EP0691663B1 - Production method for a microcoil - Google Patents

Production method for a microcoil Download PDF

Info

Publication number
EP0691663B1
EP0691663B1 EP95107648A EP95107648A EP0691663B1 EP 0691663 B1 EP0691663 B1 EP 0691663B1 EP 95107648 A EP95107648 A EP 95107648A EP 95107648 A EP95107648 A EP 95107648A EP 0691663 B1 EP0691663 B1 EP 0691663B1
Authority
EP
European Patent Office
Prior art keywords
wire
filament
metal
thread
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95107648A
Other languages
German (de)
French (fr)
Other versions
EP0691663A1 (en
Inventor
Walter Dr. Stark
Rupert Laier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0691663A1 publication Critical patent/EP0691663A1/en
Application granted granted Critical
Publication of EP0691663B1 publication Critical patent/EP0691663B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/042Printed circuit coils by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings

Definitions

  • the invention relates to a method for producing a microcoil according to the first claim.
  • Micro coils, their windings, play in microsystem technology run spirally around its longitudinal axis, an important one Role.
  • Such micro coils are e.g. B. for driving actuators in micro-electric motors, micro-valves, micro-relays, microsensors etc. needed.
  • the invention has for its object a further manufacturing process to specify for a microcoil of this type.
  • This manufacturing process should also make it possible to use coils with very fine windings that are produced by winding are not accessible.
  • Thin metal wires for example with a Diameters from 150 ⁇ m up to 20 ⁇ m.
  • the metal the wires can be chosen as long as it is selective by etching from that in a later step can remove galvanically deposited second metal.
  • Suitable Wires with the specified diameter are commercially available offered. They are also for a variety of metals selective etching agents are known.
  • the wire is drawn out with a thread wrapped in an electrically non-conductive material in such a way that the thread surrounds the wire in the form of a spiral.
  • the turns of the spiral must pass through a space between them be separated.
  • Suitable threads made of plastics, for example made of polytetrafluoroethylene, polyethylene, polypropylene, polyester, Perlon, nylon, Kevlar etc. with a diameter between about 20 ⁇ m and 50 ⁇ m are also commercially available.
  • Wrapping the wire with the thread can e.g. B. in the im described in the aforementioned utility model, after which the wire between two synchronously rotating brackets clamped and the thread under feed in axial Direction is wound up.
  • the thread is said to have a contact surface as even as possible in contact with the wire stand.
  • a thread with a polygonal, for example, is preferred a triangular cross-section because it has a flat surface of the thread lies on the wire and the contact area clearly is defined.
  • a thread that is round in cross section can also be used will.
  • a thread made of a meltable Material e.g. B. a meltable plastic such as nylon
  • the wire can be heated by its two ends - possibly with the interposition of one electrical resistance - connected to a voltage source will.
  • the wrapped wire is then placed in a galvanic bath used and switched as a cathode. From the galvanic Bad a second metal is deposited on the wire. Since the Footprint of the thread on the wire through the electrical is shielded, the galvanic Metal precipitation only in the spaces between the Separate turns of the spiral thread. The wire is thus only in the area of the gaps the galvanically deposited metal is covered.
  • the galvanic Deposition is carried out with a suitable current density and electroplating time continued until the desired thickness of the coil turns is reached. Mechanically stable micro coils achieved when the thickness of the electrodeposited metal deposit is at least a few micrometers. The galvanic metal deposition is stopped at the latest, if the spaces are completely filled, otherwise the thread would also be covered with a metal layer. Hereby there could be a short circuit in the micro coil.
  • the galvanic deposition of the metal or metal alloy takes place more evenly when the wire is in the galvanic bath during the metal deposition in rotation around its longitudinal axis is transferred.
  • a tubular anode can be used that surrounds the wire.
  • the thread is removed.
  • the easiest way to do this is if the thread has not melted by unwinding.
  • Melted threads Plastic can be mixed with a suitable solvent, such as dimethylformamide (DMF), without removing the rest Materials are attacked.
  • DMF dimethylformamide
  • Another option is there in the thread through thermal treatment Remove 500 ° C to 700 ° C, provided the melting point of the Metals is higher.
  • the last step is the selective etching out of the Wire. Since the wire at both its ends and at the original contact patches of the thread are exposed the attack of the etchant in many different places; the etching is therefore completed in a relatively short time.
  • micro coils can be created in a short time with an inner diameter of 50, for example ⁇ m to 100 ⁇ m, a winding width z. B. from 15 microns to 80 microns (measured in the axial direction) and a winding thickness z. B. between 5 mm and 20 ⁇ m (measured in the radial direction).
  • the length of the microcoils can easily be up to 8 cm be. Micro coils of this length are used in microstructure technology not needed; such micro coils can, however, be divided into a large number of short micro-coils will.
  • a copper wire with a diameter of 100 ⁇ m is spirally wrapped with a 20 ⁇ m thick, triangular cross-section of nylon thread.
  • the thread ends are glued to the wire.
  • the wire wrapped with the thread is placed in a nickel electroplating bath with the composition: Ni sulfate ⁇ 6 H 2 O 300 [g / l] NiCl 2 ⁇ 6 H 2 O 50 [g / l] H 3 BO 3 30. [g / l] Wetting agent 300. [g / l] immersed and switched as cathode.
  • the temperature of the bath was 52 ° C. With the help of a motor, the wire is rotated around its axis.
  • nickel is deposited in the spaces between the turns of the thread for a period of 30 minutes.
  • the thread is then drawn off and the copper by an aqueous etchant with the composition Ammonium carbonate 120 [g / l] Sodium chlorite 30 [g / l] Concentrated ammonia 100 [ml / l] completely detached. This step took about two hours. A coil with about 170 turns per cm was obtained, the turns of which were about 40 ⁇ m in the axial direction and about 10 ⁇ m in the radial direction. The inside diameter corresponds to the thickness of the wire.
  • a copper wire with a diameter of 100 ⁇ m is wrapped with a triangular cross-section thread as indicated in Example 1.
  • Current (2 A) is briefly passed through the wire, causing the thread to melt on the wire.
  • the wire With the nickel electroplating bath described in Example 1, the wire is provided with a 7 ⁇ m thick nickel layer in the area between the spaces.
  • the nylon thread was peeled off by burning.
  • the copper wire was then completely dissolved using the etchant specified in Example 1. The dissolution took about two hours.
  • the nickel coil was then provided with an approximately 0.5 ⁇ m thick gold plating.
  • the nickel coil was placed in a gold bath of the composition Gold sulfite 10 [g / l] Sodium sulfite 10 [g / l] Sodium sulfate 10 [g / l] Nitrilotriacetic acid 20 [g / l] dipped and switched as cathode. The spool was again rotated. Gold was deposited on the coil over a period of 5 minutes at a voltage of 750 mV and a bath temperature of 50 ° C.

Abstract

A micro-coil prodn. process involves (a) winding a filament of non-conductive material about a wire of first metal so that the filament forms a spiral with interspaces; (b) connecting the filament-wound wire as cathode in an electroplating bath; (c) electroplating a second metal in the inter-spaces; (d) removing the filament; and (e) selectively dissolving the wire with an etchant which does not attack the second metal.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Mikrospule gemäß dem ersten Patentanspruch.The invention relates to a method for producing a microcoil according to the first claim.

In der Mikrosystemtechnik spielen Mikrospulen, deren Windungen spiralförmig um ihre Längsachse verlaufen, eine wichtige Rolle. Solche Mikrospulen werden z. B. zum Antrieb von Aktoren in Mikroelektromotoren, Mikroventilen, Mikrorelais, Mikrosensoren etc. benötigt.Micro coils, their windings, play in microsystem technology run spirally around its longitudinal axis, an important one Role. Such micro coils are e.g. B. for driving actuators in micro-electric motors, micro-valves, micro-relays, microsensors etc. needed.

Ebene, spiralförmig gewundene Mikrospulen lassen sich in nahezu beliebiger Windungszahl mit Hilfe des bekannten LIGA(Lithographie und galvanische Abformung)-Verfahrens problemlos herstellen. Spulen mit Windungen, die spiralförmigum ihre Längsachse verlaufen, erfordern bei Anwendung dieses Verfahrens einen hohen Aufwand, da jede Windung einzeln mit Hilfe einer justierten Bestrahlung, Entwicklung und galvanischen Abformung hergestellt werden muß. Solche Spulen lassen sich zwar gemäß dem deutschen Gebrauchsmuster G 93 18 386 durch Wickeln herstellen; der Wicklungstechnik sind jedoch bei sehr dünnen Spulenwindungen Grenzen gesetzt.Flat, spiral-wound micro coils can be almost any number of turns using the well-known LIGA (lithography and electroplating) process without problems produce. Coils with turns that spiral around their Longitudinal axis require using this method a lot of effort because each turn individually with the help adjusted radiation, development and galvanic impression must be manufactured. Such coils can be according to the German utility model G 93 18 386 by winding produce; the winding technology are very thin There are limits to coil turns.

Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Herstellungsverfahren für eine Mikrospule dieser Art anzugeben. Dieses Herstellungsverfahren soll es ermöglichen, auch Spulen mit sehr feinen Windungen herzustellen, die durch Wicklung nicht zugänglich sind.The invention has for its object a further manufacturing process to specify for a microcoil of this type. This manufacturing process should also make it possible to use coils with very fine windings that are produced by winding are not accessible.

Die Aufgabe wird erfindungsgemäß durch das im ersten Patentanspruch beschriebene Verfahren gelöst. Die weiteren Ansprüche geben bevorzugte Ausgestaltungen des Verfahrens nach Anspruch 1 an.The object is achieved by the first claim described method solved. The other claims give preferred configurations of the method Claim 1.

Als Draht werden vorzugsweise dünne Metalldrähte, etwa mit einem Durchmesser von 150 µm bis zu 20 µm, eingesetzt. Das Metall der Drähte kann beliebig gewählt werden, solange es sich durch Ätzen selektiv gegenüber dem in einem späteren Schritt galvanisch abzuscheidenden zweiten Metall entfernen läßt. Geeignete Drähte mit dem angegebenen Durchmesser werden im Handel angeboten. Außerdem sind für eine Vielzahl von Metallen selektiv wirkende Ätzmittel bekannt.Thin metal wires, for example with a Diameters from 150 µm up to 20 µm. The metal the wires can be chosen as long as it is selective by etching from that in a later step can remove galvanically deposited second metal. Suitable Wires with the specified diameter are commercially available offered. They are also for a variety of metals selective etching agents are known.

Der Draht wird im ersten Verfahrensschritt mit einem Faden aus einem elektrisch nichtleitenden Material in der Weise umwickelt, daß der Faden den Draht im Form einer Spirale umgibt. Die Windungen der Spirale müssen durch einen Zwischenraum voneinander getrennt sein. Geeignete Fäden aus Kunststoffen, etwa aus Polytetrafluorethylen, Polyethylen, Polypropylen, Polyester, Perlon, Nylon, Kevlar etc. mit einem Durchmesser zwischen etwa 20 µm und 50 µm werden ebenfalls im Handel angeboten.In the first process step, the wire is drawn out with a thread wrapped in an electrically non-conductive material in such a way that the thread surrounds the wire in the form of a spiral. The turns of the spiral must pass through a space between them be separated. Suitable threads made of plastics, for example made of polytetrafluoroethylene, polyethylene, polypropylene, polyester, Perlon, nylon, Kevlar etc. with a diameter between about 20 µm and 50 µm are also commercially available.

Das Umwickeln des Drahtes mit dem Faden kann z. B. in der im eingangs genannten Gebrauchsmuster beschriebenen Weise erfolgen, wonach der Draht zwischen zwei synchron rotierende Halterungen eingespannt und der Faden unter Vorschub in axialer Richtung aufgewickelt wird. Der Faden soll hierbei über eine möglichst gleichmäßige Auflagefläche mit dem Draht in Kontakt stehen. Bevorzugt wird ein Faden mit einem polygonalen, etwa einem dreieckigen Querschnitt, weil hierbei eine ebene Fläche des Fadens auf dem Draht aufliegt und die Aufstandsfläche eindeutig definiert ist.Wrapping the wire with the thread can e.g. B. in the im described in the aforementioned utility model, after which the wire between two synchronously rotating brackets clamped and the thread under feed in axial Direction is wound up. The thread is said to have a contact surface as even as possible in contact with the wire stand. A thread with a polygonal, for example, is preferred a triangular cross-section because it has a flat surface of the thread lies on the wire and the contact area clearly is defined.

Prinzipiell kann auch ein im Querschnitt runder Faden eingesetzt werden. Ein runder Faden steht mit dem Draht jedoch nur über eine sehr schmale Aufstandsfläche in Kontakt. Deshalb wird in diesem Fall vorzugsweise ein Faden aus einem schmelzbaren Material, z. B. einem schmelzbaren Kunststoff wie Nylon, eingesetzt und der Draht nach dem Umwickeln kurz erwärmt. Durch das Erwärmen schmilzt der Faden auf dem Draht auf, wodurch sich die Aufstandsfläche verbreitert und zugleich der Faden fixiert wird. Das Erwärmen des Drahtes kann erfolgen, indem seine beiden Enden - ggf. unter Zwischenschalten eines elektrischen Widerstands - mit einer Spannungsquelle verbunden werden.In principle, a thread that is round in cross section can also be used will. There is only one round thread with the wire in contact via a very narrow footprint. That's why in this case, preferably a thread made of a meltable Material, e.g. B. a meltable plastic such as nylon, inserted and the wire warmed briefly after wrapping. By heating, the thread melts on the wire, causing the contact area widens and at the same time the Thread is fixed. The wire can be heated by its two ends - possibly with the interposition of one electrical resistance - connected to a voltage source will.

Anschließend wird der umwickelte Draht in ein galvanisches Bad eingesetzt und als Kathode geschaltet. Aus dem galvanischen Bad wird ein zweites Metall auf dem Draht abgeschieden. Da die Aufstandsfläche des Fadens auf dem Draht durch den elektrisch nichtleitenden Faden abgeschirmt ist, kann sich der galvanische Metallniederschlag nur in den Zwischenräumen zwischen den Windungen des spriralförmigen Fadens abscheiden. Der Draht wird somit ausschließlich im Bereich der Zwischenräume durch das galvanisch abgeschiedene Metall abgedeckt. Die galvanische Abscheidung wird bei geeigneter Stromdichte und Galvanisierzeit so lange fortgeführt, bis die gewünschte Dicke der Spulenwindungen erreicht ist. Mechanisch stabile Mikrospulen werden erzielt, wenn die Dicke des galvanisch abgeschiedenen Metallniederschlags mindestens einige Mikrometer beträgt. Die galvanische Metallabscheidung wird spätestens dann beendet, wenn die Zwischenräume vollständig ausgefüllt sind, da sonst auch der Faden mit einer Metallschicht überzogen würde. Hierdurch könnte sich ein Kurzschluß in der Mikrospule ergeben.The wrapped wire is then placed in a galvanic bath used and switched as a cathode. From the galvanic Bad a second metal is deposited on the wire. Since the Footprint of the thread on the wire through the electrical is shielded, the galvanic Metal precipitation only in the spaces between the Separate turns of the spiral thread. The wire is thus only in the area of the gaps the galvanically deposited metal is covered. The galvanic Deposition is carried out with a suitable current density and electroplating time continued until the desired thickness of the coil turns is reached. Mechanically stable micro coils achieved when the thickness of the electrodeposited metal deposit is at least a few micrometers. The galvanic metal deposition is stopped at the latest, if the spaces are completely filled, otherwise the thread would also be covered with a metal layer. Hereby there could be a short circuit in the micro coil.

Die galvanische Abscheidung des Metalls oder der Metallegierung erfolgt gleichmäßiger, wenn der Draht im galvanischen Bad während der Metallabscheidung in Rotation um seine Längsachse versetzt wird. Alternativ kann eine rohrförmige Anode eingesetzt werden, die den Draht umgibt.The galvanic deposition of the metal or metal alloy takes place more evenly when the wire is in the galvanic bath during the metal deposition in rotation around its longitudinal axis is transferred. Alternatively, a tubular anode can be used that surrounds the wire.

Nach Beendigung des Galvanikschrittes wird der Faden entfernt. Sofern der Faden nicht aufgeschmolzen ist, kann dies am einfachsten durch Abwickeln erfolgen. Aufgeschmolzene Fäden aus Kunststoff lassen sich durch ein geeignetes Lösungsmittel, etwa Dimethylformamid (DMF), entfernen, ohne daß die übrigen Materialien angegriffen werden. Eine weitere Möglichkeit besteht darin, den Faden durch thermische Behandlung etwa bei 500° C bis 700° C zu entfernen, sofern der Schmelzpunkt der Metalle höher liegt. After the electroplating step has been completed, the thread is removed. The easiest way to do this is if the thread has not melted by unwinding. Melted threads Plastic can be mixed with a suitable solvent, such as dimethylformamide (DMF), without removing the rest Materials are attacked. Another option is there in the thread through thermal treatment Remove 500 ° C to 700 ° C, provided the melting point of the Metals is higher.

Nun erfolgt als letzter Schritt das selektive Herausätzen des Drahtes. Da der Draht sowohl an seinen Enden als auch an den ursprünglichen Aufstandsflächen des Fadens freiliegt, erfolgt der Angriff des Ätzmittels an vielen verschiedenen Stellen; das Ätzen ist daher in verhältnismäßig kurzer Zeit beendet.Now the last step is the selective etching out of the Wire. Since the wire at both its ends and at the original contact patches of the thread are exposed the attack of the etchant in many different places; the etching is therefore completed in a relatively short time.

Mit dem beschriebenen Verfahren lassen sich in kurzer Zeit Mikrospulen mit einem innern Durchmesser von beispielsweise 50 µm bis 100 µm, einer Windungsbreite z. B. von 15 µm bis 80 µm (in axialer Richtung gemessen) und einer Windungsdicke z. B. zwischen 5 mm und 20 µm (in radialer Richtung gemessen) herstellen. Die Länge der Mikrospulen kann problemlos bis zu 8 cm betragen. Mikrospulen in dieser Länge werden in der Mikrostrukturtechnik zwar nicht benötigt; solche Mikrospulen können jedoch zu einer Vielzahl kurzer Mikrospulen zerteilt werden.With the described method, micro coils can be created in a short time with an inner diameter of 50, for example µm to 100 µm, a winding width z. B. from 15 microns to 80 microns (measured in the axial direction) and a winding thickness z. B. between 5 mm and 20 µm (measured in the radial direction). The length of the microcoils can easily be up to 8 cm be. Micro coils of this length are used in microstructure technology not needed; such micro coils can, however, be divided into a large number of short micro-coils will.

Die Erfindung wird im folgenden anhand von Durchführungsbeispielen näher erläutert.The invention is described in the following with the aid of implementation examples explained in more detail.

Beispiel 1example 1

Ein Kupferdraht mit einem Durchmesser von 100 µm wird spiralförmig mit einem 20 µm dicken, im Querschnitt dreieckigen Faden aus Nylon umwickelt. Die Fadenenden werden am Draht festgeklebt. Der mit dem Faden umwickelte Draht wird in ein Nickel-Galvanikbad mit der Zusammensetzung: Ni-Sulfat·6 H2O 300 [g/l] NiCl2·6 H2O 50 [g/l] H3BO3 30.[g/l] Netzmittel 300.[g/l] eingetaucht und als Kathode geschaltet. Die Temperatur des Bades betrug 52° C. Mit Hilfe eines Motors wird der Draht in Rotation um seine Achse versetzt. Bei einer Spannung von 800 mV wird während einer Dauer von 30 min Nickel in den Zwischenräumen zwischen den Windungen des Fadens abgeschieden. Danach wird der Faden abgezogen und das Kupfer durch ein wäßriges Ätzmittel mit der Zusammensetzung Ammoniumcarbonat 120 [g/l] Natriumchlorit 30 [g/l] Konz. Ammoniak 100 [ml/l] vollständig weggelöst. Dieser Schritt dauerte ca. zwei Stunden. Es wurde eine Spule mit ca. 170 Windungen pro cm erhalten, deren Windungen in axialer Richtung ca. 40 µm und in radialer Richtung ca. 10 µm dick waren. Der Innendurchmesser entspricht der Dicke des Drahtes.A copper wire with a diameter of 100 µm is spirally wrapped with a 20 µm thick, triangular cross-section of nylon thread. The thread ends are glued to the wire. The wire wrapped with the thread is placed in a nickel electroplating bath with the composition: Ni sulfate · 6 H 2 O 300 [g / l] NiCl 2 · 6 H 2 O 50 [g / l] H 3 BO 3 30. [g / l] Wetting agent 300. [g / l] immersed and switched as cathode. The temperature of the bath was 52 ° C. With the help of a motor, the wire is rotated around its axis. At a voltage of 800 mV, nickel is deposited in the spaces between the turns of the thread for a period of 30 minutes. The thread is then drawn off and the copper by an aqueous etchant with the composition Ammonium carbonate 120 [g / l] Sodium chlorite 30 [g / l] Concentrated ammonia 100 [ml / l] completely detached. This step took about two hours. A coil with about 170 turns per cm was obtained, the turns of which were about 40 µm in the axial direction and about 10 µm in the radial direction. The inside diameter corresponds to the thickness of the wire.

Beispiel 2Example 2

Ein Kupferdraht mit einem Durchmesser von 100 µm wird wie in Beispiel 1 angegeben mit einem im Querschnitt dreieckigen Faden umwickelt. Durch den Draht wird kurzzeitig Strom (2 A) geleitet, wodurch der Faden auf dem Draht aufgeschmolzen wurde. Mit dem in Beispiel 1 beschriebenen Nickel-Galvanikbad wird der Draht im Bereich der Zwischenräume mit einer 7 µm dicken Nickelschicht versehen. Der Nylon-Faden wurde durch Verbrennen abgelöst. Anschließend wurde der Kupferdraht mit Hilfe des in Beispiel 1 angegebenen Ätzmittels vollständig aufgelöst. Die Dauer der Auflösung betrug ca. zwei Stunden. Anschließend wurde die Nickel-Spule mit einer ca. 0,5 µm dicken Goldauflage versehen. Hierzu wurde die Nickel-Spule in ein Goldbad der Zusammensetzung Goldsulfit 10 [g/l] Natriumsulfit 10 [g/l] Natriumsulfat 10 [g/l] Nitrilotriessigsäure 20 [g/l] getaucht und als Kathode geschaltet. Die Spule wurde wiederum in Rotation versetzt. Während einer Zeit von 5 min bei einer Spannung von 750 mV und einer Badtemperatur von 50 °C wurde auf der Spule Gold abgeschieden.A copper wire with a diameter of 100 μm is wrapped with a triangular cross-section thread as indicated in Example 1. Current (2 A) is briefly passed through the wire, causing the thread to melt on the wire. With the nickel electroplating bath described in Example 1, the wire is provided with a 7 μm thick nickel layer in the area between the spaces. The nylon thread was peeled off by burning. The copper wire was then completely dissolved using the etchant specified in Example 1. The dissolution took about two hours. The nickel coil was then provided with an approximately 0.5 µm thick gold plating. For this, the nickel coil was placed in a gold bath of the composition Gold sulfite 10 [g / l] Sodium sulfite 10 [g / l] Sodium sulfate 10 [g / l] Nitrilotriacetic acid 20 [g / l] dipped and switched as cathode. The spool was again rotated. Gold was deposited on the coil over a period of 5 minutes at a voltage of 750 mV and a bath temperature of 50 ° C.

Claims (4)

  1. Method of producing a microcoil, wherein
    a) a wire formed from a first metal is wound with a filament formed from an electrically non-conductive material in such a manner that the filament assumes the configuration of a spiral, the windings of which are separated from one another by intermediate spaces,
    b) the wire, which is wound with the filament, is dipped into an electroplating bath and incorporated as the cathode,
    c) a second metal is electrodeposited in the intermediate spaces, so that the wire is covered with the second metal in the intermediate spaces,
    d) the filament is subsequently removed, and
    e) the wire is selectively dissolved with an etchant, which does not corrode the second metal.
  2. Method according to claim 1, wherein the filament is formed from a meltable material, and the wire, which is wound with the filament, is brought for a brief period of time to such a temperature that the filament melts on the surface of the wire.
  3. Method according to claim 1 or 2, wherein the wire, which is incorporated as the cathode, in the galvanic bath is set in rotation about its longitudinal axis.
  4. Method according to claim 1 or 2, wherein the wire, which is incorporated as the cathode, in the galvanic bath is inserted into a tubular anode.
EP95107648A 1994-07-07 1995-05-19 Production method for a microcoil Expired - Lifetime EP0691663B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4423876A DE4423876C1 (en) 1994-07-07 1994-07-07 Micro-coil prodn. by electroforming
DE4423876 1994-07-07

Publications (2)

Publication Number Publication Date
EP0691663A1 EP0691663A1 (en) 1996-01-10
EP0691663B1 true EP0691663B1 (en) 1998-04-29

Family

ID=6522496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95107648A Expired - Lifetime EP0691663B1 (en) 1994-07-07 1995-05-19 Production method for a microcoil

Country Status (3)

Country Link
EP (1) EP0691663B1 (en)
AT (1) ATE165692T1 (en)
DE (2) DE4423876C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222230A1 (en) 2013-10-31 2015-04-30 Fiagon Gmbh Surgical instrument
US11672959B2 (en) 2019-01-18 2023-06-13 Intersect Ent, Inc. Expandable member systems and methods for drug delivery
EP3719749A1 (en) 2019-04-03 2020-10-07 Fiagon AG Medical Technologies Registration method and setup
CN113795191A (en) 2019-05-02 2021-12-14 因特尔赛克特耳鼻喉国际有限责任公司 Sensor carrier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561111A (en) * 1968-08-07 1971-02-09 Trw Inc Method for making precision, square-wire air core coils
JPS63143299A (en) * 1986-12-05 1988-06-15 Kobe Steel Ltd Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe
DE9318386U1 (en) * 1993-12-01 1994-03-17 Kernforschungsz Karlsruhe Micro coil

Also Published As

Publication number Publication date
EP0691663A1 (en) 1996-01-10
DE59502034D1 (en) 1998-06-04
ATE165692T1 (en) 1998-05-15
DE4423876C1 (en) 1995-07-06

Similar Documents

Publication Publication Date Title
DE3741421C2 (en) Electroforming process
DE3536908A1 (en) INDUCTIVE ELEMENT AND METHOD FOR PRODUCING THE SAME
DE1002090B (en) Process for the manufacture of a printed current coil for electromagnetic electron beam deflection systems or transformers
DE2103214C3 (en) Manufacturing process for a low-inertia hollow-cylindrical armature of an electric motor
DE69727667T2 (en) MANUFACTURE OF SMALL COILS AND TAPES AS A PHOTOMASK ON OPTICAL FAIRS FOR THE PRODUCTION OF FIBER EMITTERS, ELECTROMAGNETS AS MICRO-NMR COILS, MICRO-TRANSFORMERS AND INTRAVSCULAR STANTS
DE3809435C2 (en) Method and apparatus for making an inner crown of a layered crown to restore crowns
EP0691663B1 (en) Production method for a microcoil
DE1589727C3 (en) Electrolytic capacitor and process for its manufacture
DE2704284A1 (en) ANCHOR FOR AN ELECTRIC MACHINE
EP0986818A1 (en) Medicinal, radioactive ruthenium radiation sources with high dosage rate and method for producing the same
EP0523331A1 (en) Process for the manufacture of a filter material
DE2715242A1 (en) METHOD OF MAKING A CATHODE
DE1274648C2 (en) Method for producing a thin-film storage element and device for carrying out the method
DE1156288B (en) Process for the galvanic deposition of a thin nickel-iron coating with a right-angled hysteresis loop
EP0689213B1 (en) Production method for a microcoil
DE2329488C3 (en) Magnetic sensor with a parametrically excited second harmonic oscillator
DE1161586B (en) Magnetic data storage device and method for making the same
DE2224782C3 (en) Process for the manufacture of potentiometer contact springs
DE2522926A1 (en) PROCESS FOR MANUFACTURING METAL-CLAD LONG STRETCH ALUMINUM MATERIALS
EP1149189A2 (en) Method for producing a self-supporting metal film
DE4409340C2 (en) Method of making a groove or a channel
DE102019201877B4 (en) Magnetic coil and method for its manufacture
CH651700A5 (en) Very fine wire for electrical engineering purposes, and a method for its production
DE19751021C2 (en) Process for the production of a cobalt foil
DE4434467C2 (en) Microcoil and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970924

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 165692

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59502034

Country of ref document: DE

Date of ref document: 19980604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050503

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050518

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050523

Year of fee payment: 11

Ref country code: AT

Payment date: 20050523

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050524

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060519

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060519

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100726

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59502034

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59502034

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130