices, all the rolling devices having with the exception of those arranged at the end of the rolling assembly, used for the interpolation of two osculating circles and the relative angles being obtained by average of the values obtained by each of the two osculating circles, the variable angles obtained being corrected with by means of said correction functions.
  • the invention also relates to a rolling assembly on rail, the orientation of the wheels of which is adjusted according to the previously defined method, comprising at least two rolling units, wagons or boxes making up a wagon, articulated and / or coupled one to the other. other, the assembly being arranged on the rails by means of rolling devices with steerable wheels whose main plane forms a variable angle with a direction parallel to the longitudinal axis of the rolling unit on which they are mounted, characterized by the fact that the rolling assembly comprises at least one adjustment device intended to adjust said variable angle as a function of the curvature of the rails so that the main plane of the wheels is substantially coincident with the tangent to the rails, this device adjustment comprising at least one measuring member capable of determining a relative angle between the longitudinal axes of at least two rolling units, at least one calculation unit intended to calculate the variable angles for each of the rolling devices as a function of said relative angle , and adjustment members associated with the rolling devices and capable of orienting the wheels in accordance with said calculated variable angle.
  • the rail vehicle therefore has according to the invention means that are simple to assemble and inexpensive, making it possible to obtain precise orientation of the wheels, thus ensuring increased safety.
  • Figure 1 is a schematic perspective view of a first embodiment in the form of a tram, the upper part of the vehicle being separated from the chassis for clarity.
  • FIG. 2 shows in perspective a rolling device used in the vehicle illustrated in FIG. 1.
  • Figure 3 is a schematic plan view of the vehicle of Figure 1.
  • FIG. 4 represents a block diagram of the adjustment device used in the vehicle illustrated in FIG. 1.
  • Figure 5 is a schematic plan view of a variant showing a different arrangement of the devices of rolling.
  • Figure 6 is a schematic plan view of a second embodiment.
  • the rolling assembly represented in FIG. 1 is a tram 1 comprising three rolling units in the form of boxes 2, 3 and 4 articulated to each other in a mobile manner by means of bellows joints 5.
  • Each box is composed of a chassis 6 and a superstructure 7.
  • the first box 2 comprises two rolling devices 8, 9 each with two steerable wheels, while the second and third boxes 3, 4 each comprise only a rolling device 10, 11.
  • Such a rolling device, or bogie with two wheels, is illustrated in more detail in Figure 2. It has two wheels 15, 16 driven separately by motors 17, 18 whose frame is fixed to a frame 20 of the device rolling .
  • the chassis 20 has two cross members 21 connected by spacers 22 and stabilizer bars 23. It also supports electromagnetic brakes 24 intended to cooperate with the rails 25.
  • a ring 28 secured to the chassis 20 via the bars 23, serves as a connecting pivot with the body 2, 3 or 4 on which the rolling device is rotatably mounted.
  • the rolling assembly further comprises, associated with each rolling device 8 to 11, an adjustment device 30 intended to adjust a variable angle ( ⁇ j) between the main plane 32 of the wheels 15, 16 and a direction parallel to the axis. longitudinal 31 of the body 2, 3, 4 on which the rolling device is mounted.
  • This adjustment device thus makes it possible to adjust the orientation of the wheels according to the curvature of the rails so that the plane of the wheels 32 is substantially coincident with the tangent to the rails.
  • the adjustment device comprises for this purpose an adjustment member in the form of a controlled jack 34 connecting the chassis 20 of the rolling device to the chassis 6 of the boxes 2, 3, or 4.
  • FIG. 3 schematically illustrates the boxes 2, 3 and 4, the rolling devices 8 to 11 being oriented in such a way that the planes of the wheels or the normals 36 to the axes 37 of the wheels make variable angles ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4 with the longitudinal axes 31 of each box 2, 3,4.
  • the relative angles ⁇ 1, respectively ⁇ 2 between the longitudinal axes 31 of the first 2 and of the second 3 box, respectively between the longitudinal axes 31 of the second 3 and of the third 4 box are used for the calculation of the variable angles ⁇ 1, ⁇ 2 , ⁇ 3 and ⁇ 4.
  • the tram includes a measuring member 40 associated with each articulation between two boxes in the form of a sensor intended to measure the relative angle ⁇ 1 or ⁇ 2.
  • sensors 40 are placed under the hinge ring. Part of the sensor is secured to the crown while another part is secured to the body.
  • An inductive or capacitive measurement system makes it possible, by the field variation recorded between the two elements making up the sensor, to know the rotation of the crown.
  • the values of the variable angles ⁇ 1, ⁇ 2 measured are delivered to a calculating unit 41 which calculates the values for each of the angles ⁇ j of each of the rolling devices.
  • the angle values ⁇ j are routed to servo controllers 42 (fig. 2) intended to control the movement jacks 34 associated with each of the rolling devices for orienting the wheels in accordance with said variable angles ⁇ j calculated so that the main planes of the wheels are substantially coincident with the tangents to the rails.
  • the calculation unit 41 is arranged so as to develop an equation for the trajectory of the rails, which then provides, at all points, the tangent to the trajectory, which allows ideal positioning of the wheels of the rolling devices thus minimizing their friction with the rails.
  • the derivatives of the osculating circles at the positions corresponding to the centers of the rolling devices give the direction of tangency of the wheels.
  • a rolling device belongs to the two osculating circles, there are two tangents.
  • the final result is obtained by taking the average between the two tangents.
  • the correction functions are based on the variation of the relative angles between the boxes ⁇ 1 and ⁇ 2, for a distance traveled ⁇ s.
  • the intervals defined by the different ⁇ values can be refined at will.
  • correction factors Kj, Lj, Gj, Hj are dependent on the geometry of the tram. They are obtained empirically by comparing the theoretical results obtained using equations (1.13) to (1.16) with the virtual values obtained by computer simulation, for example.
  • the calculation unit 41 is connected to the power supply 43 and receives the value of the relative angles ⁇ 1 and ⁇ 2 from the sensors 40 and the signal from the tachometer 44 of the rolling assembly. It delivers the calculated values of the variable angles ⁇ jc to the servo controllers 42. The latter control the jacks hydraulic 34 via a pump 45 so as to adjust the orientation of the wheels in accordance with the variable angle ⁇ jc calculated.
  • FIG. 5 represents a variant of a rolling assembly or train 50 also comprising three boxes 52, 53, 54.
  • the first box 52 has a rolling device 58, the second box 53 two rolling devices 59, 60 and the third box 54 a single rolling device 61.
  • the rolling assembly 50 is centrosymmetric and the lengths 11 and 13 are 7, 50m, the center distance e is 6.50m, the length la is 1.75m and the length 12 is 8.25m.
  • the train is made up of four or more boxes, the same logic is followed, namely the construction of several osculating circles, by group of three rolling devices. With the exception of the two end bearing devices, all are used for the interpolation of two osculating circles and the tangency angle is obtained by average according to the form (1.15).
  • the correction functions (1.17) to (1.19) remain valid.
  • the form (1.20) is applicable for the angles ⁇ jc belonging to a given body, by introducing the two relative angles ⁇ corresponding to the articulations of this body.
  • the invention applies of course to rolling units, trams, trains, trainsets, comprising any number of rolling devices, the latter being able to be arranged under the rolling units or between the rolling units.
  • These rolling units may also have, alongside at least one rolling device with controlled orientation, a certain number of conventional bogies comprising at least two axles and whose orientation is given automatically.
  • variable angles ⁇ j for each of the rolling devices can also be evaluated using more complex geometric functions than osculating circles.
  • the rolling assembly is allocated to a certain route, it would also be possible to store the relative angles ⁇ m measured and to calculate and store the variable angles ⁇ jc calculated very precisely with refined correction functions comprising by example of the correction factors Gj, Hj, Kj, Lj modified as a function of the specific path stored in memory.
  • the second embodiment shown in FIG. 6 is constituted by a rolling assembly 65 comprising two boxes 66, 67 with rolling devices 68, 69, 70.
  • This assembly could of course also include another number of boxes and devices of rolling.
  • the originality of this embodiment consists in measuring, in addition to the relative angle ⁇ between the boxes 66, 67, the angular speed ⁇ or the angular variation of rotation of the boxes around their vertical axis by means of gyroscopes 72, 73 or any other device suitable for this purpose, such as gyroscopic sensors with piezoelectric elements.
  • These gyroscopic sensor devices 72, 73 are connected to the calculation unit 41 to supply it with signals corresponding to the angular speed ⁇ or to the angular variation of rotation of the boxes around their vertical axis.
  • the positioning angle ⁇ j of the rolling device (s) of these intermediate bodies is calculated taking into account the variation in angle ⁇ m of the joint la closer to the bearing (s) in question.
  • the time interval ⁇ t between measurements is typically 0.5 seconds.
  • the adjustment members may be pneumatic, hydraulic or even mechanical jacks controlled by a stepping motor for example to obtain precise adjustment of the angles ⁇ j.
  • a calculation unit may be associated with each wagon or the train may only include a single calculation unit processing the data of all the wagons.
  • the device according to the invention has the great advantage of being upgradeable and adaptable to very specific conditions of use.
  • any improved or specific mathematical processing can be integrated at low cost into the calculation unit 41 so as to be able to optimize at any time the adjustment of the orientation of the wheels without having to change the train from a mechanical point of view.

Abstract

The railway vehicle has wheel boxes (2-4) articulated to each other, and wheels (8 -11) whose direction can be adjusted to obtain tangency with the rails. Detectors (40) are used to measure the relative angles between the longitudinal axes (31) of the wheel boxes. For each wheel assembly, the variable angle ( alpha 1, alpha 2, alpha 3, alpha 4) between a direction perpendicular to the wheels' axes (37) and the longitudinal axis of the concerned wheel box is determined. These are determined from the measured relative angles and preferably in combination with the angular rotation speed of the wheel boxes about their vertical axis measured by gyroscopic detectors on the boxes. An actuator adjusts the wheel direction as a function of the calculated angles. <IMAGE>

Description

La présente invention concerne un procédé de réglage de l'orientation des dispositifs de roulement à roues orientables d'un ensemble roulant sur rails comportant au moins deux unités roulantes, wagons ou caisses composant un wagon, articulées et/ou accouplées l'une à l'autre, l'ensemble étant disposé sur les rails par l'intermédiaire de dispositifs de roulement à roues orientables dont les plans principaux font des angles variables avec une direction parallèle à l'axe longitudinal de l'unité roulante sur laquelle ils sont montés, la méthode s'effectuant en ajustant lesdits angles variables en fonction de la courbure des rails de façon que les plans principaux des roues soient sensiblement confondus avec des tangentes aux rails.The present invention relates to a method for adjusting the orientation of rolling devices with steerable wheels of a rolling assembly on rails comprising at least two rolling units, wagons or boxes making up a wagon, articulated and / or coupled one to the other. 'other, the assembly being arranged on the rails by means of rolling devices with steerable wheels whose main planes make variable angles with a direction parallel to the longitudinal axis of the rolling unit on which they are mounted, the method being carried out by adjusting said variable angles as a function of the curvature of the rails so that the main planes of the wheels are substantially coincident with tangents to the rails.

Dans de tels ensembles roulants, en particulier des tramways, il est pour certaines applications très important d'abaisser le plus possible le plancher du véhicule. Il n'est alors plus possible d'utiliser des bogies à deux essieux ou davantage. On utilisera alors de préférence des dispositifs de roulement ne comportant que deux roues qui devront être guidées de façon adéquate.In such rolling assemblies, in particular trams, it is for certain applications very important to lower the floor of the vehicle as much as possible. It is no longer possible to use bogies with two or more axles. It is then preferable to use rolling devices comprising only two wheels which must be guided adequately.

On connaît un tel véhicule ferroviaire articulé dans lequel les dispositifs de roulement sont guidés de façon mécanique grâce à une poulie de guidage coopérant avec un rail latéral. Ce dispositif nécessite le montage d'un rail de guidage supplémentaire et ne peut donc s'appliquer à toutes les utilisations urbaines possibles. En outre, le dispositif est très onéreux.Such an articulated railway vehicle is known in which the rolling devices are guided so mechanical thanks to a guide pulley cooperating with a side rail. This device requires the installation of an additional guide rail and therefore cannot be applied to all possible urban uses. In addition, the device is very expensive.

Le but de la présente invention est de remédier à ces inconvénients et l'invention est caractérisée par le fait que l'on mesure l'angle relatif entre les axes longitudinaux d'au moins deux unités roulantes, en ce que l'on calcule lesdits angles variables pour au moins un des dispositifs de roulement en fonction dudit angle relatif mesuré et que l'on oriente ses roues conformément auxdits angles variables calculés.The object of the present invention is to remedy these drawbacks and the invention is characterized in that the relative angle between the longitudinal axes of at least two rolling units is measured, in that the said said are calculated variable angles for at least one of the rolling devices as a function of said measured relative angle and that its wheels are oriented in accordance with said calculated variable angles.

Par ces mesures on obtient un véhicule ferroviaire articulé dans lequel les roues sont en tous temps en tangence avec les rails. La sécurité au déraillement s'en trouve accrue. Le bruit caractéristique de grincement des tramways en courbe est fortement diminué, voire éliminé et l'usure des roues est sensiblement réduite. Le procédé est en outre facilement réalisable et d'un prix de revient relativement faible. Du fait de l'orientation des roues donnée par le calcul et non par un contrôle mécanique, le réglage des roues peut être adapté à tous parcours et peut être modifié et amélioré ultérieurement à très peu de frais.By these measures, an articulated railway vehicle is obtained in which the wheels are at all times in tangency with the rails. Derailment safety is increased. The characteristic squeaking noise of curved trams is greatly reduced, if not eliminated, and wheel wear is significantly reduced. The process is also easily carried out and of a relatively low cost price. Due to the orientation of the wheels given by the calculation and not by a mechanical control, the adjustment of the wheels can be adapted to all routes and can be modified and improved later at very little cost.

Une variante avantageuse est caractérisée par le fait que l'on repère la position des dispositifs de roulement selon un système de coordonnées, que l'on détermine une fonction d'arc de cercle d'au moins un cercle osculateur passant par les centres de trois dispositifs de roulement et que l'on détermine la valeur desdits angles variables à partir de la dérivée de ladite fonction d'arc de cercle.An advantageous variant is characterized by the fact that the position of the rolling devices is identified according to a coordinate system, that an arc of circle function of at least one osculating circle passing through the centers of three is determined. rolling devices and that the value of said variable angles is determined from the derivative of said arc function.

Etant donné que les parcours ferroviaires sont constitués de droites et d'arcs de cercles, ces dispositions permettent d'obtenir très facilement une excellente orientation des roues.Since the railways consist of straight lines and arcs of circles, these arrangements make it very easy to obtain an excellent orientation of the wheels.

Avantageusement on corrige les angles variables obtenus par le ou les cercles osculateurs au moyen de fonctions de correction empiriques se basant sur la variation desdits angles relatifs pour une distance parcourue.Advantageously, the variable angles obtained by the osculator circle (s) are corrected by means of empirical correction functions based on the variation of said relative angles for a distance traveled.

On peut ainsi corriger des irrégularités de parcours telles que des entrées et des sorties de courbes ou des courbes en "S".It is thus possible to correct irregularities in the course such as entering and exiting curves or "S" curves.

Le procédé peut être adapté à des ensembles roulants comprenant au moins trois unités roulantes et au moins quatre dispositifs de roulement. Il est alors caractérisé par le fait que l'on mesure un premier angle relatif entre une première et une seconde unité roulante et un second angle relatif entre la seconde et une troisième unité roulante, par le fait que l'on utilise au moins ces deux angles relatifs pour déterminer au moins deux fonctions d'arcs de cercle d'au moins deux cercles osculateurs, un premier passant par les centres des trois premiers dispositifs de roulement, le second passant par les centres des trois derniers dispositifs de roulement, et par le fait que l'on détermine la valeur desdits angles variables à partir des dérivées des deux fonctions d'arc de cercle, la valeur des angles variables des dispositifs de roulement appartenant à deux cercles osculateurs étant obtenue en faisant la moyenne des valeurs obtenues par chacun des cercles osculateurs.The method can be adapted to rolling assemblies comprising at least three rolling units and at least four rolling devices. It is then characterized by the fact that a first relative angle is measured between a first and a second rolling unit and a second relative angle between the second and a third rolling unit, by the fact that at least these two are used relative angles for determining at least two functions of arcs of a circle of at least two osculating circles, a first passing through the centers of the first three rolling devices, the second passing through the centers of the last three rolling devices, and through the fact that the value of said variable angles is determined from the derivatives of the two arc-of-a-circle functions, the value of the variable angles of the rolling devices belonging to two osculating circles being obtained by averaging the values obtained by each of the osculating circles.

Le procédé peut également être adapté à des ensembles roulants comportant un nombre d'unités roulantes supérieur à trois, il est alors caractérisé par le fait que l'on détermine plusieurs cercles osculateurs par groupe de trois dispositifs de roulement, tous les dispositifs de roulement à l'exception de ceux disposés à l'extrémité de l'ensemble roulant, servant à l'interpolation de deux cercles osculateurs et les angles relatifs étant obtenus par moyenne des valeurs obtenues par chacun des deux cercles osculateurs, les angles variables obtenus étant corrigés au moyen desdites fonctions de correction.The method can also be adapted to rolling assemblies comprising a number of rolling units greater than three, it is then characterized by the fact that several osculating circles are determined by group of three rolling devices, all the rolling devices having with the exception of those arranged at the end of the rolling assembly, used for the interpolation of two osculating circles and the relative angles being obtained by average of the values obtained by each of the two osculating circles, the variable angles obtained being corrected with by means of said correction functions.

Par ces procédés, on obtient une orientation très précise des roues en utilisant des moyens peu chers et qui peuvent être adaptés en tous temps.By these methods, a very precise orientation of the wheels is obtained using inexpensive means which can be adapted at any time.

L'invention se réfère également à un ensemble roulant sur rail dont l'orientation des roues est réglée selon le procédé précédemment défini, comportant au moins deux unités roulantes, wagons ou caisses composant un wagon, articulées et/ou accouplées l'une à l'autre, l'ensemble étant disposé sur les rails par l'intermédiaire de dispositifs de roulement à roues orientables dont le plan principal fait un angle variable avec une direction parallèle à l'axe longitudinal de l'unité roulante sur laquelle ils sont montés, caractérisé par le fait que l'ensemble roulant comporte au moins un dispositif de réglage destiné à ajuster ledit angle variable en fonction de la courbure des rails de façon que le plan principal des roues soit sensiblement confondu avec la tangente aux rails, ce dispositif de réglage comprenant au moins un organe de mesure susceptible de déterminer un angle relatif entre les axes longitudinaux d'au moins deux unités roulantes, au moins une unité de calcul destinée à calculer les angles variables pour chacun des dispositifs de roulement en fonction dudit angle relatif, et des organes d'ajustage associés aux dispositifs de roulement et susceptibles d'orienter les roues conformément audit angle variable calculé.The invention also relates to a rolling assembly on rail, the orientation of the wheels of which is adjusted according to the previously defined method, comprising at least two rolling units, wagons or boxes making up a wagon, articulated and / or coupled one to the other. other, the assembly being arranged on the rails by means of rolling devices with steerable wheels whose main plane forms a variable angle with a direction parallel to the longitudinal axis of the rolling unit on which they are mounted, characterized by the fact that the rolling assembly comprises at least one adjustment device intended to adjust said variable angle as a function of the curvature of the rails so that the main plane of the wheels is substantially coincident with the tangent to the rails, this device adjustment comprising at least one measuring member capable of determining a relative angle between the longitudinal axes of at least two rolling units, at least one calculation unit intended to calculate the variable angles for each of the rolling devices as a function of said relative angle , and adjustment members associated with the rolling devices and capable of orienting the wheels in accordance with said calculated variable angle.

Le véhicule ferroviaire présente donc selon l'invention des moyens simples à monter et peu chers permettant d'obtenir une orientation précise des roues assurant donc un sécurité accrue.The rail vehicle therefore has according to the invention means that are simple to assemble and inexpensive, making it possible to obtain precise orientation of the wheels, thus ensuring increased safety.

D'autres avantages ressortent des caractéristiques exprimées dans les revendications dépendantes et de la description exposant ci-après l'invention plus en détail à l'aide de dessins qui représentent schématiquement et à titre d'exemple deux modes d'exécution et des variantes.Other advantages emerge from the characteristics expressed in the dependent claims and from the description setting out the invention below in more detail with the aid of drawings which schematically represent by way of example two embodiments and variants.

La figure 1 est une vue schématique en perspective d'un premier mode d'exécution sous forme d'un tramway, la partie supérieure du véhicule étant séparé du châssis pour plus de clarté.Figure 1 is a schematic perspective view of a first embodiment in the form of a tram, the upper part of the vehicle being separated from the chassis for clarity.

La figure 2 représente en perspective un dispositif de roulement utilisé dans le véhicule illustré à la figure 1.FIG. 2 shows in perspective a rolling device used in the vehicle illustrated in FIG. 1.

La figure 3 est une vue schématique en plan du véhicule de la figure 1.Figure 3 is a schematic plan view of the vehicle of Figure 1.

La figure 4 représente un schéma bloc du dispositif de réglage utilisé dans le véhicule illustré à la figure 1.FIG. 4 represents a block diagram of the adjustment device used in the vehicle illustrated in FIG. 1.

La figure 5 est une vue schématique en plan d'une variante présentant un arrangement différent des dispositifs de roulement.Figure 5 is a schematic plan view of a variant showing a different arrangement of the devices of rolling.

La figure 6 est une vue schématique en plan d'un second mode d'exécution.Figure 6 is a schematic plan view of a second embodiment.

L'ensemble roulant représenté à la figure 1 est un tramway 1 comportant trois unités roulantes sous forme de caisses 2, 3 et 4 articulées les unes aux autres de façon mobile grâce à des articulations à soufflet 5. Chaque caisse est composée d'un châssis 6 et d'une superstructure 7. La première caisse 2 comprend deux dispositifs de roulement 8,9 chacun à deux roues orientables, tandis que la deuxième et la troisième caisse 3,4 comportent chacune seulement un dispositif de roulement 10,11. Un tel dispositif de roulement, ou bogie à deux roues, est illustré de façon plus détaillée à la figure 2. Il présente deux roues 15, 16 entraînées séparément par des moteurs 17, 18 dont le bâti est fixé à un châssis 20 du dispositif de roulement . Le châssis 20 présente deux traverses 21 reliées par des entretoises 22 et des barres stabilisatrices 23. Il supporte également des freins électromagnétiques 24 destinés à coopérer avec les rails 25. Une couronne 28 solidaire du châssis 20 via les barres 23, sert de pivot de liaison avec la caisse 2, 3 ou 4 sur laquelle le dispositif de roulement est monté de façon tournante.The rolling assembly represented in FIG. 1 is a tram 1 comprising three rolling units in the form of boxes 2, 3 and 4 articulated to each other in a mobile manner by means of bellows joints 5. Each box is composed of a chassis 6 and a superstructure 7. The first box 2 comprises two rolling devices 8, 9 each with two steerable wheels, while the second and third boxes 3, 4 each comprise only a rolling device 10, 11. Such a rolling device, or bogie with two wheels, is illustrated in more detail in Figure 2. It has two wheels 15, 16 driven separately by motors 17, 18 whose frame is fixed to a frame 20 of the device rolling . The chassis 20 has two cross members 21 connected by spacers 22 and stabilizer bars 23. It also supports electromagnetic brakes 24 intended to cooperate with the rails 25. A ring 28 secured to the chassis 20 via the bars 23, serves as a connecting pivot with the body 2, 3 or 4 on which the rolling device is rotatably mounted.

L'ensemble roulant comprend en outre, associé à chaque dispositif de roulement 8 à 11, un dispositif de réglage 30 destiné à ajuster un angle variable (αj) entre le plan principal 32 des roues 15, 16 et une direction parallèle à l'axe longitudinal 31 de la caisse 2, 3, 4 sur laquelle le dispositif de roulement est monté. Ce dispositif de réglage permet ainsi d'ajuster l'orientation des roues selon la courbure des rails pour que le plan des roues 32 soit sensiblement confondu avec la tangente aux rails. Le dispositif de réglage comporte à cet effet un organe d'ajustage sous forme d'un vérin commandé 34 reliant le châssis 20 du dispositif de roulement au châssis 6 des caissons 2, 3, ou 4.The rolling assembly further comprises, associated with each rolling device 8 to 11, an adjustment device 30 intended to adjust a variable angle (αj) between the main plane 32 of the wheels 15, 16 and a direction parallel to the axis. longitudinal 31 of the body 2, 3, 4 on which the rolling device is mounted. This adjustment device thus makes it possible to adjust the orientation of the wheels according to the curvature of the rails so that the plane of the wheels 32 is substantially coincident with the tangent to the rails. The adjustment device comprises for this purpose an adjustment member in the form of a controlled jack 34 connecting the chassis 20 of the rolling device to the chassis 6 of the boxes 2, 3, or 4.

La figure 3 illustre schématiquement les caisses 2, 3 et 4, les dispositifs de roulement 8 à 11 étant orientés de telle manière que les plans des roues ou les normales 36 aux axes 37 des roues font des angles variables α1, α2, α3 ou α4 avec les axes longitudinaux 31 de chaque caisse 2, 3,4. Les angles relatifs β1, respectivement β2 entre les axes longitudinaux 31 de la première 2 et de la deuxième 3 caisse, respectivement entre les axes longitudinaux 31 de la deuxième 3 et de la troisième 4 caisse sont utilisés pour le calcul des angles variables α1, α2, α3 et α4. Le tramway comporte à cet effet un organe de mesure 40 associé à chaque articulation entre deux caisses sous forme d'un capteur destiné à mesurer l'angle relatif β1 ou β2. Ces capteurs 40 sont places sous la couronne d'articulation. Une partie du capteur est solidaire de la couronne alors qu'une autre partie est solidaire de la caisse. Un système de mesure inductif ou capacitif permet, par la variation de champ enregistrée entre les deux éléments composant le capteur, de connaître la rotation de la couronne. Les valeurs des angles variables β1, β2 mesurées sont délivrées à une unité de calcul 41 qui calcule les valeurs pour chacun des angles αj de chacun des dispositifs de roulement. Les valeurs d'angle αj sont acheminées vers des servocontrôleurs 42 (fig.2) destinés à commander le mouvement des vérins 34 associés à chacun des dispositifs de roulement pour orienter les roues conformément auxdits angles variables αj calculés de façon que les plans principaux des roues soient sensiblement confondus avec les tangentes aux rails.FIG. 3 schematically illustrates the boxes 2, 3 and 4, the rolling devices 8 to 11 being oriented in such a way that the planes of the wheels or the normals 36 to the axes 37 of the wheels make variable angles α1, α2, α3 or α4 with the longitudinal axes 31 of each box 2, 3,4. The relative angles β1, respectively β2 between the longitudinal axes 31 of the first 2 and of the second 3 box, respectively between the longitudinal axes 31 of the second 3 and of the third 4 box are used for the calculation of the variable angles α1, α2 , α3 and α4. For this purpose, the tram includes a measuring member 40 associated with each articulation between two boxes in the form of a sensor intended to measure the relative angle β1 or β2. These sensors 40 are placed under the hinge ring. Part of the sensor is secured to the crown while another part is secured to the body. An inductive or capacitive measurement system makes it possible, by the field variation recorded between the two elements making up the sensor, to know the rotation of the crown. The values of the variable angles β1, β2 measured are delivered to a calculating unit 41 which calculates the values for each of the angles αj of each of the rolling devices. The angle values αj are routed to servo controllers 42 (fig. 2) intended to control the movement jacks 34 associated with each of the rolling devices for orienting the wheels in accordance with said variable angles αj calculated so that the main planes of the wheels are substantially coincident with the tangents to the rails.

L'unité de calcul 41 est agencée de façon à élaborer une mise en équation de la trajectoire des rails, qui fournit alors, en tous points, la tangente à la trajectoire, ce qui permet un positionnement idéal des roues des dispositifs de roulement minimisant ainsi leur frottement avec les rails.The calculation unit 41 is arranged so as to develop an equation for the trajectory of the rails, which then provides, at all points, the tangent to the trajectory, which allows ideal positioning of the wheels of the rolling devices thus minimizing their friction with the rails.

Le choix des fonctions pour la mise en équation du tracé de chemin de fer est relativement simple puisque les tracés se composent généralement soit de droites soit d'arcs de cercle. Les fonctions utilisées seront donc des droites et des cercles osculateurs dont il reste à calculer les paramètres, à savoir les coordonnées de leurs centres a, b et leurs rayons ρ.The choice of the functions for the equation of the railway layout is relatively simple since the layouts generally consist either of straight lines or of arcs of a circle. The functions used will therefore be lines and osculating circles for which it remains to calculate the parameters, namely the coordinates of their centers a, b and their radii ρ.

Prenons l'exemple d'une rame composée de trois caisses (fig. 3). Un système de coordonnées est attaché à la première caisse. On repère le centre des trois premiers dispositifs de roulement ou bogies par rapport à ce système; ils définissent le premier cercle osculateur. De la même manière, le centre des trois derniers dispositifs de roulement ou bogies sont repérés et définissent le deuxième cercle osculateur.Take the example of a train consisting of three boxes (fig. 3). A coordinate system is attached to the first box. The center of the first three rolling devices or bogies is located in relation to this system; they define the first osculating circle. In the same way, the center of the last three rolling devices or bogies are identified and define the second osculating circle.

Les dérivées des cercles osculateurs aux positions correspondant aux centres des dispositifs de roulement donnent la direction de tangence des roues. Dans le cas où un dispositif de roulement appartient aux deux cercles osculateurs, il existe deux tangentes. Le résultat final est obtenu en prenant la moyenne entre les deux tangentes.The derivatives of the osculating circles at the positions corresponding to the centers of the rolling devices give the direction of tangency of the wheels. In the case where a rolling device belongs to the two osculating circles, there are two tangents. The final result is obtained by taking the average between the two tangents.

Si le tramway se situe sur une droite ou dans une courbe à rayon constant, l'approximation mathématique sera exacte. Dans tous les autres cas (entrée en courbe, courbe à rayon variable, etc) une erreur apparaîtra. Cette erreur pourra, le cas échéant, être réduite par l'introduction de fonctions de correction, basées sur la variation des angles Δβ entre les caisses pour une distance parcourue.If the tram is located on a straight line or in a curve with a constant radius, the mathematical approximation will be exact. In all other cases (curve entry, curve with variable radius, etc.) an error will appear. This error could, if necessary, be reduced by the introduction of correction functions, based on the variation of the angles Δβ between the boxes for a distance traveled.

Les symboles suivants seront utilisés par la suite :

a, b [m]
coordonnées des centres des cercles osculateurs
e [m]
entr'axe entre les dispositifs de roulement
l,la [m]
longueurs entre dispositifs de roulement et articulations
m
pente des tangentes aux cercles osculateurs
s [m]
distance parcourue
t [sec]
temps
v [m/sec]
vitesse
x,y [m]
coordonnées des centres des dispositifs de roulement
G,H,K,L [m]
facteurs de correction dépendant de la géométrie de l'unité roulante et du dispositif de roulement concerné
α [degrés]
angle variable par rapport à l'axe de la caisse
αC [degrés]
angle variable corrigé par rapport à l'axe de la caisse
β [degrés]
angle relatif entre les caisses
γ [degrés/m]
constante correspondant à une limite d'un intervalle de mesure.
ρ [m]
rayon des cercles osculateurs
ψ [degrés]
angle des tangentes au premier cercle osculateur
ψ' [degrés]
angle des tangentes au deuxième cercle osculateur
χ
matrice
   Les coordonnées des centres des dispositifs de roulement sont données par les secteurs suivants :
Figure imgb0001

   On cherche un cercle de rayon ρ et de centre (a,b) passant par un groupe de trois points correspondant aux centres des dispositifs de roulement. L'équation du cercle est du type : ( x - a ) 2 + ( y - b ) 2 = ρ 2
Figure imgb0002
qui peut s'écrire sous la forme d'une fonction d'arc de cercle : y =√ ρ 2 -( x - a ) 2 ¯ + b
Figure imgb0003
La dérivée m = y'(x)
Figure imgb0004
de 1.6 est donnée par l'équation :
Figure imgb0005

La valeur de cette dérivée au point x donne la pente de la droite tangente à l'arc de cercle, au point considéré. Son angle avec l'abcisse est ψ = arctg(m)
Figure imgb0006
   Le calcul des coordonnées du centre et du rayon ρ des cercles osculateurs revient à la résolution d'un système à trois équations 1.5 à trois inconnues (a, b et ρ) et qui peut s'écrire, pour le premier cercle osculateur, sous la forme matricielle suivante :
Figure imgb0007

et pour le deuxième cercle :
Figure imgb0008

Les rayons ρ1 et ρ2 des cercles osculateurs sont calculés à l'aide de l'équation 1.5.
La détermination des centres (a1,b1), (a2,b2) et des rayons ρ1 et ρ2 des deux cercles permet le calcul de tous les angles ψ grâce aux équations (1.7) et (1.8).The following symbols will be used later:
a, b [m]
coordinates of the centers of the osculating circles
e [m]
distance between the rolling devices
l, the [m]
lengths between bearing devices and joints
m
slope of tangents to osculating circles
s [m]
distance traveled
t [dry]
time
v [m / sec]
speed
x, y [m]
bearing center coordinates
G, H, K, L [m]
correction factors depending on the geometry of the rolling unit and the bearing device concerned
α [degrees]
variable angle relative to the axis of the body
αC [degrees]
variable angle corrected with respect to the body axis
β [degrees]
relative angle between the boxes
γ [degrees / m]
constant corresponding to a limit of a measurement interval.
ρ [m]
radius of osculating circles
ψ [degrees]
angle of the tangents to the first osculating circle
ψ '[degrees]
angle of the tangents to the second osculating circle
χ
matrix
The coordinates of the rolling stock centers are given by the following sectors:
Figure imgb0001

We are looking for a circle with radius ρ and center (a, b) passing through a group of three points corresponding to the centers of the rolling devices. The equation of the circle is of the type: (( x - at ) 2 + ( y - b ) 2 = ρ 2
Figure imgb0002
which can be written in the form of an arc function: y = √ ρ 2 - ( x - at ) 2 ¯ + b
Figure imgb0003
Derivative m = y '(x)
Figure imgb0004
of 1.6 is given by the equation:
Figure imgb0005

The value of this derivative at point x gives the slope of the line tangent to the arc of a circle, at the point considered. Its angle with the abscissa is ψ = arctg (m)
Figure imgb0006
The calculation of the coordinates of the center and the radius ρ of the osculating circles amounts to the resolution of a system with three equations 1.5 with three unknowns (a, b and ρ) and which can be written, for the first osculating circle, under the following matrix form:
Figure imgb0007

and for the second circle:
Figure imgb0008

The radii ρ1 and ρ2 of the osculating circles are calculated using equation 1.5.
The determination of the centers (a1, b1), (a2, b2) and of the radii ρ1 and ρ2 of the two circles allows the calculation of all the angles ψ thanks to equations (1.7) and (1.8).

Pour déterminer les angles variables α entre les dispositifs de roulement et les axes des caisses, il faut encore déduire l'angle relatif β de la caisse correspondante. De plus pour les dispositifs de roulement 9 et 10 appartenant aux deux cercles, le résultat final est obtenu par moyenne des deux angles ψ et ψ' calculés pour le premier et le deuxième cercle respectivement ainsi : (1.13) α1 = ψ1 (1.14) α2 = 1 2 (ψ2 + ψ2') (1.15) α3 = 1 2 (ψ3 + ψ3')-β1 (1.16) α4 = ψ4'-(β1+β2)

Figure imgb0009
   Les angles donnés par les équations (1.13) à (1.16) peuvent être corrigés par des fonctions empiriques dans le cas où la trajectoire réelle du tramway diffère trop d'une droite ou d'une courbe à rayon constant par exemple pour une entrée en courbe, un virage en S, etc.To determine the variable angles α between the rolling devices and the axes of the bodies, it is also necessary to deduce the relative angle β of the corresponding body. Furthermore for the rolling devices 9 and 10 belonging to the two circles, the final result is obtained by the average of the two angles ψ and ψ 'calculated for the first and the second circle respectively as follows: (1.13) α1 = ψ1 (1.14) α2 = 1 2 (ψ2 + ψ2 ') (1.15) α3 = 1 2 (ψ3 + ψ3 ') - β1 (1.16) α4 = ψ4 '- (β1 + β2)
Figure imgb0009
The angles given by equations (1.13) to (1.16) can be corrected by empirical functions in the case where the real trajectory of the tram differs too much from a straight line or from a curve with constant radius for example for an entry in curve , an S-turn, etc.

Les fonctions de correction se basent sur la variation des angles relatifs entre les caisses β1 et β2, pour une distance parcourue Δs. Ainsi les angles variables corrigés αjc fournis au dispositif de réglage des dispositifs de roulement sont de la forme :
   Pour β2 = 0 et Δβ2 = 0 et pour :

Figure imgb0010

Pour Δβ2 ≠ 0
Figure imgb0011

(1.21) Δβ = β(t + Δt) - β(t) (1.22) Δs = vΔt
Figure imgb0012
Les intervalles définis par les différentes valeurs γ peuvent être affinés à volonté.The correction functions are based on the variation of the relative angles between the boxes β1 and β2, for a distance traveled Δs. Thus the corrected variable angles αjc supplied to the device for adjusting the rolling devices are of the form:
For β2 = 0 and Δβ2 = 0 and for:
Figure imgb0010

For Δβ2 ≠ 0
Figure imgb0011

or (1.21) Δβ = β (t + Δt) - β (t) (1.22) Δs = vΔt
Figure imgb0012
The intervals defined by the different γ values can be refined at will.

Les facteurs de correction Kj, Lj, Gj, Hj sont dépendants de la géométrie du tramway. Ils sont obtenus de façon empirique en comparant les résultats théoriques obtenus grâce aux équations (1.13) à (1.16) avec les valeurs virtuelles obtenues par simulation informatique par exemple.The correction factors Kj, Lj, Gj, Hj are dependent on the geometry of the tram. They are obtained empirically by comparing the theoretical results obtained using equations (1.13) to (1.16) with the virtual values obtained by computer simulation, for example.

Dans le schéma représenté à la figure 4 l'unité de calcul 41 est raccordée à l'alimentation 43 et reçoit la valeur des angles relatifs β1 et β2 des capteurs 40 et le signal provenant du tachymètre 44 de l'ensemble roulant. Il délivre les valeurs calculées des angles variables αjc aux servocontrôleurs 42. Ces derniers commandent les vérins hydrauliques 34 par l'intermédiaire d'une pompe 45 de façon à ajuster l'orientation des roues conformément à l'angle variable αjc calculé.In the diagram shown in FIG. 4, the calculation unit 41 is connected to the power supply 43 and receives the value of the relative angles β1 and β2 from the sensors 40 and the signal from the tachometer 44 of the rolling assembly. It delivers the calculated values of the variable angles αjc to the servo controllers 42. The latter control the jacks hydraulic 34 via a pump 45 so as to adjust the orientation of the wheels in accordance with the variable angle αjc calculated.

La figure 5 représente une variante d'ensemble roulant ou rame 50 comprenant également trois caisses 52,53,54. La première caisse 52 présente un dispositif de roulement 58, la seconde caisse 53 deux dispositifs de roulement 59, 60 et la troisième caisse 54 un seul dispositif de roulement 61. L'ensemble roulant 50 est centrosymétrique et les longueurs 11 et 13 sont 7,50m, l'entr'axe e est 6,50m, la longueur la est 1,75m et la longueur 12 est 8,25m..FIG. 5 represents a variant of a rolling assembly or train 50 also comprising three boxes 52, 53, 54. The first box 52 has a rolling device 58, the second box 53 two rolling devices 59, 60 and the third box 54 a single rolling device 61. The rolling assembly 50 is centrosymmetric and the lengths 11 and 13 are 7, 50m, the center distance e is 6.50m, the length la is 1.75m and the length 12 is 8.25m.

Les coordonnées des centres des dispositifs de roulements sont données par les vecteurs suivants :

Figure imgb0013

   Comme précédemment, le centre et le rayon des deux cercles osculateurs est calculé conformément aux équations 1.5 à 1.12, pour obtenir les angles variables : (2.5) α1 = ψ1 (2.6) α2 = 1 2 (ψ2 + ψ2')-β1 (2.7) α3 = 1 2 (ψ3 + ψ3')-β1 (2.8) α4 = ψ4'-(β1+β2)
Figure imgb0014
   Les angles variables corrigés αjc délivrés au dispositif de réglage 42 des dispositifs de roulement sont de la forme :
Pour β2 = 0 et Δβ2 = 0 et pour :
Figure imgb0015

   Avec la disposition des deux bogies centraux, la correction de α2 définie par l'équation (1.18) n'intervient pas. Ce simple exemple suffit à montrer la souplesse de la méthode qui s'applique sans autre à n'importe quelle géométrie.
Pour Δβ2 ≠ 0:
Figure imgb0016

   Il est bien entendu que les modes de réalisation décrits ci-dessus ne présentent aucun caractère limitatif et qu'ils peuvent recevoir toutes modifications désirables à l'intérieur du cadre tel que défini par la revendication 1. En particulier, le réglage et le développement mathématique du contrôle précédemment exposé pourront être appliqués à des ensembles roulants, tramways, chemins de fer, métros comportant des rames et wagons ayant un nombre d'unités roulantes différent avec un nombre de dispositifs de roulement ou bogies différent. Dans le cas d' une rame à deux caisses seulement, le réglage se base alors sur un seul cercle osculateur et les équations 1.14 et 1.15 sont simplifiées. Seule la variation de l'angle relatif β1 interviendra dans la correction qui sera de la forme de l'équation 1.17 pour les trois angles αjc.The coordinates of the centers of the bearing devices are given by the following vectors:
Figure imgb0013

As before, the center and the radius of the two osculating circles is calculated in accordance with equations 1.5 to 1.12, to obtain the variable angles: (2.5) α1 = ψ1 (2.6) α2 = 1 2 (ψ2 + ψ2 ') - β1 (2.7) α3 = 1 2 (ψ3 + ψ3 ') - β1 (2.8) α4 = ψ4 '- (β1 + β2)
Figure imgb0014
The corrected variable angles αjc delivered to the adjustment device 42 of the rolling devices are of the form:
For β2 = 0 and Δβ2 = 0 and for:
Figure imgb0015

With the arrangement of the two central bogies, the correction of α2 defined by equation (1.18) does not occur. This simple example is enough to show the flexibility of the method which applies without other to any geometry.
For Δβ2 ≠ 0:
Figure imgb0016

It is understood that the embodiments described above are in no way limiting and that they can receive any desirable modification within the framework as defined by claim 1. In particular, the adjustment and the mathematical development of the control previously exposed may be applied to rolling assemblies, trams, railways, metros comprising trainsets and wagons having a different number of rolling units with a different number of rolling devices or bogies. In the case of a train with only two boxes, the adjustment is then based on a single osculator circle and equations 1.14 and 1.15 are simplified. Only the variation of the relative angle β1 will intervene in the correction which will be of the form of equation 1.17 for the three angles αjc.

Si la rame est composée de quatre caisses ou davantage, la même logique est poursuivie, à savoir la construction de plusieurs cercles osculateurs, par groupe de trois dispositifs de roulement. A l'exception des deux dispositifs de roulement d'extrémité, tous servent à l'interpolation de deux cercles osculateurs et l'angle de tangence est obtenu par moyenne selon la forme (1.15). Les fonctions de correction (1.17) à (1.19) restent valables. La forme (1.20) est applicable pour les angles αjc appartenant à une caisse donnée, en introduisant les deux angles relatifs β correspondant aux articulations de cette caisse.If the train is made up of four or more boxes, the same logic is followed, namely the construction of several osculating circles, by group of three rolling devices. With the exception of the two end bearing devices, all are used for the interpolation of two osculating circles and the tangency angle is obtained by average according to the form (1.15). The correction functions (1.17) to (1.19) remain valid. The form (1.20) is applicable for the angles αjc belonging to a given body, by introducing the two relative angles β corresponding to the articulations of this body.

L'invention s'applique bien entendu à des unités roulantes, tramways, trains, rames, comportant un nombre quelconque de dispositifs de roulement, ces derniers pouvant être disposés sous les unités roulantes ou entre les unités roulantes. Ces unités roulantes pourront également présenter, à côté d'au moins un dispositif de roulement à orientation commandée, un certain nombre de bogies classiques comportant au moins deux essieux et dont l'orientation est donnée automatiquement.The invention applies of course to rolling units, trams, trains, trainsets, comprising any number of rolling devices, the latter being able to be arranged under the rolling units or between the rolling units. These rolling units may also have, alongside at least one rolling device with controlled orientation, a certain number of conventional bogies comprising at least two axles and whose orientation is given automatically.

Les angles variables αj pour chacun des dispositifs de roulement pourront également être évalués à l'aide de fonctions géométriques plus complexes que des cercles osculateurs.The variable angles αj for each of the rolling devices can also be evaluated using more complex geometric functions than osculating circles.

Au cas où l'ensemble roulant est attribué à un certain parcours, il serait également possible de mémoriser les angles relatifs βm mesurés et de calculer et de mémoriser les angles variables αjc calculés de manière très précise avec des fonctions de correction affinées comportant par exemple des facteurs de correction Gj, Hj, Kj, Lj modifiés en fonction du parcours spécifique mis en mémoire.If the rolling assembly is allocated to a certain route, it would also be possible to store the relative angles βm measured and to calculate and store the variable angles αjc calculated very precisely with refined correction functions comprising by example of the correction factors Gj, Hj, Kj, Lj modified as a function of the specific path stored in memory.

Le second mode d'exécution représenté à la figure 6 est constitué par un ensemble roulant 65 comprenant deux caisses 66, 67 avec des dipositifs de roulement 68, 69, 70. Cet ensemble pourrait bien entendu également comporter un autre nombre de caisses et de dispositifs de roulement. L'originalité de ce mode d'exécution consiste à mesurer, outre l'angle relatif β entre les caisses 66, 67, la vitesse angulaire θ̇ ou la variation angulaire de rotation des caisses autour de leur axe vertical au moyen de gyroscopes 72, 73 ou tout autre dispositif adapté à cet effet, tel que des capteurs gyroscopiques à éléments piézoélectriques. Ces dispositifs capteurs gyroscopiques 72, 73 sont reliés à l'unité de calcul 41 pour lui fournir des signaux correspondant à la vitesse angulaire θ̇ ou à la variation angulaire de rotation des caisses autour de leur axe vertical.The second embodiment shown in FIG. 6 is constituted by a rolling assembly 65 comprising two boxes 66, 67 with rolling devices 68, 69, 70. This assembly could of course also include another number of boxes and devices of rolling. The originality of this embodiment consists in measuring, in addition to the relative angle β between the boxes 66, 67, the angular speed θ̇ or the angular variation of rotation of the boxes around their vertical axis by means of gyroscopes 72, 73 or any other device suitable for this purpose, such as gyroscopic sensors with piezoelectric elements. These gyroscopic sensor devices 72, 73 are connected to the calculation unit 41 to supply it with signals corresponding to the angular speed θ̇ or to the angular variation of rotation of the boxes around their vertical axis.

Pour chaque dispositif de roulement j, l'angle αj entre l'axe de la caisse et la normale à l'axe des roues est calculé dans l'unité de calcul 41 d'après l'équation : αj = N j1 Δβ m + N j2 θ ̇ n Δt

Figure imgb0017

   Δβm est la variante de l'angle relatif β mesuré entre deux caisses successives pendant un intervalle de temps Δt entre deux mesures,
   θ̇n est la vitesse angulaire d'une caisse n = 1,2 donnée autour de son axe vertical,
   Nj1 et Nj2 sont des facteurs dépendants de la géométrie de l'unité roulante et la position du dispositif de roulement (distance du dispositif de roulement à l'articulation l₁, l₂, entr'axe e).For each rolling device j, the angle αj between the axis of the body and the normal to the axis of the wheels is calculated in the calculation unit 41 according to the equation: αj = N d1 Δβ m + N d2 θ ̇ not Δt
Figure imgb0017
or
Δβ m is the variant of the relative angle β measured between two successive cases during a time interval Δt between two measurements,
θ̇ n is the angular speed of a box n = 1.2 given around its vertical axis,
N j1 and N j2 are factors depending on the geometry of the rolling unit and the position of the rolling device (distance from the rolling device to the joint l₁, l₂, center distance e).

Toutes les mesures de Δβm et de θ̇n effectuées pour le positionnement αj du ou des dispositifs de roulements d'une caisse sont relatives à cette même caisse.All the measurements of Δβ m and of θ̇ n carried out for the positioning α j of the bodywork device (s) of a body relate to this same body.

Pour chaque dispositif de roulement, il existe un couple de facteurs Nj1,Nj2 différent. Dans le cas des caisses intermédiaires d'ensembles roulants avec plus de deux caisses, l'angle de positionnement αj du ou des dispositifs de roulement de ces caisses intermédiaires est calculé en tenant compte de la variation d'angle Δβm de l'articulation la plus proche du ou des dispositifs de roulement en question.For each rolling device, there are a couple of factors N j1 , N j2 different. In the case of intermediate bodies of rolling assemblies with more than two bodies, the positioning angle αj of the rolling device (s) of these intermediate bodies is calculated taking into account the variation in angle Δβ m of the joint la closer to the bearing (s) in question.

Comme les caisses sont supposées infiniment rigides, le positionnement des gyroscopes à l'intérieur de la caisse n'influence pas la mesure de la vitesse de rotation θ̇n. L'intervalle de temps Δt entre des mesures est typiquement de 0,5 secondes.As the boxes are assumed to be infinitely rigid, the positioning of the gyroscopes inside the box does not influence the measurement of the speed of rotation θ̇ n . The time interval Δt between measurements is typically 0.5 seconds.

A titre d'exemple, pour la géométrie correspondant à la figure 6, nous avons pour le dernier roulement (70) les valeurs suivantes :
N₂₁ = 6
N₂₂ = 0,25
l₂ étant de 8,005 m.
By way of example, for the geometry corresponding to FIG. 6, we have the following values for the last bearing (70):
N₂₁ = 6
N₂₂ = 0.25
there being 8.005 m.

Il est bien entendu qu'une excellente précision est obtenue en disposant un capteur gyroscopique sur chaque caisse. Néanmoins une solution meilleur marché permettrait également de monter seulement un unique dispositif gyroscopique sur une seule caisse de l'ensemble roulant 65 et de répercuter les mesures aux autres caisses. Au lieu de mesurer les vitesses angulaires θ̇n, il est bien entendu également possible de mesurer les variations d'angle de rotation d'une caisse autour de son axe vertical pendant des intervalles de temps données.It is understood that excellent precision is obtained by placing a gyroscopic sensor on each box. However a cheaper solution would also allow to mount only a single gyroscopic device on a single body of the rolling assembly 65 and pass the measurements on to the other bodies. Instead of measuring the angular velocities θ̇ n , it is of course also possible to measure the variations in the angle of rotation of a body around its vertical axis during given time intervals.

Les organes d'ajustage pourront être des vérins pneumatiques, hydrauliques ou encore mécaniques contrôlés par un moteur pas à pas par exemple pour obtenir un réglage précis des angles αj. Dans le cas d'un train à plusieurs wagons comportant des caisses articulées, une unité de calcul pourra être associée à chaque wagon ou le train ne pourra comprendre qu'une seule unité de calcul traitant les données de tous les wagons.The adjustment members may be pneumatic, hydraulic or even mechanical jacks controlled by a stepping motor for example to obtain precise adjustment of the angles αj. In the case of a train with several wagons comprising articulated boxes, a calculation unit may be associated with each wagon or the train may only include a single calculation unit processing the data of all the wagons.

Le dispositif selon l'invention présente le grand avantage d'être évolutif et adaptable à des conditions d'utilisation très particulières. En effet, tout traitement mathématique amélioré ou spécifique pourra être intégré à peu de frais dans l'unité de calcul 41 de façon à pouvoir optimaliser à tout moment le réglage de l'orientation des roues sans devoir changer la rame au point de vue mécanique.The device according to the invention has the great advantage of being upgradeable and adaptable to very specific conditions of use. In fact, any improved or specific mathematical processing can be integrated at low cost into the calculation unit 41 so as to be able to optimize at any time the adjustment of the orientation of the wheels without having to change the train from a mechanical point of view.

Claims (14)

Procédé de réglage de l'orientation des dispositifs de roulement (8 à 11) à roues orientables (15,16) d'un ensemble roulant (1) sur rails (25) comportant au moins deux unités roulantes (2 à 4), wagons ou caisses composant un wagon, articulées et/ou accouplées l'une à l'autre, l'ensemble étant disposé sur les rails par l'intermédiaire de dispositifs de roulement (8 à 11) à roues (15, 16) orientables dont les plans principaux (32) font des angles variables (αj) avec une direction parallèle à l'axe longitudinal (31) de l'unité roulante (2 à 4) sur laquelle ils sont montés, la méthode s'effectuant en ajustant lesdits angles variables (αj) en fonction de la courbure des rails (25) de façon que les plans principaux (32) des roues soient sensiblement confondus avec des tangentes aux rails (25), caractérisé en ce que l'on mesure l'angle relatif (βm) entre les axes longitudinaux (31) d'au moins deux unités roulantes (2 à 4), en ce que l'on calcule lesdits angles variables (αj) pour au moins un des dispositifs de roulement (8 à 11) en fonction dudit angle relatif (βm) mesuré et que l'on oriente ses roues (15,16) conformément auxdits angles variables (αj) calculés.Method for adjusting the orientation of rolling devices (8 to 11) with steerable wheels (15, 16) of a rolling assembly (1) on rails (25) comprising at least two rolling units (2 to 4), wagons or boxes composing a wagon, articulated and / or coupled to each other, the assembly being arranged on the rails by means of rolling devices (8 to 11) with wheels (15, 16) whose main planes (32) make variable angles (αj) with a direction parallel to the longitudinal axis (31) of the rolling unit (2 to 4) on which they are mounted, the method being carried out by adjusting said variable angles (αj) as a function of the curvature of the rails (25) so that the main planes (32) of the wheels are substantially coincident with tangents to the rails (25), characterized in that the relative angle (βm) is measured ) between the longitudinal axes (31) of at least two rolling units (2 to 4), in that the said angles var are calculated iables (αj) for at least one of the rolling devices (8 to 11) as a function of said relative angle (βm) measured and that its wheels (15,16) are oriented in accordance with said calculated variable angles (αj). Procédé selon la revendication 1, caractérisé en ce que l'on repère la position des dispositifs de roulement (8 à 11) selon un système de coordonnées, que l'on détermine une fonction d'arc de cercle d'au moins un cercle osculateur passant par les centres de trois dispositifs de roulement (8 à 11) et que l'on détermine la valeur desdits angles variables (αj) à partir de la dérivée de ladite fonction d'arc de cercle.Method according to claim 1, characterized in that the position of the rolling devices (8 to 11) is identified according to a coordinate system, that an arc of circle function of at least one osculating circle is determined passing through the centers of three rolling devices (8 to 11) and determining the value of said variable angles (αj) from the derivative of said circular arc function. Procédé selon la revendication 2, caractérisé en ce que l'on corrige les angles variables (αj) obtenus par le ou les cercles osculateurs au moyen de fonction de correction empiriques se basant sur la variation
Figure imgb0018
desdits angles relatifs (βm) pour une distance parcourue (Δs).
Method according to claim 2, characterized in that the variable angles (αj) obtained by the osculator circle (s) are corrected by means of empirical correction function based on the variation
Figure imgb0018
said relative angles (βm) for a distance traveled (Δs).
Procédé selon l'une des revendications 1 à 3, adapté à des ensembles roulants comprenant au moins trois unités roulantes (2 à 4) et au moins quatre dispositifs de roulement (8 à 11), caractérisé par le fait que l'on mesure un premier angle relatif (β1) entre une première (2) et une seconde (3) unité roulante et un second angle relatif (β2) entre la seconde (3) et une troisième (4) unité roulante, par le fait que l'on utilise au moins ces deux angles relatifs (β1,β2) pour déterminer au moins deux fonctions d'arcs de cercle d'au moins deux cercles osculateurs, un premier passant par les centres des trois premiers dispositifs de roulement (8,9,10), le second passant par les centres des trois derniers dispositifs de roulement (9,10,11), et par le fait que l'on détermine la valeur desdits angles variables (αj) à partir des dérivées des deux fonctions d'arc de cercle, la valeur des angles variables (αj) des dispositifs de roulement (9,10) appartenant à deux cercles osculateurs étant obtenue en faisant la moyenne des valeurs obtenues par chacun des cercles osculateurs.Method according to one of claims 1 to 3, suitable for rolling assemblies comprising at least three rolling units (2 to 4) and at least four rolling devices (8 to 11), characterized in that a first relative angle (β1) between a first (2) and a second (3) rolling unit and a second relative angle (β2) between the second (3) and a third (4) rolling unit, by the fact that uses at least these two relative angles (β1, β2) to determine at least two functions of arcs of a circle of at least two osculating circles, a first passing through the centers of the first three rolling devices (8,9,10) , the second passing through the centers of the last three rolling devices (9,10,11), and by the fact that the value of said variable angles (αj) is determined from the derivatives of the two functions of an arc of a circle , the value of the variable angles (αj) of the rolling devices (9,10) belonging to two circles osculators being obtained by averaging the values obtained by each of the osculating circles. Procédé selon les revendications 3 et 4, caractérisé en ce que les fonctions de correction sont de la forme suivante pour trois unités roulantes au moins : - lorsque le second angle relatif (β2) et la variation (Δβ2) de ce second angle relatif sont égales à zéro :
Figure imgb0019
- lorsque la variation (Δβ2) du second angle relatif n'est pas égale à zéro.
Figure imgb0020

αj = angle variable calculé non corrigé
αjc = angle variable corrigé
Δβ1, Δβ2 = variation du premier et du second angle relatif dans l'intervalle de temps Δt
   Δs = chemin parcouru dans l'intervalle de temps Δt avec une vitesse v
Ki, Li, Gj, Hj = facteurs de correction prédéterminés dépendant de la géométrie de l'ensemble roulant
γi, γi+1 = limites définissant les intervalles pour les valeurs des constantes Ki, Li, Gj, Hj.
Method according to claims 3 and 4, characterized in that the correction functions are of the following form for at least three rolling units: - when the second relative angle (β2) and the variation (Δβ2) of this second relative angle are equal to zero:
Figure imgb0019
- when the variation (Δβ2) of the second relative angle is not equal to zero.
Figure imgb0020
or
αj = uncorrected calculated variable angle
αjc = corrected variable angle
Δβ1, Δβ2 = variation of the first and second relative angles in the time interval Δt
Δs = path traveled in the time interval Δt with a speed v
Ki, Li, Gj, Hj = predetermined correction factors depending on the geometry of the rolling assembly
γi, γi + 1 = limits defining the intervals for the values of the constants Ki, Li, Gj, Hj.
Procédé selon la revendication 5, adapté à des ensembles roulants comportant un nombre d'unités roulantes supérieur à trois, caractérisé par le fait que l'on détermine plusieurs cercles osculateurs par groupe de trois dispositifs de roulement, tous ces dispositifs de roulement à l'exception de ceux disposés à l'extrémité de l'ensemble roulant, servant à l'interpolation de deux cercles osculateurs et les angles relatifs étant obtenus par moyenne des valeurs obtenues pour chacun des deux cercles osculateurs, les angles variables obtenus étant corrigés au moyen desdites fonctions de correction.Method according to claim 5, suitable for rolling assemblies comprising a number of rolling units greater than three, characterized in that several osculating circles are determined by group of three rolling devices, all of these rolling devices exception of those arranged at the end of the rolling assembly, used for the interpolation of two osculating circles and the relative angles being obtained by average of the values obtained for each of the two osculating circles, the variable angles obtained being corrected by means of said correction functions. Procédé selon la revendication 1, caractérisé par le fait que l'on mesure la vitesse angulaire (θ̇n) de rotation ou la variation angulaire de rotation d'au moins une unité roulante (66,67) autour d'un axe vertical et que l'on calcule ledit angle variable αj pour au moins un dispositif de roulement (68 à 70) en tenant compte de cette vitesse ou variation angulaire mesurée et de la différence des angles relatifs (Δβm) mesurés entre les axes longitudinaux d'au moins deux unités roulantes (66,67) pendant un intervalle de temps prédéterminé (Δt).Method according to claim 1, characterized in that the angular speed of rotation (θ̇ n ) of rotation or the angular variation of rotation of at least one rolling unit (66,67) is measured around a vertical axis and that calculating said variable angle αj for at least one rolling device (68 to 70) taking into account this speed or angular variation measured and the difference of the relative angles (Δβ m ) measured between the longitudinal axes of at least two rolling units (66,67) for a predetermined time interval (Δt). Procédé selon la revendication 7, caractérisé par le fait que l'angle variable (αj) pour chacun des dispositifs de roulement (68 à 70) est calculé d'après l'équation : αj = N j1 Δβ m + N j2 θ ̇ n Δt
Figure imgb0021

   Δβm est la variation de l'angle relatif β mesuré entre deux unités roulantes successives pendant un intervalle de temps Δt donné.
   θ̇n est la vitesse angulaire de rotation d'une unité roulante n autour d'un axe vertical, et
   Nj1 et Nj2 sont des facteurs dépendants de la géométrie de l'unité roulante et de la position du dispositif de roulement sur l'unité roulante.
Method according to claim 7, characterized in that the variable angle (αj) for each of the rolling devices (68 to 70) is calculated according to the equation: αj = N d1 Δβ m + N d2 θ ̇ not Δt
Figure imgb0021
or
Δβ m is the variation of the relative angle β measured between two successive rolling units during an interval of given time Δt.
θ̇ n is the angular speed of rotation of a rolling unit n around a vertical axis, and
N j1 and N j2 are factors depending on the geometry of the rolling unit and the position of the rolling device on the rolling unit.
Procédé selon la revendication 7 ou 8, caractérisé par le fait que l'on mesure ladite variation ou vitesse angulaire (θ̇n) au moyen d'un dispositif capteur gyroscopique (72, 73).Method according to claim 7 or 8, characterized in that said variation or angular speed (θ̇ n ) is measured by means of a gyroscopic sensor device (72, 73). Ensemble roulant sur rails dont l'orientation des roues est réglée selon le procédé défini dans une des revendications 1 à 9 et comportant au moins deux unités roulantes (2 à 4), wagons ou caisses composant un wagon, articulées et/ou accouplées l'une à l'autre, l'ensemble étant disposé sur les rails (25) par l'intermédiaire de dispositifs de roulement (8 à 11) à roues orientables dont le plan principal (32) fait un angle variable (αj) avec une direction parallèle à l'axe longitudinal (31) de l'unité roulante sur laquelle elles sont montées, caractérisé par le fait que l'ensemble roulant comporte au moins un dispositif de réglage (30) destine à ajuster ledit angle variable (αj) en fonction de la courbure des rails (25) de façon que le plan principal (32) des roues soit sensiblement confondu avec la tangente aux rails, ce dispositif de réglage (30) comprenant au moins un organe de mesure (40) susceptible de déterminer un angle relatif (βm) entre les axes longitudinaux (31) d'au moins deux unités roulantes, au moins une unité de calcul (41) destinée à calculer les angles variables (αj) pour chacun des dispositifs de roulement en fonction dudit angle relatif (βm), et des organes d'ajustage (34, 42) associés aux dispositifs de roulement (8 à 11) et susceptibles d'orienter les roues conformément audit angle variable (αj) calculé.Rolling assembly on rails, the orientation of the wheels of which is adjusted according to the method defined in one of claims 1 to 9 and comprising at least two rolling units (2 to 4), wagons or boxes making up a wagon, articulated and / or coupled together. one to the other, the assembly being arranged on the rails (25) by means of rolling devices (8 to 11) with steerable wheels whose main plane (32) makes a variable angle (αj) with a direction parallel to the longitudinal axis (31) of the rolling unit on which they are mounted, characterized in that the rolling assembly comprises at least one adjustment device (30) intended to adjust said variable angle (αj) as a function the curvature of the rails (25) so that the main plane (32) of the wheels is substantially coincident with the tangent to the rails, this adjustment device (30) comprising at least one measuring member (40) capable of determining an angle relative (βm) between the axes lon gitudinal (31) of at least two rolling units, at least one calculation unit (41) intended to calculate the variable angles (αj) for each of the rolling devices as a function of said relative angle (βm), and of the adjustment members (34, 42) associated with the rolling devices ( 8 to 11) and likely to orient the wheels in accordance with said calculated variable angle (αj). Ensemble selon la revendication 10, caractérisé en ce qu'il comprend m+1 unités roulantes (2 à 4) et m organes de mesure (40) destinés à déterminer les m angles relatifs (βm) entre les unités roulantes, ces angles relatifs (βm) étant délivrés à au moins une unité de calcul (41) pour déterminer lesdits angles variables (αj).Assembly according to claim 10, characterized in that it comprises m + 1 rolling units (2 to 4) and m measuring elements (40) intended to determine the m relative angles (βm) between the rolling units, these relative angles ( βm) being delivered to at least one calculation unit (41) for determining said variable angles (αj). Ensemble selon la revendication 11, caractérisé en ce que l'unité de calcul (41) est adaptée à corriger les angles variables (αj) obtenus au moyen de fonctions de correction empiriques.Assembly according to claim 11, characterized in that the calculation unit (41) is adapted to correct the variable angles (αj) obtained by means of empirical correction functions. Ensemble selon l'une des revendications 10 à 12, caractérisé par le fait qu'il comprend au moins un dispositif capteur gyroscopique (72, 73) agencé sur au moins une unité roulante (66, 67) destiné à mesurer la vitesse angulaire (θ̇n) ou la rotation angulaire de l'unité roulante autour d'un axe vertical.Assembly according to one of claims 10 to 12, characterized in that it comprises at least one gyroscopic sensor device (72, 73) arranged on at least one rolling unit (66, 67) intended to measure the angular speed (θ̇ n ) or the angular rotation of the rolling unit around a vertical axis. Ensemble selon la revendication 13, caractérisé par le fait que chaque unité roulante (66, 67) est muni d'un dispositif capteur gyroscopique (72,73) relié à ladite unité de calcul (41).Assembly according to claim 13, characterized in that each rolling unit (66, 67) is provided with a gyroscopic sensor device (72, 73) connected to said calculation unit (41).
EP95109772A 1994-07-13 1995-06-23 Control method for steering of running gears with orientable wheels of a set rolling on rail and set using this method Expired - Lifetime EP0692421B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH223094 1994-07-13
CH2230/94 1994-07-13
CH02230/94A CH690032A5 (en) 1994-07-13 1994-07-13 A method of setting the orientation of the steerable wheels in rolling devices of a rolling assembly rail and rolling assembly using this method.

Publications (2)

Publication Number Publication Date
EP0692421A1 true EP0692421A1 (en) 1996-01-17
EP0692421B1 EP0692421B1 (en) 1999-07-21

Family

ID=4228914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95109772A Expired - Lifetime EP0692421B1 (en) 1994-07-13 1995-06-23 Control method for steering of running gears with orientable wheels of a set rolling on rail and set using this method

Country Status (5)

Country Link
US (1) US5640910A (en)
EP (1) EP0692421B1 (en)
AT (1) ATE182297T1 (en)
CH (1) CH690032A5 (en)
DE (1) DE69510871T2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785123A1 (en) * 1996-01-16 1997-07-23 Linke-Hofmann-Busch Gesellschaft mit beschränkter Haftung Tracking method for vehicles
WO1997041022A1 (en) * 1996-04-27 1997-11-06 Abb Daimler-Benz Transportation (Deutschland) Gmbh Railway vehicule with single-axle running gear
WO1998024676A1 (en) * 1996-12-04 1998-06-11 Abb Daimler-Benz Transportation (Technology) Gmbh Method of influencing the inflection angle of railway vehicle wagons, and railway vehicle for carrying out this method
FR2757817A1 (en) * 1997-01-02 1998-07-03 Gec Alsthom Transport Sa DEVICE AND METHOD FOR CONTROLLING ACTUATOR DEVICES FOR THE ACTIVE SUSPENSION OF VEHICLES, PARTICULARLY RAILWAYS
WO1998041816A1 (en) * 1997-03-15 1998-09-24 Robert Bosch Gmbh Axle measuring device and method
DE19715148A1 (en) * 1997-04-11 1998-10-15 Deutsche Waggonbau Ag Method and device for guiding the wheelset of rail vehicles
WO1998042557A3 (en) * 1997-03-26 1999-02-18 Abb Daimler Benz Transp Rail vehicle with an articulated joint
FR2912366A1 (en) * 2007-02-13 2008-08-15 Alstom Transport Sa End coach for e.g. low-platform tramway, has mono-axles orientable with respect to body, and respectively located below passenger compartment and control cabin, where compartment has platform with door sill located at specific height
WO2012076893A1 (en) * 2010-12-10 2012-06-14 Tram Research Limited Improvements relating to trams
EP2855230A4 (en) * 2012-06-04 2016-03-30 Helsingin Kaupungin Liikennelaitos Liikelaitos Rail vehicle
EP3061665A1 (en) * 2015-02-24 2016-08-31 Bombardier Transportation GmbH Method for the control of an electrically controllable system in a composite of vehicles or vehicle parts
WO2018091170A1 (en) * 2016-11-17 2018-05-24 Contitech Luftfedersysteme Gmbh Rail vehicle suspension and spring system for a rail vehicle
CN112284243A (en) * 2019-07-25 2021-01-29 中车株洲电力机车研究所有限公司 Method for adjusting steering system sensor of multi-marshalling rubber-tyred electric car

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936564A1 (en) * 1999-08-04 2001-02-08 Liebherr Aerospace Gmbh Track-guided vehicle, in particular rail vehicle for local traffic
DE19936565A1 (en) * 1999-08-04 2001-02-08 Liebherr Aerospace Gmbh Track-guided vehicle, in particular rail vehicle for local traffic
AT409748B (en) * 2000-11-21 2002-10-25 Integral Verkehrstechnik Ag CONTROL DEVICE FOR STEERABLE ONE-AXLE CHASSIS
JP3677248B2 (en) * 2002-03-14 2005-07-27 近畿車輌株式会社 Articulated vehicle with low floor
DE102005026697A1 (en) * 2005-06-09 2006-12-14 Siemens Ag Passive hydraulic control with position correction by directional oil exchange
DE102007054861A1 (en) * 2007-11-16 2009-05-28 Siemens Ag Method for limiting the angle between the longitudinal axes of interconnected car bodies
US20100248884A1 (en) * 2009-03-31 2010-09-30 Richard Tremblay Transmission for an Electrically Powered Vehicle
KR101580420B1 (en) * 2011-10-26 2015-12-28 신닛테츠스미킨 카부시키카이샤 Method and device for steering bogie of railway vehicle, and bogie
DE102012202838A1 (en) 2012-02-24 2013-08-29 Bombardier Transportation Gmbh Joint for rail vehicles or rail vehicle parts with angle sensor
FR3018490B1 (en) 2014-03-12 2018-01-05 Alstom Transport Technologies RAILWAY VEHICLE, IN PARTICULAR OF TRAMWAY TYPE, WITH REDUCED TEMPLATE
DE102017208760A1 (en) * 2017-05-23 2018-11-29 Bombardier Transportation Gmbh Method for detecting a derailment of a rail vehicle
GB2566715B (en) * 2017-09-22 2020-05-20 Bombardier Transp Gmbh Rail vehicle provided with running gear with a steering actuator and associated control method
CN112816729A (en) * 2020-12-21 2021-05-18 深兰人工智能(深圳)有限公司 Articulated vehicle angular velocity acquisition method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007225A1 (en) * 1978-07-12 1980-01-23 Urban Transportation Development Corporation Ltd Articulated railway vehicle or truck carried on radial single wheel sets
EP0318923A1 (en) * 1987-12-03 1989-06-07 Gec Alsthom Sa Railway vehicle with steered axles
EP0329440A2 (en) * 1988-02-19 1989-08-23 U T D C Inc. Multi-axle, steered articulated railway vehicle with compensation for transitional spirals
EP0575696A1 (en) * 1992-06-26 1993-12-29 Siemens Schienenfahrzeugtechnik GmbH Running gear for railway vehicles
DE4224467A1 (en) * 1992-07-24 1994-01-27 Linke Hofmann Busch Tracked vehicle train with steered single wheelset bogies - has rigid steering controls for bogies, with associated self steering units

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622164A1 (en) * 1987-10-26 1989-04-28 Alsthom Bogie for a vehicle on rail, with axles with independent wheels and slaved orientation
JP2653677B2 (en) * 1988-07-26 1997-09-17 財団法人鉄道総合技術研究所 Steering bogie with independent wheels for railway vehicles
JPH04303062A (en) * 1991-03-30 1992-10-27 Toshiba Corp Steering system for passenger train
DE4240098A1 (en) * 1992-11-28 1994-06-01 Krupp Verkehrstechnik Gmbh Running gear for rail vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007225A1 (en) * 1978-07-12 1980-01-23 Urban Transportation Development Corporation Ltd Articulated railway vehicle or truck carried on radial single wheel sets
EP0318923A1 (en) * 1987-12-03 1989-06-07 Gec Alsthom Sa Railway vehicle with steered axles
EP0329440A2 (en) * 1988-02-19 1989-08-23 U T D C Inc. Multi-axle, steered articulated railway vehicle with compensation for transitional spirals
EP0575696A1 (en) * 1992-06-26 1993-12-29 Siemens Schienenfahrzeugtechnik GmbH Running gear for railway vehicles
DE4224467A1 (en) * 1992-07-24 1994-01-27 Linke Hofmann Busch Tracked vehicle train with steered single wheelset bogies - has rigid steering controls for bogies, with associated self steering units

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785123A1 (en) * 1996-01-16 1997-07-23 Linke-Hofmann-Busch Gesellschaft mit beschränkter Haftung Tracking method for vehicles
WO1997041022A1 (en) * 1996-04-27 1997-11-06 Abb Daimler-Benz Transportation (Deutschland) Gmbh Railway vehicule with single-axle running gear
US6161064A (en) * 1996-12-04 2000-12-12 Abb Daimler-Benz Transportation (Technology) Gmbh Method of influencing the inflection angle of railway vehicle wagons, and railway vehicle for carrying out this method
WO1998024676A1 (en) * 1996-12-04 1998-06-11 Abb Daimler-Benz Transportation (Technology) Gmbh Method of influencing the inflection angle of railway vehicle wagons, and railway vehicle for carrying out this method
FR2757817A1 (en) * 1997-01-02 1998-07-03 Gec Alsthom Transport Sa DEVICE AND METHOD FOR CONTROLLING ACTUATOR DEVICES FOR THE ACTIVE SUSPENSION OF VEHICLES, PARTICULARLY RAILWAYS
EP0852199A1 (en) * 1997-01-02 1998-07-08 Gec Alsthom Transport Sa Device and method for the control of actuators for the active suspension of vehicles, especially railway vehicles
WO1998029288A1 (en) * 1997-01-02 1998-07-09 Gec Alsthom Transport S.A. Device and method for controlling actuating devices for the active suspension of vehicles, in particular trains
US6684139B1 (en) 1997-01-02 2004-01-27 Alstom Transport Sa Device and method for controlling actuating devices for the active suspension of vehicles, in particular trains
US6435044B1 (en) 1997-03-15 2002-08-20 Robert Bosch Gmbh Axle measuring device and method
WO1998041816A1 (en) * 1997-03-15 1998-09-24 Robert Bosch Gmbh Axle measuring device and method
WO1998042557A3 (en) * 1997-03-26 1999-02-18 Abb Daimler Benz Transp Rail vehicle with an articulated joint
CZ299553B6 (en) * 1997-03-26 2008-09-03 Abb Daimler-Benz Transportation (Technology) Gmbh Rail vehicle, use of a plurality of such rail vehicles and method of regulating angle of articulation in such rail vehicle
DE19715148A1 (en) * 1997-04-11 1998-10-15 Deutsche Waggonbau Ag Method and device for guiding the wheelset of rail vehicles
FR2912366A1 (en) * 2007-02-13 2008-08-15 Alstom Transport Sa End coach for e.g. low-platform tramway, has mono-axles orientable with respect to body, and respectively located below passenger compartment and control cabin, where compartment has platform with door sill located at specific height
EP1958846A1 (en) * 2007-02-13 2008-08-20 Alstom Transport S.A. End car of a railway convoy for passenger transport and corresponding convoy
WO2012076893A1 (en) * 2010-12-10 2012-06-14 Tram Research Limited Improvements relating to trams
EP2855230A4 (en) * 2012-06-04 2016-03-30 Helsingin Kaupungin Liikennelaitos Liikelaitos Rail vehicle
EP3061665A1 (en) * 2015-02-24 2016-08-31 Bombardier Transportation GmbH Method for the control of an electrically controllable system in a composite of vehicles or vehicle parts
DE102015203297B4 (en) 2015-02-24 2024-04-11 Bombardier Transportation Gmbh Method for controlling an electrically controllable system in a network of vehicles or vehicle parts
WO2018091170A1 (en) * 2016-11-17 2018-05-24 Contitech Luftfedersysteme Gmbh Rail vehicle suspension and spring system for a rail vehicle
CN112284243A (en) * 2019-07-25 2021-01-29 中车株洲电力机车研究所有限公司 Method for adjusting steering system sensor of multi-marshalling rubber-tyred electric car
CN112284243B (en) * 2019-07-25 2022-05-27 中车株洲电力机车研究所有限公司 Method for adjusting steering system sensor of multi-marshalling rubber-tyred electric car

Also Published As

Publication number Publication date
EP0692421B1 (en) 1999-07-21
DE69510871T2 (en) 2000-04-20
CH690032A5 (en) 2000-03-31
ATE182297T1 (en) 1999-08-15
DE69510871D1 (en) 1999-08-26
US5640910A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
EP0692421B1 (en) Control method for steering of running gears with orientable wheels of a set rolling on rail and set using this method
CN100376444C (en) Device for measuring the roundness of a railroad wheel
US7164975B2 (en) Geometric track and track/vehicle analyzers and methods for controlling railroad systems
EP0461628B1 (en) Rail vehicle for measuring geometric parameters of the track
KR101084157B1 (en) Active steering control apparatus for railway vehicles and the method of the same
RU2710467C1 (en) Wheeled unit for vehicle directed along railway track
FR2624081A1 (en) VEHICLE WITH ORIENTABLE AXLES
FR2775773A1 (en) Procedure and device for determination of a tractor-trailer combination wheel base for use with automatic braking systems
WO1996000159A1 (en) Arrangement for measuring the quality of rails, in which a movable frame is connected to the bogie
JPH11509808A (en) Method for influencing the bending angle of a vehicle body of a railway vehicle and a railway vehicle implementing the method
FR2532967A1 (en) ROLLER TRACK MACHINE WITH TWO CHASSIS OF A ROLLING VEHICLE JOINED THEREWITH ARTICULATED
JPH06206541A (en) Gauge variable bogie for rolling stock
CA2014168C (en) Primary suspension and variable orientation axle
FR2633887A1 (en) METHOD AND DEVICE FOR CONTROLLING THE ACTIVE BODY SUSPENSION ON A RAIL VEHICLE
EP1323610B1 (en) System for optimizing the steering of railway axles
JP2000292150A (en) Wavelike abrasion measuring instrument
US5589767A (en) Mechanism for the attachment of a speed sensor to a train wheel including a bearing and a connection link with a shock absorbing bushing
JP6929080B2 (en) Height measuring trolley
BE1009082A6 (en) Steering of a railway vehicle
NL1008415C2 (en) Transport system.
US3924460A (en) Measuring frame for a vehicle for controlling the geometrical characteristics of railway track
EP1697693B1 (en) Device for controlling a bench used to measure, adjust and/or control a chassis of a motor vehicle
FR3037085B1 (en) DEVICE FOR MEASURING THE LEVELING OR TRAINING OF A RAILWAY
FR2745760A1 (en) Road or rail vehicle with independent drive to each wheel
FR3135946A1 (en) Two-wheeled railway trolley

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960412

17Q First examination report despatched

Effective date: 19980604

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990721

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990721

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990721

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990721

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990721

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990721

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990721

REF Corresponds to:

Ref document number: 182297

Country of ref document: AT

Date of ref document: 19990815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69510871

Country of ref document: DE

Date of ref document: 19990826

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991021

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991021

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ARDIN & CIE S.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000719

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: S.A. VEVEY TECHNOLOGIES

Effective date: 20000630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050610

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050614

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630