EP0689642B1 - Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis - Google Patents

Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis Download PDF

Info

Publication number
EP0689642B1
EP0689642B1 EP94911313A EP94911313A EP0689642B1 EP 0689642 B1 EP0689642 B1 EP 0689642B1 EP 94911313 A EP94911313 A EP 94911313A EP 94911313 A EP94911313 A EP 94911313A EP 0689642 B1 EP0689642 B1 EP 0689642B1
Authority
EP
European Patent Office
Prior art keywords
crankshaft
crank
cylinders
piston
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94911313A
Other languages
English (en)
French (fr)
Other versions
EP0689642A1 (de
Inventor
Gilbert Lucien Charles Henri Louis Van Avermaete
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0689642A1 publication Critical patent/EP0689642A1/de
Application granted granted Critical
Publication of EP0689642B1 publication Critical patent/EP0689642B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the object of the present invention is the concept of an engine with variable volumetric ratio which consists in varying the volume of the combustion chamber as a function of the density and temperature of the intake air, of the speed of rotation. and the engine temperature, which allows the engine to be supercharged, by pressing a single or double supercharging pressure with intercooling.
  • WO 89/03476 discloses the compression ignition engine with variable volumetric ratio which represents, by way of example, a preferred embodiment of the invention, relating to a two-stroke cycle engine, with ignition by compression which comprises an axial grouping of two cylinders joined side by side, with a centralization of two crankshafts in the cylinder block, provided with a kinematic chain where the two crankshafts are at the same speed of rotation, the engine is sweeped by equicurrent (l (fresh gas and exhaust are admitted at opposite ends of the larger of the two cylinders).
  • the engine is also provided with a coupler making it possible to synchronize cyclically the positions of the piston of the combustion prechamber in the end of compression phase so as to be able to vary the volumetric ratio according to the different engine speeds.
  • these aforementioned means do not allow the two-stroke engine to operate in good conditions, because in the smaller of the two cylinders, in each exhaust cycle, the flue gases are only partially removed from the cylinder, resulting in a loss of efficiency due to the fact that the intake of the fresh air can only be done by equicurrent.
  • the four-stroke engine can also be provided with a kinematic chain where the small crankshaft is at half speed of the large crankshaft, which has the effect of invalidate the operation of the four-stroke engine, following a desynchronization of the piston of the small cylinder with respect to the phases of the engine, for example, the discharge of the burnt gases from the small cylinder to the large cylinder during the intake phase, and of the burnt gases sucked in by the small cylinder from the large cylinder, in the exhaust phase.
  • the present invention describes a new combination of a four-stroke variable volume combustion chamber engine.
  • the engine comprises a kinematic chain where the shafts of the two crankshafts are coupled at the same speed by means of the variable-pitch transmission.
  • the angular offset travel between the two crankshafts carried out between the start and the end of travel of the variable-pitch transmission is arranged by an appropriate ratio between the two displacements of the two grouped cylinders and between the volume of the latter and the dead space , which allows to modulate the volumetric ratio of the engine without desynchronization of the piston of the small cylinder compared to the phases of the engine.
  • the axial resistance force generated by the displacement of the piston at the change in angular position of the device is proportional by the resistive torque of the camshaft (resistance due to friction of the cams on the valve stems), which has the effect of composing axial forces on the camshaft, the latter being immobilized axially by means of a bearing fitted with a bearing stops.
  • the camshaft generates only weak resistance couples of the order of 1 to 3% compared to the crankshaft torque, this results in weak axial forces on the camshaft, which allows from the point of view mechanical, to use a thrust bearing with low carrying capacity and therefore to be able to have a thrust bearing sufficiently small to make use of it on the camshaft.
  • the present invention also describes a novel combination of a variable-pitch transmission suitable for regulating the four-stroke variable volume combustion chamber engine.
  • This new combination of the variable-pitch transmission in coupling connection with the two shafts of the two crankshafts of the engine has the advantage of varying the angular position between these two shafts without any axial force on them, whatever or the torque force on the variable-pitch transmission.
  • the variable-pitch transmission can be removed from the engine block and uncoupled from the two crankshafts as an interchangeable mechanical assembly that can be reassembled on the engine block.
  • Means are also provided on this variable-pitch transmission to have precise angular adjustment between the coupling connection of the two crankshafts and the variable-timing transmission.
  • Engineers therefore comply with certain design rules by determining, on the one hand, a limit on the amplitude of the pressure variations at the intake, and on the other hand, by achieving an average compression ratio between the pressure d aspiration atmospheric and boost pressure.
  • the determination of the average compression ratio is a compromise reconciling at best the different engine speeds, the atmospheric suction regime is located at too low pressures and temperatures, and the boost pressure regime is located at too high pressures and temperatures.
  • this new engine comprises two lines of crankshafts, one with a long stroke crank, the other with a short stroke crank.
  • the two crankshafts are coupled at the same rotational speed by means of a gear train and a variable-pitch transmission, the coupling pinion of which forms part of the gear train moves angularly relative to the crankshaft. at short stroke, which allows an infinite number of stalls between the two crankshafts without requiring the interruption of the transmission between them.
  • variable pitch transmission is designed in such a way that it can be separated from the engine block independently of the crankshaft at short stroke, which has the advantage of being able to quickly and easily replace the defective parts or to a standard exchange of the latter.
  • the cylinders differentiated by their displacement, are each arranged above one of the two lines of crankshafts.
  • the crankshaft of the short stroke crankshaft operating with the connecting rod of the piston of the smallest cylinder
  • the crank of the crankshaft of long stroke operating with the connecting rod of the piston of the largest cylinder.
  • the two cylinders are connected one by one, from one row to the other, by a recess in the cylinder head, so as to form a group of two cylinders communicating with each other in order to allow the gases to pass from one to the 'other, regardless of the position of the piston of each of the cylinders.
  • the engine comprises at least one fuel injector in the dead space, the fuel injection is carried out at half speed with the crankshaft at large stroke.
  • the engine comprises at least one spark plug in the dead space
  • the ignition is carried out by known means in half-speed synchronism with the long-stroke crankshaft.
  • the distribution is ensured at least by a camshaft engaged at half speed with the long-stroke crankshaft, putting the group of two cylinders in periodic communication with the intake and exhaust pipes at through the intake and exhaust valves at specific times in the four-stroke cycle.
  • the expansion phase is carried out simultaneously on each piston of the two grouped cylinders making the two crankshafts cooperate with the engine force.
  • the long-stroke crankshaft is connected directly to the external transmission components of the engine, so that the variable-pitch transmission transmits only the engine torque of the short-stroke crankshaft to the long-stroke crankshaft, the engine force on the variable-pitch transmission is therefore dependent on the smaller displacement of the two grouped cylinders.
  • variable-pitch transmission between the two crankshafts have the effect of modifying, in the end of compression phase (top dead center of the piston of the largest displacement), an additional space generated in the smallest displacement.
  • This additional space being defined with the dead space, so as to modify the volumetric ratio of the engine in the maximum direction at the start of travel of the variable-timing transmission, and in the minimum direction at the end of travel of the variable-timing transmission .
  • a hydraulic force amplifier whose slave cylinder acts on the variable-pitch transmission, modifies the additional volume of the small displacement in proportion to the boost pressure, so as to maintain the engine in optimal operating conditions with the minimum of pollution.
  • a preset program on a pre-production engine eliminates the excessive stresses of pressures and temperatures.
  • Each engine speed is stored in a point progression scale, so as to encompass all of the engine's capabilities.
  • Each storage point is a combination formed by the measurements of four sensors: the pressure of the intake air. intake air temperature, engine speed, and engine temperature.
  • Each combination is recorded simultaneously with the position of the variable timing transmission control cylinder.
  • This program allows the automatic piloting of the series engine identical to that of the engine produced on the test bench. Fuel specifications must also be identical to reproduce exactly the same operating conditions on the series engine, thanks to high-frequency monitoring of the measurements of the four sensors.
  • the cylinder block (1) comprises two crankshafts (4 and 5) arranged in parallel, one with a long stroke crank (4), the other with a short stroke crank (5 ), the two cylinders (2 and 3) provided with pistons respectively (6 and 8) and connecting rods respectively (7 and 9) are arranged each above of the two lines of crankshafts (4 and 5).
  • the crankshaft of the short stroke (5) operating with the connecting rod (9) of the piston (8) of the smallest cylinder (3)
  • the crank of the long stroke crankshaft (4) operating with the connecting rod (7) of the piston ( 6) of the largest cylinder (2).
  • the two cylinders (2 and 3) are connected one by one, from one row to another, by a recess in the cylinder head (10), so as to form a group of two cylinders (2 and 3) communicating with each other .
  • the engine includes at least one fuel injector (not shown) in the dead space.
  • the fuel is injected by known means (not shown) in half-speed engagement with the crankshaft with long stroke crank (4).
  • the engine comprises at least one spark plug (not shown) in the dead space.
  • the ignition is carried out by known means (not shown) in half-speed synchronism with the long-stroke crankshaft (4).
  • Distribution is ensured at least by a camshaft (not shown) engaged at half-speed with the long-stroke crankshaft (4).
  • the part of the cylinder head (10) overhanging the largest cylinder (2) comprises the intake and exhaust valves respectively (13 and 14), putting the group of the two cylinders (2 and 3) in periodic communication with the pipes. intake and exhaust respectively (11 and 12) at specific times in the four-stroke cycle.
  • a second camshaft (not shown) engaged at half speed with the long stroke crankshaft (4) can be provided in the part of the cylinder head (10) overhanging the smallest cylinder ( 3), so as to ensure second periodic opening and closing of the intake and exhaust at the same time as the opening and closing of the four-stroke cycle carried out in the largest cylinder (2).
  • the ratio between the displacements of the two grouped cylinders (2 and 3) is at least between 2.5 and 5 allowing the engine to be adapted to boost pressure rates from 1 to 7.
  • the variable setting transmission is formed by three superposed concentric elements: the first element consists of the transmission shaft (17) located in the internal part, the second element consists of the sleeve (28) of the gear (20 ) located in the external part and the third element is constituted by the sliding tube (32) located in the intermediate part between the two other aforementioned elements.
  • Said sleeve (28) is held in an applied bearing (15) by means of a two-row angular contact bearing (16) suitable between the applied bearing (15) and the sleeve (28).
  • Said applied bearing (15) is fixed to the engine block (1) so that the variable-pitch transmission can constitute a separate assembly from the shaft (18) of the short-stroke crankshaft (5).
  • variable setting transmission and the short stroke crankshaft (5) are each made with their respective shaft (17 and 18).
  • the contiguous ends between the shaft (17) of the variable-pitch transmission and the shaft (18) of the short-stroke crankshaft (5) are shaped with corresponding straight male and female splines allowing their coupling in the engine block (1 ) by axial sliding when the applied bearing (15) is applied in an orifice provided in the engine block (1).
  • the applied bearing (15) is centered on the shaft (18) of the short-stroke crankshaft (5), so as to allow the self-centering of the shaft (17) on said shaft (18), the latter also serving as free bearing on the shaft (17) when applying the applied bearing (15) on the engine block (1); this means allowing the disassembly of the variable setting transmission outside the engine block (1) without having to disassemble the crankshaft at short stroke (5).
  • the transmission shaft (17) and the sleeve (28) are advantageously held concentrically and axially with respect to each other by means of a bearing (22) integral with the shaft (17).
  • the bearing (22) is provided with a bearing (23) with axial and radial abutment allowing the free rotation of the shaft (17) independently of the sleeve (28).
  • the bearing (22) is an integral part of the shaft (17) at the point where the straight grooves of the mating coupling ends between the shaft (17) and the shaft (18) of the short stroke crankshaft are limited. (5).
  • the bearing (22) and the sleeve (28) are located inside the engine block (1).
  • the bearing (22) is made in the form of a disc also acting as a flywheel, the periphery of this flywheel is regularly pierced with holes (24) allowing the bolting of a ring (25) located on the side face opposite the side where the straight grooves are limited.
  • the application of the ring (25) on the flywheel of the bearing (22) is used to form a housing allowing the fixing of the outer ring (26) of the bearing (23) with axial and radial forces, while the ring inner (27) of the bearing (23) is fixed on the sleeve (28) against a spacer (29) in the form of a ring surrounding the sleeve (28), the spacer (29) is intended to make up for the separation space between the inner ring (27) of the bearing (23) and the inner ring of the angular contact bearing (16), the latter being held axially against a shoulder provided on the sleeve (28) by fixing all the aforementioned parts by means of a single nut (30) on the sleeve (28).
  • the gear (20) of the sleeve (28) is located outside the engine block (1) coupled at the same speed with the long-stroke crankshaft (4) by means of a gear (19) integral with this last and an intermediate gear (21) between the two aforementioned gears (19 and 20).
  • the transmission shaft (17) comprises, on the side of the bearing (22) facing the applied bearing (15), helical grooves (31) on which the sliding tube (32) is fitted.
  • This sliding tube (32) has on its internal periphery grooves (33) matched to the helical grooves (31), so that the sliding tube (32) can slide helically on the drive shaft (17) and allow angular offset between the said first and third elements.
  • the sliding tube (32) also has on its outer periphery helical grooves (34) whose helix is in the opposite direction to that of the grooves (33) produced inside the sliding tube (32).
  • the sleeve (28) has on its internal periphery helical grooves (35) matched to the external helical grooves (34) of the sliding tube (32), so that the latter can slide helically in the sleeve (28) and allow angular offset between the said second and third elements at the same time as the helical sliding between the first and third abovementioned elements, the sleeve (28) again becomes integral in rotation with the shaft (17) when the sliding tube (32) is not in axial translation.
  • the length of the sliding tube (32) is established inside the sleeve (28) when the end of said sliding tube (32) is at the stop limit defined by the obstruction of the bearing (22), l 'other end of the sliding tube (32) is released outside the sleeve (28) through the gear (20) out of the engine block (1) to allow, by appropriate means, the fixing of the inner ring of the two-row angular contact bearing (36).
  • Said inner ring of the bearing (36) is made integral with the rotation movement of the sliding tube (32), while the outer ring of the bearing (36), without rotational movement, is secured to the attachment piece (37 ).
  • a memory of the compression ratio program decision acting by a hydraulic control system allows the movement of the attachment piece (37) and the sliding tube (32) to modify the timing between the two crankshafts (4 and 5).
  • the start of travel of the variable-pitch transmission is arranged so that the sliding tube (32) is in the exit stop position (not shown) of the sleeve (28) (low torque) which corresponds to the minimum advance angle of the crankshaft with short stroke (5) relative to the crankshaft with long stroke (4).
  • the limit switch of the variable-pitch transmission is arranged such that the sliding tube (32) is in the re-entry stop position (not shown) of the sleeve (28) (high torque) corresponding to the maximum angular advance of the short stroke crankshaft (5) relative to the long stroke crankshaft (4).
  • the teeth of the gear (20) are in even number, when the paired grooves (34 and 35) respectively of the sliding tube (32) and of the sleeve (28), the paired grooves (31 and 33) of the shaft (17) and of the sliding tube (32) respectively, as well as the splines joining between the two shafts (17 and 18 ) are each in odd number and vice versa.
  • the shaft (17) of the variable-pitch transmission comprises, on the side of the bearing (22) facing the applied bearing (15), straight grooves (38) in substitution for the helical grooves ( 31) on which the sliding tube (32) is fitted, which comprises on its internal periphery straight grooves (39) in substitution for helical grooves (33), the straight grooves (39) being matched with the straight grooves (38 ) of the tree (17).
  • the minimum and maximum volumetric ratios selected for the type of engine to be designed are produced as a function of the dimensions of the different elements of the engine, namely on the one hand, the ratio between the displacement of the two grouped cylinders (2 and 3 ) and on the other hand, the ratio formed by the total volume of the two displacements of these cylinders (2,3) with the volume formed by the dead space (40), the latter ratios are arranged in such a way that the maximum angular advance of the crankshaft of the short stroke (5) relative to the crank of the long stroke (4), defined by the end position of the transmission to variable setting, match, at the end of compression phase (top dead center of the piston 6), the positioning of the piston (8) in relation to the additional space necessary for the dead space (40) to define said minimum volumetric ratio of the engine with an angle of at least 90 ° between the connecting rod (9) and the crankshaft of the short stroke crankshaft (5).
  • the maximum volumetric ratio selected is produced on the same database as the dimensional values defined for the minimum volumetric ratio, in such a way that the minimum angular advance of the crankshaft at short stroke (5) relative to the crank of the long-stroke crankshaft (4), defined by the start-of-travel position of the variable-pitch transmission, at the end of the compression phase (top dead center of the piston 6), the positioning on the piston (8) with the additional space necessary for the dead space (40) to define the maximum volumetric ratio of the engine with the connecting rod (9) of the crankshaft of the short stroke (5) spaced from its top dead center, so that the said connecting rod ( 9) forms an angle with the crankshaft of the short stroke (5).
  • This operation has the advantage of speeding up the process of modifying the volumetric ratio of the engine at low load.
  • V1 displacement of the larger of the two grouped cylinders.
  • V2 displacement of the smaller of the two grouped cylinders.
  • V1 V2 volumetric ratio between the two displacements of the two grouped cylinders.
  • angular advance of the crankshaft at short stroke.
  • ve volume of the dead space of the two grouped cylinders necessary for the transfer of gases without excessive rolling.
  • ( ⁇ min imum) angular advance of the crankshaft at short stroke. at the start of the variable-pitch transmission.
  • ⁇ max imum angular advance of the crankshaft at short stroke. at the end of the variable-pitch transmission.
  • V a ( ⁇ min imum) additional volume added to the volume of the dead space.
  • V a ( ⁇ max imum) additional volume added to the volume of the dead space. at the end of the variable-pitch transmission. defined by the maximum angle of the angular advance of the crankshaft at short stroke when the crankshaft at long stroke is in top dead center, at the end of compression phase.
  • Vr ( ⁇ min imum) air delivery volume at the start of the variable-pitch transmission. defined by the minimum angle of the angular advance of the crankshaft at short stroke when the crankshaft at long stroke is in bottom dead center. at the end of admission phase.
  • Vr ( ⁇ max imum) air delivery volume at the end of travel of the variable pitch transmission. defined by the maximum angle of the angular advance of the crankshaft with short stroke when the crankshaft with long stroke is in bottom dead center. at the end of admission phase.
  • V1 + V2 x number. of grp. of 2 cyl. engine displacement.
  • V1 + [ V2 - Vr ( ⁇ ) ] x number. of grp. of 2 cyl. engine displacement defined by the timing of the variable timing transmission.
  • V1 + [ V2-Vr ( ⁇ ) ] + ve ve + Va ( ⁇ ) Theoretical P. theoretical volumetric characteristic of the engine with definition of the volumetric ratios arranged by the timing of the variable-timing transmission.
  • V1 + [ V2-Vr ( ⁇ min imum) ] + ve ve + Va ( ⁇ min imum) P max imum definition of the maximum volumetric ratio at the start of travel of the variable-pitch transmission.
  • Vr ( ⁇ min imum) should not be deduced from V2 because it is too negligible.
  • V1 + [ V2-Vr ( ⁇ max imum) ] + ve ve + Va ( ⁇ max imum) P min imum
  • Vr ( ⁇ max imum) must not be deduced from V2 because the mass admitted in V1 and V2 is dependent on the calibration memorized at the maximum boost pressure.
  • the minimum volumetric ratio selected can be achieved between two limit switches of the variable-pitch transmission.
  • the first limit is achieved with a maximum angular advance of the crankshaft of the short stroke (5) relative to the crank of the long stroke crankshaft (4) so as to determine at the end of compression (top dead center of the piston 6) positioning the piston (8) in relation to the additional space necessary for the dead space (10) to define said minimum volumetric ratio with an angle of at least 90 ° between the connecting rod and the crankshaft of the short-stroke crankshaft (5)
  • the second limit is achieved with a lower angular advance of the crankshaft of short stroke (5) compared to the crank of long stroke crankshaft (4) and this in proportion to the decrease in the ratio between the two displacements of the two cylinders (2 and 3) up to the tolerance limit generated by the working space of the two crankshafts (4 and 5) defined by the parallel and close positions of the two grouped cylinders (2 and 3 ) according to the formula of the minimum volumetric ratio below.
  • Vr ( ⁇ max imum ) should not be deduced from V2, because the mass admitted in V1 and V2 is dependent on the calibration memorized between the volumetric boost and the boost pressure.
  • the maximum volumetric ratio selected is achieved on the basis of the data of the dimensional values defined for the minimum volumetric ratio, in such a way that at the start of the travel of the variable-pitch transmission, the minimum angular advance of the crankshaft at small stroke (5) relative to the crankshaft of the long-stroke crankshaft (4) determines, at the end of compression (top dead center of the piston 6), the positioning of the piston (8) in relation to the additional space necessary for the dead space (1O) to define a maximum volumetric ratio with the connecting rod (9) of the crankshaft of the short-stroke crankshaft (5) separated from its top dead center, so that said connecting rod (9) forms an angle with the crank of the short stroke crankshaft (5).
  • We can therefore define the maximum volumetric ratio according to the formula: V1 + [V2-Vr ( ⁇ min imum) ] + ve ve + Va ( ⁇ min imum) P max imum
  • V r ( ⁇ min imum) must not be deduced from V2, because the mass of air admitted in V1 and V2 is dependent on the calibration memorized between the volumetric ratio and the atmospheric depression in the intake pipe.
  • the above formula recorded in a computer spreadsheet allows you to manage and select the dimensional values between the different elements of the engine, that is to say, the volumetric ratios between the two displacements of the two grouped cylinders (2 , 3) and the ratio formed by the total volume of the two displacements of these cylinders (2,3) with the volume formed by the dead space (40), the calculation is established so that the specifications which have been provided for the maximum and minimum volumetric ratios of the engine may coincide with the corresponding degrees of the minimum and maximum angular advances of the crankshaft at short stroke relative to the crankshaft at long stroke respectively of the start and end of travel of the stalled transmission variable.
  • the graphs in FIGS. 10 and 11 show examples of curves of variations in the volumetric ratio and in the volumetric efficiency of the two grouped cylinders (2,3) over 360 ° degrees of angular rotation of the crankshaft of the long stroke crankshaft (4).
  • the two crankshafts (4 and 5) are each mechanically connected to a generator, the electrical circuits of the two generators are connected in parallel.
  • the capacity of each of the two generators is defined as a function of the power of their respective crankshaft in cruising speed of the engine, therefore, the variable-pitch transmission and the corresponding couplings between the two crankshafts (4 and 5) are limited to efforts to compensate couples.
  • the engine brake can be maintained by considering an increase in the power of the engine with the support of a speed limiter on the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Claims (6)

  1. Viertakt-Verbrennungsmotor, mit einer Ansaugphase, einer Verdichtungsphase, einer Entspannungsphase und einer Ausstoßungsphase, wobei dieser Motor aufweist:
    - Kolben (6, 8), die eine Hin- und Herbewegung ausführen, mit Verdichtungs- oder Fremdzündung;
    - zwei Kurbelwellen-Wellenstränge, von denen ein erster (4) eine Kurbel mit großem Hub aufweist, während der zweite (5) eine Kurbel mit einem Hub aufweist, der kleiner als der Hub der Kurbel des ersten Kurbelwellen-Wellenstrangs ist, wobei die Kurbelwellen-Wellen (4, 5) bei gleicher Drehzahl über ein Getriebe (19, 20, 21) und eine Übertragung mit variabler Einstellung miteinander gekuppelt sind;
    - eine Gruppe von Zylindern (2, 3), von denen jeder über einem der Kurbelwellen-Wellenstränge (4, 5) angeordnet ist, wobei diese Gruppe kleine Zylinder (3) aufweist, die einen Hubraum haben, der kleiner als derjenige von großen Zylindern (2) ist, wobei jeder große Zylinder über einen toten Raum (40) mit einem kleinen Zylinder (3) in Verbindung steht, so daß eine Gruppe von zwei Zylindern (3, 4) gebildet wird, die miteinander so in Verbindung stehen, daß die Gase unabhängig von der Position der Kolben (6, 8), die in den Zylindern (2, 3) verschoben werden, von einem Zylinder in den anderen strömen können, wobei jeder Kolben einer Pleuelstange (9) zugeordnet ist, die mit einer Kurbel einer Kurbelwelle zusammenwirkt, wobei die Kurbel des zweiten Kurbelwellen-Wellenstrangs (5), die die Pleuelstange (9) des Kolbens (8) betätigt, in dem kleinen Zylinder (3) verschoben wird, während die Kurbel des ersten Kurbelwellen-Wellenstrangs (4), die die Pleuelstange (7) des Kolbens (6) betätigt, in dem großen Zylinder (2) verschoben wird;
    - eine Nockenwelle, die bei halber Drehzahl mit dem ersten Kurbelwellen-Wellenstrang (4) in Eingriff steht, um die periodische Verbindung der Gruppen von zwei Zylindern (2, 3) mit Einlaßleitungen (11) und Ausstoßungsleitungen (12) mittels Einlaßventilen (13) und Auslaßventilen (14) zu vorgegebenen Zeitpunkten des Viertaktzyklus sicherzustellen,
    wobei die Übertragung mit variabler Einstellung einen Steuermechanismus umfaßt, um die Winkeleinstellung der Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) bezüglich der Kurbel des ersten Kurbelwellen-Wellenstrangs (4) zu variieren mittels eines hydraulischen Kraftverstärkers, der einen auf die Übertragung wirkenden Servozylinder umfaßt, wobei die Übertragung ermöglicht, in der Verdichtungs-Endphase des Kolbens (6) des großen Zylinders (2) das Volumenverhältnis des Motors zwischen einem minimalen Volumenverhältnis und einem maximalen Volumenverhältnis zu ändern, wobei das minimale und das maximale Volumenverhältnis abhängen von
    a) dem Verhältnis zwischen dem Hubraum des großen Zylinders (2) und dem Hubraum des kleinen Zylinders (3), und
    b) dem Verhältnis zwischen einerseits dem Gesamtvolumen des kleinen Zylinders und des großen Zylinders, und andererseits dem Volumen des toten Raums (40) und einem zusätzlichen Volumen, das in dem kleinen Zylinder (3) in der Verdichtungs-Endphase des Kolbens (6) des großen Zylinders (2) erzeugt wird, wobei die Übertragung mit variabler Einstellung die Winkelvoreilung der Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) bezüglich der Kurbel des ersten Kurbelwellen-Wellenstrangs (4) festlegt, um die Volumenverhältnisse zu erhalten, wobei die Winkelvoreilung variiert zwischen einer maximalen Winkelvoreilung, bei der in der Verdichtungs-Endphase des Kolbens (6) des großen Zylinders (2) mindestens ein Winkel von 90° zwischen der Pleuelstange (9) des Kolbens (8) des kleinen Zylinders (3) und der Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) gebildet wird, um das minimale Volumenverhältnis festzulegen, und einer minimalen Winkelvoreilung, bei der der Winkel der Winkelvoreilung in der Verdichtungs-Endphase des Kolbens (6) des großen Zylinders (2) der Positionierung des Kolbens (8) in dem kleinen Zylinder entspricht, um das zusätzliche Volumen zu erzeugen, das erforderlich ist, um das maximale Volumenverhältnis zu erhalten, wobei die Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) einen Winkel mit der Pleuelstange (9) des Kolbens (8) des kleinen Zylinders (3) bildet.
  2. Viertakt-Verbrennungsmotor gemäß Anspruch 1, bei dem die Kurbelwelle des ersten Kurbelwellen-Wellenstrangs (4) bei ihrer Rotation durch einen oberen Totpunkt und einen unteren Totpunkt hindurchgeht, dadurch gekennzeichnet, daß
    die Gesamtheit der Gruppenzylinder (2, 3), die parallele und angenäherte Positionen haben, und die zwei Kurbelwellen-Wellenstränge (4, 5) so angeordnet sind, daß sie einen minimalen Arbeitsraum der zwei Kurbelwellen-Wellenstränge definieren, so daß ein minimales Verhältnis der Hubräume von zwei Gruppenzylindern (2, 3) erhalten wird, und daß
    die Übertragung mit variabler Einstellung einen Verschiebungshub aufweist, der sich zwischen einem Hubanfang und einem Hubende erstreckt, wobei das minimale Volumenverhältnis von zwei Gruppenzylindern (2, 3) am Hubende der Übertragung mit variabler Einstellung erhalten wird, und dieses Volumenverhältnis nach der folgenden Formel berechnet wird: V1 + [V2 - Vr(α maximal)] + ve ve + Va(α maximal) = P minimal
    Figure imgb0012
    wobei bedeuten:
    V1 :   Hubraum des größeren Zylinders (2) von zwei Gruppenzylindern (2, 3).
    V2 :   Hubraum des kleineren Zylinders (3) der zwei Gruppenzylinder (2, 3).
    ve :   Volumen des toten Raums (40) der zwei Gruppenzylinder (2, 3), das den Transfer von Gas zwischen den Zylindern (2, 3) ohne übermäßige Drosselung ermöglicht.
    α maximal:   Winkelvoreilung der Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) am Hubende der Übertragung mit variabler Einstellung.
    Vr (α maximal) :   Luftzurückdrängungsvolumen am Hubende der Übertragung mit variabler Einstellung, definiert durch die Winkelvoreilung der Kurbelwelle des zweiten Kurbelwellen-Wellenstrangs (5), wenn sich die Kurbel des Kurbelwellen-Wellenstrangs (4) in der Endphase des Einlasses in dem unteren Totpunkt befindet.
    Va (α maximal):   Zusätzliches Volumen, das zu dem Volumen des toten Raums (40) hinzukommt, am Hubende der Übertragung mit variabler Einstellung, definiert durch die Winkelvoreilung der Kurbelwelle des zweiten Kurbelwellen-Wellenstrangs (5), wenn sich die Kurbel des ersten Wellenstrangs (4) in der Endphase der Verdichtung an dem oberen Totpunkt befindet.
  3. Viertakt-Verbrennungsmotor gemäß Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß die Übertragung mit variabler Einstellung drei übereinander angeordnete, konzentrische Elemente aufweist, nämlich ein inneres Element, das von einer Übertragungswelle (17) gebildet wird, ein äußeres Element, das von einer Muffe (28) gebildet wird, die ein Zahnrad (20) zum Kuppeln der zwei Kurbelwellen-Wellenstränge (4, 5) trägt, und ein Zwischenelement, das zwischen dem inneren und dem äußeren Element gelegen ist und von einem bezüglich des inneren und des äußeren Elements verschiebbaren Rohr (32) gebildet wird, wobei die Muffe (28) in einem Wandlager (15) mittels eines zweireihigen schrägkontakt-Wälzlagers (16) festgehalten wird,
    daß der zweite Kurbelwellen-Wellenstrang (5) eine Welle (18) aufweist, deren eines Ende an ein Ende der Übertragungswelle (17) angrenzt, wobei die Enden mit geraden äußeren bzw. inneren Riefelungen versehen sind, um ihre Kupplung und die automatische Zentrierung der drei Elemente bezüglich der Welle (18) des zweiten Kurbelwellen-Wellenstrangs (5) bei der Befestigung des Wandlagers (15) auf einer Öffnung des Motorblocks zu ermöglichen, und um den Ausbau der Übertragung ohne Ausbau des zweiten Kurbelwellen-Wellenstrangs (5) zu ermöglichen,
    daß ein Lager (22) einen Befestigungsring (25) trägt, der den Sitz des äußeren Rings (26) eines Wälzlagers (23) bildet, dessen innerer Ring (27) auf der Muffe (28) so befestigt ist, daß die Übertragungswelle (17) festgehalten wird,
    daß sich ein Abstandsstück (29) zwischen dem inneren Ring (27) des Wälzlagers (23) und dem inneren Ring des Schrägkontakt-Wälzlagers (16) erstreckt, wobei dieses Abstandsstück den Zwischenraum zwischen den Ringen ausgleicht und den Ring des Schrägkontakt-Wälzlagers (16) in axialer Richtung gegen eine Schulter der Muffe (28) festhält,
    daß eine einzige Mutter (30) die Befestigung der inneren Ringe des Wälzlagers (23) und des Schrägkontakt-Wälzlagers (16) und des Abstandsstücks (29) auf der Muffe (28) sicherstellt,
    daß die Übertragungswelle (17) auf der Seite des Befestigungsrings (25) schraubenförmige Riefelungen oder gerade Riefelungen (31) aufweist, auf die das verschiebbare Rohr (32), das auf seiner inneren Fläche schraubenförmige Riefelungen oder gerade Riefelungen (33) aufweist, aufgeschoben wird, so daß es schraubenförmig oder geradlinig auf der Übertragungswelle (17) gleitet,
    daß die Muffe (28) auf ihrer inneren Fläche schraubenförmige Riefelungen (35) aufweist, deren Schraubensinn entgegengesetzt zu dem Schraubensinn der Riefelungen der Übertragungswelle ist, wenn diese letzteren schraubenförmig sind,
    daß das verschiebbare Rohr (32) ein Ende aufweist, das dauernd aus der Muffe (28) herausragt, wobei dieses Ende mit einem inneren Ring eines zweireihigen schrägkontakt-Wälzlagers (36) fest verbunden ist, wobei der äußere Ring des Wälzlagers (36) mit einem Befestigungsteil (37) des Hubzylinders fest verbunden ist, und
    daß die schraubenförmigen Riefelungen so angeordnet sind, daß bei einer Verschiebung des verschiebbaren Rohrs (32) aus der Muffe heraus die Winkelvoreilung der Kurbel des zweiten Kurbelwellen-Wellenstrangs (5) bezüglich der Kurbel des ersten Kurbelwellen-Wellenstrangs (4) verringert wird.
  4. Viertakt-Verbrennungsmotor gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Zündung eine Fremdzündung ist und mindestens eine Zündkerze in dem toten Raum (40) aufweist, wobei die Zündung bei halber Drehzahl synchron mit dem ersten Kurbelwellen-Wellenstrang (4) erfolgt.
  5. Viertakt-Verbrennungsmotor gemäß irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Verhältnis zwischen den Hubräumen der zwei Gruppenzylinder (2 und 3) zwischen 2,5 und 5 liegt.
  6. Viertakt-Verbrennungsmotor gemäß Anspruch 3, dadurch gekennzeichnet, daß das von der Muffe (28) getragene Zahnrad (20) eine gerade bzw. ungerade Anzahl von Zähnen umfaßt, wenn die Anzahl der Zähne der Riefelungen zwischen der Übertragungswelle (17) und dem verschiebbaren Rohr (32), und die Anzahl der Zähne der Riefelungen der aneinandergrenzenden Enden der Übertragungswelle (17) und der Welle (18) des zweiten Kurbelwellen-Wellenstrangs (5) ungerade bzw. gerade ist.
EP94911313A 1993-03-19 1994-03-21 Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis Expired - Lifetime EP0689642B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU88235 1993-03-19
LU88235A LU88235A1 (fr) 1993-03-19 1993-03-19 Perfectionnements apportés aux moteurs à combustion interne à quatre temps, à rapport volumétrique variable autorisant de hauts taux de pressions de suralimentation et fonctionnant par allumage par compression ou par allumage commandé
PCT/LU1994/000001 WO1994021905A1 (fr) 1993-03-19 1994-03-21 Perfectionnements apportes aux moteurs a combustion interne a quatre temps, a rapport volumetrique variable autorisant de hauts taux de pressions de suralimentation et fonctionnant par allumage par compression ou par allumage commande

Publications (2)

Publication Number Publication Date
EP0689642A1 EP0689642A1 (de) 1996-01-03
EP0689642B1 true EP0689642B1 (de) 1997-11-05

Family

ID=19731393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911313A Expired - Lifetime EP0689642B1 (de) 1993-03-19 1994-03-21 Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis

Country Status (9)

Country Link
US (1) US5638777A (de)
EP (1) EP0689642B1 (de)
JP (1) JPH08507844A (de)
CN (1) CN1059486C (de)
AU (1) AU6386394A (de)
DE (1) DE69406651T2 (de)
ES (1) ES2111294T3 (de)
LU (1) LU88235A1 (de)
WO (1) WO1994021905A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522629C2 (sv) * 2000-06-05 2004-02-24 Volvo Lastvagnar Ab Anordning för reglering av fasvinkel mellan en första och en andra vevaxel
US6752105B2 (en) 2002-08-09 2004-06-22 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Piston-in-piston variable compression ratio engine
JP3885206B2 (ja) * 2002-11-11 2007-02-21 胡 龍潭 八行程内燃機関
US7024858B2 (en) 2003-03-05 2006-04-11 The United States Of America As Represented By United States Environmental Protection Agency Multi-crankshaft, variable-displacement engine
US6745729B1 (en) 2003-04-15 2004-06-08 Derron E. Ebanks Internal combustion engine system
FR2887591B1 (fr) * 2005-06-24 2007-09-21 Mdi Motor Dev Internat Sa Groupe moto-compresseur basses temperatures a combustion "froide" continue a pression constante et a chambre active
BE1016961A3 (fr) * 2006-01-23 2007-11-06 Avermaete Gilbert Perfectionnements du moteur a rapport volumetrique variable.
JP4297147B2 (ja) * 2006-09-22 2009-07-15 トヨタ自動車株式会社 火花点火式内燃機関
CN101349195B (zh) * 2007-10-11 2010-12-22 李志成 偏转式往复运动发动机
US7584724B2 (en) * 2007-10-30 2009-09-08 Ford Global Technologies, Llc Variable compression ratio dual crankshaft engine
DE102008003109A1 (de) * 2008-01-01 2009-07-02 Fev Motorentechnik Gmbh VCR - Gelenkwellenabtrieb
WO2010036994A1 (en) * 2008-09-26 2010-04-01 Voisin Robert D Powering an internal combustion engine
GB0822720D0 (en) * 2008-12-12 2009-01-21 Ricardo Uk Ltd Split cycle reciprocating piston engine
US8272356B2 (en) * 2009-06-30 2012-09-25 The United States of America, as represented by the Administrator of the United States Environmental Protection Agency Two mode dual crankshaft engine
US8267056B2 (en) * 2010-03-16 2012-09-18 GM Global Technology Operations LLC Split-cycle internal combustion engine
JP2013538979A (ja) * 2010-09-29 2013-10-17 スクデリ グループ インコーポレイテッド 分割サイクルエンジンのための排気バルブのタイミング
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
US8439010B2 (en) * 2010-11-03 2013-05-14 Edwin M. Fernandez Internal combustion engine
LU91831B1 (fr) * 2011-06-24 2012-12-27 Gilbert Lucien Ch H L Van Avermaete Moteur à combustion interne avec transmission à calage variable
AT511600B1 (de) * 2011-11-30 2013-01-15 Univ Graz Tech Antriebsanordnung für einen generator, insbesondere eines elektrofahrzeugs
CN111997738B (zh) * 2020-09-07 2022-07-01 湖南大兹动力科技有限公司 一种具有火花控制的压燃式内燃机及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616234A1 (de) * 1986-05-14 1987-11-19 Bayerische Motoren Werke Ag Vorrichtung zur relativen drehlagenaenderung zweier in antriebsverbindung stehender wellen, insbesondere zwischen in einem maschinengehaeuse einer brennkraftmaschine gelagerten kurbelwelle und nockenwelle
WO1989003476A1 (fr) * 1987-10-16 1989-04-20 Avermaete Gilbert Moteur a allumage par compression a rapport volumetrique variable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1731590A (en) * 1925-02-19 1929-10-15 H A Brunell Gas engine
US2551478A (en) * 1948-09-22 1951-05-01 J M Wolfinbarger Supercharged two-cycle engine with retarded firing
US3446192A (en) * 1967-09-05 1969-05-27 Mitchell J Woodward Four-cycle internal combustion engine
US3570459A (en) * 1969-04-17 1971-03-16 Bristol Associates Inc Two-stroke cycle engine
US3675630A (en) * 1970-07-02 1972-07-11 Cleo C Stratton Engine
US3961607A (en) * 1972-05-12 1976-06-08 John Henry Brems Internal combustion engine
US4211082A (en) * 1978-10-11 1980-07-08 Bristol Robert D Internal combustion engine with free floating auxiliary piston
US4313403A (en) * 1979-09-07 1982-02-02 Bie Jr Norman Internal combustion engine
US4860701A (en) * 1981-12-02 1989-08-29 Jackson Francis W Multiple piston expansion chamber engine
AT388596B (de) * 1986-03-17 1989-07-25 Bruecker & Zeman Soft Combusti Regenerativ arbeitende zweitakthubkolbenbrennkraftmaschine
US4955328A (en) * 1988-08-19 1990-09-11 Standard Oil Company Leading piston engine with two cylinders interconnected through a transfer port

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616234A1 (de) * 1986-05-14 1987-11-19 Bayerische Motoren Werke Ag Vorrichtung zur relativen drehlagenaenderung zweier in antriebsverbindung stehender wellen, insbesondere zwischen in einem maschinengehaeuse einer brennkraftmaschine gelagerten kurbelwelle und nockenwelle
WO1989003476A1 (fr) * 1987-10-16 1989-04-20 Avermaete Gilbert Moteur a allumage par compression a rapport volumetrique variable

Also Published As

Publication number Publication date
WO1994021905A1 (fr) 1994-09-29
JPH08507844A (ja) 1996-08-20
EP0689642A1 (de) 1996-01-03
US5638777A (en) 1997-06-17
DE69406651D1 (de) 1997-12-11
AU6386394A (en) 1994-10-11
ES2111294T3 (es) 1998-03-01
DE69406651T2 (de) 1998-05-20
CN1059486C (zh) 2000-12-13
CN1119465A (zh) 1996-03-27
LU88235A1 (fr) 1994-10-03

Similar Documents

Publication Publication Date Title
EP0689642B1 (de) Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis
BE1016961A3 (fr) Perfectionnements du moteur a rapport volumetrique variable.
KR20100106359A (ko) 단블록 무밸브 대향 피스톤 내연 기관
FR2481744A1 (fr) Moteur alternatif a pistons
EP2724004B1 (de) Verbrennungsmotor mit stufenlosem getriebe
EP0034085B1 (de) Gaserzeuger mit positiver Verdrängung
EP0034958B1 (de) Motor mit Drehkolben, die eine periodisch veränderliche Geschwindigkeit haben, und Antriebsmitteln
EP0351420B1 (de) Brennkraftmaschine mit kompressionszündung und veränderlichem volumen
FR2491134A1 (fr) Turbine a gaz pour vehicule automobile
FR2487427A1 (fr) Moteur a combustion interne a deux vilebrequins accouples
FR2906332A1 (fr) Dispositif de transformation d'un mouvement lineaire en un mouvement de rotation de facon reglable
EP0328835A1 (de) Zentralachsige Brennkraftmaschine mit einander gegenüberliegenden und fest verbundenen ringförmigen Kolben
FR3040437B1 (fr) Ensemble pour moteur a combustion interne comprenant un systeme de variation de rapport volumetrique
US10767521B1 (en) Overhead sliding rotary valve assembly and method of use
FR2491130A1 (fr) Culasse a turbocompresseur integre
FR2980523A1 (fr) Procede et dispositif d'alimentation en air d'un moteur hybride pneumatique-thermique
FR3081031A1 (fr) Dispositif de variation de rapport volumetrique et module d’admission d’air correspondant
FR3085725A1 (fr) Moteur a combustion externe a cycle divise
FR2505930A1 (fr) Moteur a combustion interne a consommation reduite
FR2962766A1 (fr) Moteur a rapport volumetrique variable
FR2950391A1 (fr) Moteur thermique a explosion
EP0218505A1 (de) Kraftanlage mit mehreren durch Verdichter mit hin- und hergehendem Kolben aufgeladenen Dieselbrennkraftzylindern
FR2730274A1 (fr) Moteur a pistons rotatifs et combustion externe
FR3060654A1 (fr) Dispositif de variation de rapport volumetrique et module d’admission d’air correspondant
BE335529A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19960520

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69406651

Country of ref document: DE

Date of ref document: 19971211

ITF It: translation for a ep patent filed

Owner name: SIG. RAVASIO JET STUDIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2111294

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050307

Year of fee payment: 12

Ref country code: GB

Payment date: 20050307

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050310

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050311

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050413

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060322

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060321

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060322

BERE Be: lapsed

Owner name: *VAN AVERMAETE GILBERT LUCIEN CHARLES HENRI LOUIS

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331