JPS63143299A - Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe - Google Patents

Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe

Info

Publication number
JPS63143299A
JPS63143299A JP29116286A JP29116286A JPS63143299A JP S63143299 A JPS63143299 A JP S63143299A JP 29116286 A JP29116286 A JP 29116286A JP 29116286 A JP29116286 A JP 29116286A JP S63143299 A JPS63143299 A JP S63143299A
Authority
JP
Japan
Prior art keywords
long
tube
cathode
pipe
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29116286A
Other languages
Japanese (ja)
Inventor
Masatoshi Miyaji
宮地 正俊
Kazuo Akagi
赤木 和雄
Tomio Saito
斉藤 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29116286A priority Critical patent/JPS63143299A/en
Publication of JPS63143299A publication Critical patent/JPS63143299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit smoother finishing of the entire part with one time of polishing by using a cathode bar longer than the length of a small-diameter pipe to be polished in a method for using the cathode bar formed by spirally winding fabric wire rods made of soft insulating fibers around a straight bar-shaped arbor. CONSTITUTION:The cathode bar 1 formed by spirally winding the fabric wire rods 3 made of the soft insulating fibers around the straight bar-shaped arbor 2 is inserted into the long-sized small-diameter pipe 4 which is an anode and while an electrolyte is supplied into the pipe 4, the bar 1 and the pipe 4 are relatively rotated and moved back and forth. The stable current density optimum for the electrolytic polishing is as low as about 20-40A/dm<2> if the pipe 4 is of pure Ni in this electrolytic polishing method. The stable current of the copper arbor 2 having about 2-2.5mm diameter in the liquid is, therefore, about 60A. The bar 1 can be consequently made as long as 1,500-2,000mm in order to obtain the above-mentioned stable current density. As a result, the polishing to the electrolytic surface which is free from gas pits and etching surface, has <=1muRmax surface roughness and is uniform over the entire length is permitted by one time of the electrolytic polishing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は純Ni長尺細径管内面の電解研磨方法に係る。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for electropolishing the inner surface of a pure Ni long narrow diameter tube.

[従来の技術] 近年、特に発展の著しい半導体産業では半導体の集積規
模の増大に伴ない製造段階で使用するガスの高純度が要
求され、その清浄度を上げる必要が生じている。
[Prior Art] In recent years, especially in the semiconductor industry, which has been rapidly developing, high purity gases used in the manufacturing stage are required as the scale of semiconductor integration increases, and there is a need to improve the cleanliness of the gases.

このため、ガスを移送・供給する配管部材についても厳
しい規制があり、配管部材の内面のクリーン度(清浄で
且つ平滑)の高い製品の供給が望まれている。
For this reason, there are strict regulations regarding piping members for transferring and supplying gas, and it is desired to supply products with high cleanliness (clean and smooth) inner surfaces of piping members.

このクリーン度としては管内面粗度がRmaxO63〜
0.6μm程度の品質が要求されるため、冷間加工、機
械パフ研磨や化学研磨の手段では不可能であり、これを
実現し、且つ耐食性を向上させる手段として電解研磨方
法が採用されている。
As for this cleanliness, the tube inner surface roughness is RmaxO63~
Since a quality of approximately 0.6 μm is required, it is impossible to achieve this through cold working, mechanical puff polishing, or chemical polishing. Electrolytic polishing has been adopted as a means to achieve this and improve corrosion resistance. .

一方、最近では、ガスとして塩素系の高腐食性ガスが用
いられ始めているため、それに対応して管の材質も5U
S316Lから純Niの採用へと移行し始めている。
On the other hand, recently, chlorine-based highly corrosive gases have begun to be used, so the material of the pipes has changed to 5U.
The transition from S316L to pure Ni has begun.

ところで、長尺管の内面の電解研磨方法の技術としては
By the way, what is the technique for electropolishing the inner surface of long tubes?

■第6図に示すように、直棒状のCu芯金101の外周
にテフロン製の帯体102を螺線状に巻回した陰極$1
i103を陽極とされる長尺管104に貫装し、長尺管
104内に電解液105を供給しながら陰極棒103を
管軸方向へ運動せしめる手段が開発されており、従前の
単なる直棒状のCU芯金を陰極棒として用いていた場合
に比較して、ガスピットの減少と素材の地肌の改善につ
いて一定の効果を得、管内面粗度がRmax 1ルm以
下のものを得ることに成功している。
■As shown in FIG. 6, a cathode $1 has a Teflon band 102 spirally wound around the outer periphery of a straight rod-shaped Cu core metal 101.
A method has been developed in which an i103 is inserted into a long tube 104 serving as an anode, and the cathode rod 103 is moved in the tube axis direction while supplying an electrolyte 105 into the long tube 104. Compared to using a CU core metal as the cathode rod, we achieved certain effects in reducing gas pits and improving the texture of the material, and succeeded in achieving a tube inner surface roughness of Rmax 1 lm or less. are doing.

■また、先に本発明者は、第6図に示すように、直棒状
の芯金34の外周に柔軟な絶縁性m維からなる布製線材
35を螺線状に巻装した陰極棒22を陽極とされる長尺
管21の管内に嵌挿し、長尺管21の管内に電解液を供
給しながら、陰極#!J22と長尺管21との間に相対
的に回転を与え、かつ、陰極棒22を軸方向に移動させ
る方法を提案している・ [発明が解決しようとする闇題点コ ところで、長尺管の内面の電解研磨方法について、上記
の方法には次のような問題を生ずることがある。
■Also, as shown in FIG. 6, the present inventor has previously constructed a cathode rod 22 in which a fabric wire 35 made of flexible insulating m fibers is spirally wound around the outer periphery of a straight bar-shaped core bar 34. It is inserted into the long tube 21 which is used as an anode, and while supplying electrolyte into the long tube 21, the cathode #! A method is proposed in which relative rotation is applied between the J22 and the long tube 21, and the cathode rod 22 is moved in the axial direction. Regarding the method of electrolytic polishing of the inner surface of a tube, the following problems may occur in the above method.

■上記■の技術は、ガスピットの減少と平滑仕上げにつ
いて一応良好なものと判断されるが、電解中に発生する
ガスに原因するガスビー/ ト、ガス溝や凹凸のうねり
の発生によってまだ充分に所望のミクロな平滑面が得ら
れないという問題があり、ガスを電解液と共に速やかに
流出させ、また流速を制御するための電解液強制流動筒
等が開発され、ガスピットの発生を減少させ、より不滑
な面を得るための改良がなされているが、更に平滑仕上
げが求められているのが現状である。
■The technique described in ■ above is judged to be good for the reduction of gas pits and smooth finish, but it still leaves much to be desired due to the occurrence of gas beats/pits, gas grooves, and unevenness caused by the gas generated during electrolysis. Due to the problem of not being able to obtain a micro-smooth surface, devices such as forced electrolyte flow cylinders have been developed to allow the gas to quickly flow out together with the electrolyte and to control the flow rate. Although improvements have been made to obtain a smooth surface, there is currently a need for an even smoother finish.

■上記■の技術を純Ni長尺細径管に適用しようとする
と次の問題が生ずる。
(2) If the technique (2) above is applied to a pure Ni long narrow diameter pipe, the following problem will occur.

すなわち、6.5mm以下の細径管の場合において、電
解液を流動せしめることにより、電解中に発生するガス
を迅速に管外に放出しようとするとCu芯金径は2〜2
.5φにとどめられる。しかるに、2〜2,5φのCu
芯金の液中における安全電流は60A程度であることか
ら電解研磨に最適な安定電流密度(85〜100A/d
ゴ)(第8図(a))を得るためには陰極棒を400〜
500mmと短くせざるを得す、そのために500mm
以上の長尺管の電解研磨を行なうためには陰極棒を移動
せざるを得ない。
In other words, in the case of a small diameter tube of 6.5 mm or less, if you try to quickly release the gas generated during electrolysis outside the tube by making the electrolytic solution flow, the diameter of the Cu core metal is 2 to 2 mm.
.. It can be kept at 5φ. However, Cu with a diameter of 2 to 2.5φ
Since the safe current of the core metal in the liquid is about 60 A, the stable current density (85 to 100 A/d) is optimal for electrolytic polishing.
(Fig. 8(a)), the cathode rod is 400~
It has to be shortened to 500mm, so 500mm
In order to electrolytically polish the long tube as described above, the cathode rod must be moved.

ところが、このように陰極棒を移動させると移動した後
に陰極棒が存在しなくなった部分(第9図のA部)がN
i管の場合では、ただちにエツチングされるため全長均
一な電解肌が得られないという問題点がある。
However, when the cathode rod is moved in this way, the part where the cathode rod no longer exists after the movement (part A in Figure 9) becomes N.
In the case of an i-tube, there is a problem in that it is not possible to obtain a uniform electrolyzed skin over the entire length because it is immediately etched.

また、管が500mm以上の長尺の場合には陰極棒を移
動させる必要があるため、−回の研磨によっては研磨で
きXず、電解研磨に時間がかかるという問題点もある。
In addition, if the tube is longer than 500 mm, it is necessary to move the cathode rod, so there is a problem that polishing cannot be performed by polishing twice, and electrolytic polishing takes time.

本発明は、 ■ガスビットのない ■Rmax lルm以下の表面粗度を有し■エツチング
肌を生ぜず、 ■全長均一な電解肌を有し ■−回の電解研磨によって全体を研磨しうる純Ni長尺
細径管の電解研磨方法を提供することを目的とする。
The present invention has: ■ No gas bits; ■ Surface roughness of Rmax lm or less; ■ No etching skin; ■ Uniform electrolytic surface along the entire length; ■ Can be polished entirely by electropolishing - times. An object of the present invention is to provide a method for electrolytic polishing of pure Ni long narrow diameter tubes.

[問題点を解決するための手段] そこで、上記問題点を解決するために本発明者は鋭意研
究を重ね、まず、純Ni管についての電圧会電流密度の
特性を調査した。
[Means for Solving the Problems] Therefore, in order to solve the above-mentioned problems, the present inventor conducted extensive research and first investigated the characteristics of the voltage current density of pure Ni tubes.

その結果、第8図(b)に示すように純Ni管の場合の
電解研磨に最適な安定電流密度は5US316Lの場合
の約届〜%であることを知見した。
As a result, as shown in FIG. 8(b), it was found that the optimum stable current density for electrolytic polishing in the case of a pure Ni tube is approximately .about.% of that in the case of 5US316L.

従って、2〜2.5φのCu芯金の液中における安全電
流は60A程度であることから電解研磨に最適な電流密
度(20〜4OA/drrr’)  (m10図(a)
)を得るためには陰極棒を1500〜2000mmと長
くすることができる。
Therefore, since the safe current in liquid for a Cu core metal of 2 to 2.5φ is about 60 A, the optimum current density for electrolytic polishing is (20 to 4 OA/drrr') (Fig. 10(a)
), the cathode rod can be made as long as 1500 to 2000 mm.

そのために、1500mm以上の純Ni長尺細径管の電
解研磨を行なうことが可能であるとの知見を得るに至っ
た。
For this reason, we have found that it is possible to electrolytically polish a pure Ni long narrow diameter tube of 1500 mm or more.

本発明はかかる知見に基づきなされたものである。The present invention has been made based on this knowledge.

(発明の構成) すなわち、木“発明は、直棒状の芯金の外周に柔軟な絶
縁性繊維からなる布製線材をd!!:線状に!!3装し
ており、かつ、電解研磨しようとする長尺細径管より長
い陰極棒を、陽極とされる該長尺細径管の管内に嵌挿し
、該長尺細径管の管内に電解液を供給しながら、該陰極
棒と該長尺細径管との間に相対的に回転及び往復運動を
与えながら、電流密度20〜40A/dm″で電解研磨
を行なうことを特徴とする純Ni長尺細径管内面の電解
研磨方法に係る。
(Structure of the Invention) In other words, the wooden invention has three cloth wires made of flexible insulating fibers wrapped around the outer periphery of a straight bar-shaped core bar, and which is electrolytically polished. A cathode rod that is longer than the long thin tube used as an anode is inserted into the long thin tube, and while an electrolyte is supplied into the long thin tube, the cathode rod and the long thin tube are connected. A method for electrolytic polishing of the inner surface of a pure Ni long thin-diameter tube, characterized by performing electrolytic polishing at a current density of 20 to 40 A/dm'' while applying relative rotation and reciprocating motion to the long thin-diameter tube. Pertains to.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における陰極棒は、直棒状の芯金の外周に柔軟な
絶縁性mtaからなる布製線材を螺線状に巻装してなる
The cathode rod in the present invention is formed by winding a flexible fabric wire made of insulating mta in a spiral shape around the outer periphery of a straight rod-shaped core metal.

本発明における布製線材を螺旋状に巻装した陰極棒の基
本的概念は第1図に示される。
The basic concept of the cathode rod of the present invention, in which a fabric wire is spirally wound, is shown in FIG.

第1図において、1は陰極棒であり、直棒状の芯金2の
外周に柔軟な絶縁性!a維からなる布製線材3が螺線状
に巻装されている構成を有している。
In Fig. 1, 1 is a cathode rod, and the outer periphery of a straight rod-shaped core metal 2 has a flexible insulating material! It has a configuration in which a cloth wire material 3 made of A-fiber is wound in a spiral shape.

このような構成により、長尺管4の管内面は布製線材3
の外周側が周方向及び軸方向に摺動しながら電解研磨さ
れる場合、陰極面である芯金2の表面と陽極面である長
尺管4の管内面との距離は絶縁体である布製線材3の介
在により常時一定に保たれ、電流密度が安定するととも
に、芯金2が長尺管4の管内面に接触して傷を付けるこ
ともなく、更に長尺管4の管内面に構成される粘膜層が
攪拌されることによって電解がより促進されることにな
る。
With such a configuration, the inner surface of the long tube 4 is covered with the cloth wire 3.
When the outer circumferential side of is electrolytically polished while sliding in the circumferential and axial directions, the distance between the surface of the core bar 2, which is the cathode surface, and the inner surface of the long tube 4, which is the anode surface, is the same as that of the cloth wire that is an insulator. 3, the current density is always kept constant, the current density is stabilized, and the core bar 2 does not come into contact with the inner surface of the long tube 4 and cause damage. Electrolysis is further promoted by stirring the mucosal layer.

電解により生じたガスは、電解液5が常時布製線材3に
より形成されている螺線状の流路を流れており、その電
解液5によって迅速に管外へ放出されることになるため
、ガスビットやガス溝の発生を防止できる。
The gas generated by electrolysis is caused by the electrolytic solution 5 constantly flowing through the spiral channel formed by the cloth wire 3, and the electrolytic solution 5 quickly releasing the gas to the outside of the tube. It can prevent bits and gas grooves from forming.

ここに、芯金2は電解液5に浸食されないものであれば
、どのような全屈を用いてもよいが、抵抗が少なく、電
力損失の小さなものであることが望ましく、一般的には
Cuがその素材として用いられる。
Here, the core bar 2 may be of any type as long as it is not corroded by the electrolytic solution 5, but it is preferable that the core bar 2 has low resistance and low power loss, and is generally made of Cu. is used as the material.

ここに、線材3が絶縁性繊維でなければならないことは
前記から当然であるが、同時に柔軟な繊維で構成された
布であることを要す、何故なら、硬質のmmで構成され
ていたり中実線材とすると長尺管4の管内面を傷付ける
ことになり、粗度の小さい研窟面を得られず、また布製
とすることにより、長尺管4の管内面との柔軟な摺接が
回旋となり、更に布の内部にも電解液が滲み込むので都
合が良い。
It is obvious from the above that the wire 3 must be made of insulating fiber, but at the same time it must be made of a cloth made of flexible fibers. If a solid wire is used, it will damage the inner surface of the long tube 4, making it impossible to obtain a ground surface with a small degree of roughness, and if it is made of cloth, flexible sliding contact with the inner surface of the long tube 4 will be prevented. This is convenient because the rotation causes the electrolyte to seep into the inside of the cloth.

かかる繊維の種類としては柔軟性及び電解液5に対する
耐侵食性の観点からポリプロピレン繊維が最適の素材で
あるといえる。
From the viewpoint of flexibility and corrosion resistance against the electrolytic solution 5, polypropylene fibers are considered to be the most suitable material for such fibers.

第2図は布製線材3の芯金2への巻装のさせ方の一例を
示したものであり、芯金2の外周に螺線状の溝6を形成
しておき、該溝6に沿って布製線材3を捲看するという
手段を採用している。このように構成することにより、
布製線材が長尺管4の管内面と摺動したときにも芯金2
の軸方向に動かないように固定され、電解液5の流路が
一定に保たれ、電解条件を安定させることができるとい
う利点がある。なお、溝6は例えば液体ホーニングによ
り形成すればよい。
FIG. 2 shows an example of how to wind the fabric wire 3 around the core metal 2. A spiral groove 6 is formed on the outer periphery of the core metal 2, and the wires are wound along the groove 6. A method is adopted in which the cloth wire 3 is rolled up. By configuring like this,
Even when the cloth wire slides on the inner surface of the long tube 4, the core metal 2
This has the advantage that it is fixed so as not to move in the axial direction of the electrolytic solution 5, so that the flow path of the electrolytic solution 5 can be kept constant, and the electrolytic conditions can be stabilized. Note that the groove 6 may be formed by liquid honing, for example.

また、この陰極棒は、電解研磨しようとする長尺細径管
より長い、そのため、[発明が解決しようとする問題点
コで述べたようなエツチング現象の発生を防止すること
ができる。
Furthermore, this cathode rod is longer than the long narrow diameter tube to be electrolytically polished, so that the occurrence of the etching phenomenon described in [Problems to be Solved by the Invention C] can be prevented.

この陰極棒の長さとしては、1500〜2000mmが
好ましい。
The length of this cathode bar is preferably 1500 to 2000 mm.

Ni管に対する電解研磨の最適の安定電流密度は前述し
、かつ、第8図(b)に示すように20〜40 A/ 
drrT’であるから、その電ffi、密度で電解研磨
を行なえば、陰極棒の長さを1500〜2000mmと
し、Cu芯金を2mmφとしてもCu芯金の安全電流を
越えることはない。
The optimum stable current density for electrolytic polishing for Ni tubes is 20 to 40 A/2 as described above and shown in Figure 8(b).
drrT', if electrolytic polishing is performed at the same electric ffi and density, even if the length of the cathode rod is 1500 to 2000 mm and the Cu core metal is 2 mm in diameter, the safe current of the Cu core metal will not be exceeded.

なお、2000mmの長さの陰極棒を絶縁体を介して例
えば、2本接続してもよい、この場合は4000 m 
mの長尺管の電解研磨が回部となる。
In addition, for example, two cathode rods each having a length of 2000 mm may be connected via an insulator. In this case, the length of 4000 m
Electrolytic polishing of a long tube of m is the turning part.

本発明では、以上の陰極棒を用い、陰極棒を、陽極とさ
れる長尺細径管の管内に嵌挿し、長尺細径管の管内に電
解液を供給しながら、陰極棒と長尺細径管との間に相対
的に回転及び往復運動を与えながら電解研磨を行なう。
In the present invention, the above cathode rod is used, the cathode rod is inserted into a long thin diameter tube serving as an anode, and while an electrolyte is supplied into the long thin tube, the cathode rod and the long thin tube are Electrolytic polishing is performed while applying rotation and reciprocating motion relative to the small diameter tube.

ここで、長尺細径管の管内に電解液を供給する手段とし
ては、例えば第3図に示す手段を用いればよい。もちろ
ん他の手段によってもよい。
Here, as a means for supplying the electrolytic solution into the long narrow diameter tube, for example, the means shown in FIG. 3 may be used. Of course, other means may also be used.

本発明では、電解研磨時に陰極棒と該長尺細径管との間
に相対的に回転及び往復運動を与えるがここで、陰極棒
と長尺管との間に「相対的に回転及び軸方向に往復運動
を与える」とは、陰極棒及び長尺管の双方または一方を
そのように動かすことにより実現することになる。ただ
、往復運動を与える場合においても陰極棒は絶えず長尺
細径管の内部にある。
In the present invention, relative rotation and reciprocation are applied between the cathode rod and the long thin tube during electrolytic polishing. "Giving reciprocating motion in the direction" is realized by moving both or one of the cathode rod and the elongated tube in such a manner. However, even when reciprocating motion is applied, the cathode rod is always inside the long narrow diameter tube.

このように軸方向に往復運動を与えるのは、電解研磨の
ムラの発生を防止し、管全体を均一な電解研磨肌とする
ためである。
The reason for giving reciprocating motion in the axial direction in this way is to prevent unevenness in electrolytic polishing and to provide a uniform electrolytically polished surface over the entire tube.

なお、回転及び往復M′iEJを陰極及び/又は長尺細
径管に与える手段としては公知の常用手段を用いればよ
い。
Note that any known common means may be used to apply the rotational and reciprocating M'iEJ to the cathode and/or the long thin diameter tube.

なお、本発明は、6.25mmφ以下の内径の長尺管に
適用した場合にその効果が著しい。
Note that the present invention is particularly effective when applied to a long tube having an inner diameter of 6.25 mmφ or less.

[実施例] 第4図は本発明に係る長尺管の管内面の電解研磨方法を
実施するための装置全体を示す正面図である。
[Example] FIG. 4 is a front view showing the entire apparatus for carrying out the method of electropolishing the inner surface of a long tube according to the present invention.

第4図において、4は、長さ約4m、内径6.25mm
の被研磨管である長尺細径管である。
In Figure 4, 4 is approximately 4 m in length and 6.25 mm in inner diameter.
This is a long, small-diameter tube that is to be polished.

また、■、1′は陰極棒であり、本例では長尺細径管は
4mであるので、第5図に示すように2木の陰極棒1,
1゛が、絶縁体30を介して接合されている。なお、接
合部はテフロン熱収縮チューブ31によって絶縁されて
いる。この接合された陰極棒が電解液の流動筒23を介
して長尺細径管4の中に嵌挿されている。
Also, ■, 1' are cathode rods, and in this example, the long thin diameter tube is 4 m long, so as shown in Fig. 5, two wooden cathode rods 1, 1' are cathode rods.
1'' are connected via an insulator 30. Note that the joint portion is insulated by a Teflon heat-shrinkable tube 31. This joined cathode rod is inserted into the long narrow diameter tube 4 via the electrolyte flow tube 23.

電解液はタンク(図示せず)の中で温度調整をされ、ポ
ンプ(図示せず)によりフィルター(図示せず)、yi
、量調整装鐙(図示せず)、逆作動弁(図示せず)等の
一連の配管経路を通じて流動筒23に送られ、長尺細径
管4の中に流入せしめられ、長尺細径管4を通過した後
に排液ボックス15の中に放出される。
The temperature of the electrolyte is adjusted in a tank (not shown), and a filter (not shown) is passed through a pump (not shown).
, a quantity adjusting stirrup (not shown), a reverse action valve (not shown), etc., are sent to the flow tube 23 through a series of piping paths, and flowed into the long small diameter pipe 4. After passing through the tube 4 it is discharged into the drainage box 15.

陽極となる長尺細径管4は、図面上左端の端面において
ドラム体28の先端とエアチェツキング26によって固
定されている。このドラム体28は管回転モータ27に
固定されており、従って、長尺細径管4は管回転モータ
27によって回転せしめられる。
The long thin diameter tube 4 serving as the anode is fixed to the tip of the drum body 28 by an air checker 26 at the end face on the left end in the drawing. This drum body 28 is fixed to a tube rotation motor 27, and therefore, the long narrow diameter tube 4 is rotated by the tube rotation motor 27.

一方、長尺細径管4の図面上右端にはダミー管13が設
けられ、このダミー管13は軸受は形状部を有するダミ
ー管通電体14に支承されている。
On the other hand, a dummy tube 13 is provided at the right end of the long narrow diameter tube 4 in the drawing, and the bearing of this dummy tube 13 is supported by a dummy tube current carrying body 14 having a shaped portion.

さらに、この長尺細径管4の該表面には2個の陽極通電
ローラ9,9′が電気的に接続されており、この陽極通
電ローラ9,9゛を介して長尺細径管4に通電せしめる
ようになっている。
Furthermore, two anode current-carrying rollers 9, 9' are electrically connected to the surface of the long thin-diameter tube 4, and the long thin-diameter tube 4 is connected via the anode current-carrying rollers 9, 9'. It is designed to energize.

一方、2木の陰極棒1.1′を接合して形成されている
陰極棒は、図面上左側においては、ドラム体28、管回
転モータ27、流動筒23を嵌挿し、その左端において
引張ゴム31に支承されている。
On the other hand, the cathode rod formed by joining two wooden cathode rods 1.1', on the left side in the drawing, has a drum body 28, a tube rotation motor 27, and a fluidizing cylinder 23 fitted therein, and a tension rubber at its left end. It is supported by 31.

一方、図面上右側においては廃液ボックス17を嵌挿し
、その右端において陰極チェツキング17によって支承
されている。
On the other hand, on the right side in the drawing, a waste liquid box 17 is inserted and supported by a cathode checking 17 at its right end.

そして、図面上左側の陰極棒1は第1陰極接合部32を
介して通電され、また、図面上右側の陰極1゛は、陰極
チェツキング17及び第2陰極接合部18を介して通電
される。
The cathode bar 1 on the left side of the drawing is energized through the first cathode joint 32, and the cathode 1'' on the right side of the drawing is energized through the cathode checking 17 and the second cathode joint 18.

また、陰極全体は、陰極前後駆動部19により駆動され
ることによって軸方向へ往復運動せしめられる。
Further, the entire cathode is caused to reciprocate in the axial direction by being driven by a cathode back and forth drive section 19.

陰極棒1.1゛はCu製の管である芯金2の外周面に螺
線状の溝を形成しておき、該溝に沿ってポリプロピレン
繊維からなる布製線材3を巻装したものである。
The cathode rod 1.1'' has a spiral groove formed on the outer circumferential surface of a core metal 2, which is a tube made of Cu, and a cloth wire material 3 made of polypropylene fiber is wound along the groove. .

また、陽極通電ローラの機構としては1回転する長尺細
径管4に通電する機能を有していなければならず、第6
図に示すように、受はローラ42によって支承されてい
る長尺細径管41を、上側から通電部43と導通してお
り、スプリング45で弾発的に支持された通電ローラ4
4で押し付ける機構を採用している。尚、46は受はロ
ーラの高さをyA整するための調整ネジである。
In addition, the mechanism of the anode energizing roller must have the function of energizing the long narrow diameter tube 4 that rotates once, and the 6th
As shown in the figure, the receiver connects a long narrow diameter tube 41 supported by a roller 42 to a current-carrying portion 43 from above, and a current-carrying roller 4 elastically supported by a spring 45.
It uses a mechanism that presses with 4. Note that the receiver 46 is an adjustment screw for adjusting the height of the roller by yA.

従来の陽極通電装置では長尺細径管の外周に銅板を外嵌
して通電させていたので長尺細径管の外周に摺動による
スリ傷が生じていたが、この機構を採用することにより
、スリ傷を発生させることなく通電でき、通電量に大き
く影響する接触面積についても陽極通電ローラを複数台
設けることによって充分に確保することができる。
In conventional anode energizing devices, a copper plate was fitted around the outer periphery of a long thin tube to apply electricity, which caused scratches on the outer periphery of the long thin tube due to sliding, but by adopting this mechanism. Therefore, current can be applied without causing scratches, and the contact area, which greatly affects the amount of current applied, can be sufficiently secured by providing a plurality of anode current-carrying rollers.

本実施例装着によると、ガスピット、ガス溝、凹凸のう
ねりが無く、非常に小さい粗度の純Ni長尺細径管の管
内面の電解研磨が可能となり、クリーン度の高い高品質
の純Ni長尺細径管を得ることができるとともに、外周
面についてもスリ傷が生じないため商品価値を向上せし
めることができる。
According to this embodiment, it is possible to electrolytically polish the inner surface of a pure Ni long thin diameter pipe with a very small roughness without gas pits, gas grooves, or uneven undulations. It is possible to obtain a long, narrow diameter tube, and since no scratches occur on the outer circumferential surface, the commercial value can be improved.

以上の実施例の装置により、外径が6.35mm・内径
が4・35mmの小径長尺細径管の管内面の電解研磨を
行なったが、いずれも内面の粗度がRmaxo 、 5
 JA mの非常にクリーン度の高い研磨面が得られ、
また、ガスビット等は見られなかった・ また、エツチング肌は見られなかった。
Using the apparatus of the above example, electrolytic polishing was performed on the inner surface of a long, small diameter tube with an outer diameter of 6.35 mm and an inner diameter of 4.35 mm, but in both cases the inner surface roughness was Rmaxo, 5.
A very clean polished surface of JA m can be obtained,
Also, no gas bits were observed, and no etched skin was observed.

なお、以上の実施例では4mの長尺細径管の場合を説明
したが、2mの長尺細径管の場合には陰極を1本使用す
ることによりより容易な構成で電解研磨を行なうことが
できる。
In addition, in the above example, the case of a 4 m long small diameter pipe was explained, but in the case of a 2 m long small diameter pipe, electrolytic polishing can be performed with a simpler configuration by using one cathode. I can do it.

[発明の効果] 以上のように本発明は、純Ni長尺細径管の管内面の電
解研磨方法に係るものであるが、陰極に柔軟な絶縁性繊
維からなる布製線材を螺線状に巻装するという特殊な構
成を採用し、長尺細径管については管内で周方性回転及
び軸方向運動を与えて、布製線材を管内面に摺接させな
がら電解研磨を行なうことにより、次の効果を得ること
ができる。
[Effects of the Invention] As described above, the present invention relates to a method for electropolishing the inner surface of a pure Ni long thin-diameter tube. By adopting a special winding configuration, and applying circumferential rotation and axial movement to long, small-diameter tubes within the tube, electrolytic polishing is performed while the fabric wire is in sliding contact with the inner surface of the tube. effect can be obtained.

■管全長にわたって非常にクリーン度が高い純Ni管を
得ることできる。
■It is possible to obtain a pure Ni tube with a very high degree of cleanliness over the entire length of the tube.

■ガスビット、ガス溝及び凹凸のうねりのない電解研磨
面を得ることができる。
■It is possible to obtain an electrolytically polished surface free of gas bits, gas grooves, and unevenness.

■Rtaax O,5pm以下の表面粗度を有する電解
研磨面を得ることができる。
(2) An electrolytically polished surface having a surface roughness of Rtaax O, 5 pm or less can be obtained.

■エツチング肌のない電解研磨面を得ることができる。■An electrolytically polished surface without etched skin can be obtained.

■−回の電解研磨によって全体を研磨しうる。(2) The entire surface can be polished by electrolytic polishing twice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る陰極棒の基本概念を示す断面図で
ある。第2図は本発明に係る陰極棒の芯金を示す側面図
である。第3図は電解液の供給手段を示す断面図である
。第4図は本発明を実施するための装置を示す側面図で
ある。第5図は陰極棒の接合部を示す断面図である。第
6図は通電ローラの機構を示す側面図である。第7図は
従来例を示す断面図である。第8図及び第9図は他の従
来例を示す断面図である。第10図は5US316Lと
純Ni管に対する電解研磨の電圧−電流密度特性を示す
グラフである。 符号の説明 1.1°・・陰極棒、2・Φ芯金、3・・柔軟な絶縁製
繊維からなる布製線材、4・・長尺細径管、5・・電解
液、6・・螺線状の溝、9.9゛・・陽極通電ローラ、
13・・ダミー管、14・会ダミー管通電体、15拳・
排液ボックス、16・・スリーブ、17・・陰極チェツ
キング、18・・第2陰極接合部、19・・陰極前後陽
動部、21・・長尺管、22・・陰極棒、23流動筒、
24拳・メカニカルシール キング、27・・管回転モータ、28・・ドラム体、3
0・φ絶縁体、31・・テフロン熱収縮チューブ、31
・・引張ゴム、32・・第1陰極接合部、34・・芯金
 35・・布製線材、38・・陰極電解部、42・―受
はローラ、43・舎通電部、44・φ押え通電ローラ、
45争・スプリング、101**cu芯金、102−−
テフロン製の帯体、103・拳陰極棒、104・・長尺
管、105Φ争電解液。 第1図 第2図
FIG. 1 is a sectional view showing the basic concept of the cathode rod according to the present invention. FIG. 2 is a side view showing the core metal of the cathode rod according to the present invention. FIG. 3 is a sectional view showing the electrolyte supply means. FIG. 4 is a side view showing an apparatus for carrying out the invention. FIG. 5 is a sectional view showing the joint portion of the cathode rod. FIG. 6 is a side view showing the mechanism of the energizing roller. FIG. 7 is a sectional view showing a conventional example. FIGS. 8 and 9 are sectional views showing other conventional examples. FIG. 10 is a graph showing voltage-current density characteristics of electrolytic polishing for 5US316L and pure Ni tubes. Description of symbols 1.1°... cathode rod, 2... Φ core metal, 3... cloth wire made of flexible insulating fiber, 4... long thin diameter tube, 5... electrolyte, 6... screw Linear groove, 9.9゛...Anode energized roller,
13. Dummy tube, 14. Dummy tube energizing body, 15 Fist.
Drainage box, 16... Sleeve, 17... Cathode checking, 18... Second cathode joint, 19... Cathode front and back diversion part, 21... Long tube, 22... Cathode rod, 23 Fluid cylinder,
24. Fist/Mechanical Seal King, 27.. Pipe rotation motor, 28.. Drum body, 3.
0・φ insulator, 31...Teflon heat shrink tube, 31
...Tensile rubber, 32.. First cathode joint, 34. Core metal 35.. Cloth wire, 38.. Cathode electrolysis section, 42.--Receiver is roller, 43. Current-carrying section, 44. φ presser power-carrying roller,
45 war/spring, 101**cu core metal, 102--
Teflon band, 103, fist cathode rod, 104...long tube, 105Φ electrolyte. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)直棒状の芯金の外周に柔軟な絶縁性繊維からなる
布製線材を螺線状に巻装しており、かつ、電解研磨しよ
うとする長尺細径管より長い陰極棒を、陽極とされる該
長尺細径管の管内に嵌挿し、該長尺細径管の管内に電解
液を供給しながら、該陰極棒と該長尺細径管との間に相
対的に回転及び往復運動を与えながら、電解研磨を行な
うことを特徴とする純Ni長尺細径管内面の電解研磨方
法。
(1) A fabric wire made of flexible insulating fibers is spirally wound around the outer periphery of a straight rod-shaped core metal, and the cathode rod, which is longer than the long thin diameter tube to be electrolytically polished, is used as an anode. The cathode rod is inserted into the long thin tube, and while an electrolyte is supplied into the long thin tube, the cathode rod and the long thin tube are rotated relative to each other. A method for electropolishing the inner surface of a pure Ni long narrow-diameter tube, which is characterized in that electrolytic polishing is performed while applying reciprocating motion.
(2)電流密度が20〜40A/dm^2である特許請
求の範囲第(1)項記載の純Ni長尺細径管内面の電解
研磨方法。
(2) A method for electropolishing the inner surface of a pure Ni long narrow diameter tube according to claim (1), wherein the current density is 20 to 40 A/dm^2.
(3)布製線材を構成する柔軟な絶縁性繊維がポリプロ
ピレン繊維である特許請求の範囲第(1)項又は第(2
)項記載の純Ni長尺細径管内面の電解研磨方法。
(3) Claim (1) or (2) wherein the flexible insulating fibers constituting the cloth wire are polypropylene fibers.
) The electrolytic polishing method for the inner surface of a pure Ni long narrow diameter tube.
(4)陰極棒が芯金の外周に螺線状の溝を形成し、該溝
に沿って布製線材を捲着したものである特許請求の範囲
第(1)項ないし第(3)項のいずれかに記載の純Ni
長尺細径管内面の電解研磨方法。
(4) Claims (1) to (3) above, wherein the cathode rod has a spiral groove formed on the outer periphery of the metal core, and a cloth wire is wound along the groove. Pure Ni described in any of
Electrolytic polishing method for the inner surface of a long narrow diameter tube.
JP29116286A 1986-12-05 1986-12-05 Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe Pending JPS63143299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29116286A JPS63143299A (en) 1986-12-05 1986-12-05 Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29116286A JPS63143299A (en) 1986-12-05 1986-12-05 Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe

Publications (1)

Publication Number Publication Date
JPS63143299A true JPS63143299A (en) 1988-06-15

Family

ID=17765246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29116286A Pending JPS63143299A (en) 1986-12-05 1986-12-05 Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe

Country Status (1)

Country Link
JP (1) JPS63143299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691663A1 (en) * 1994-07-07 1996-01-10 Forschungszentrum Karlsruhe GmbH Production method for a microcoil
WO2017220633A1 (en) * 2016-06-21 2017-12-28 Extrude Hone Gmbh Electrolytic polishing method and device and method for producing a cathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691663A1 (en) * 1994-07-07 1996-01-10 Forschungszentrum Karlsruhe GmbH Production method for a microcoil
WO2017220633A1 (en) * 2016-06-21 2017-12-28 Extrude Hone Gmbh Electrolytic polishing method and device and method for producing a cathode

Similar Documents

Publication Publication Date Title
JPS62290899A (en) Method and apparatus for electrochemically polishing and/or pickling inner surface of pipe
JP3922728B2 (en) Metal-coated superconducting wire manufacturing method and electropolishing apparatus
FI100342B (en) Method and apparatus for electrolytic pickling
WO2018145549A1 (en) Bidirectional and unidirectional spark-erosion wire cutting method
JPS63143299A (en) Method for electrolytically polishing inside surface of long-sized small-diameter pure ni pipe
US20100326820A1 (en) Electropolishing apparatus
JPS6345400A (en) Method for electropolishing inner surface of pipe
JPH108300A (en) Electrolytic degreasing equipment
US6007694A (en) Electrochemical machining
JPS6024396A (en) Method for electroplating on inside surface of pipe
CN115945750A (en) Electrolytic cleaning electrode device for additive manufacturing part inner flow channel and machining method thereof
JPS59205220A (en) Electrolytic polishing device
JPS6230900A (en) Electrolytic polishing method for inside surface of pipe
JPH04341600A (en) Method for polishing inside of steel pipe
JPS63185529A (en) Electrolytic polishing method for internal surface of long small-sized pipe
JPH07285027A (en) Electrolytic polishing method
CN217479583U (en) Barrel moving anode chromium plating righting structure
CN109686508A (en) A kind of novel coiling welded formula accompanying-heat cable and its processing method
JP2567970B2 (en) Electropolishing method for inner surface of long small diameter pipe
JPH1129895A (en) Surface treatment method for internal surface of coil-shaped long size pipe
KR100941650B1 (en) Roller type electro polishing device
US560533A (en) perreur-lloyd
JP2018154889A (en) Electrolytic processing apparatus and method
HU198971B (en) Equipment for electrochemical cleaning of materials, mainly wires used in welding
SU1215372A2 (en) Unit for electromechanical treating of wire