EP0689007A1 - Cooling the take-off injector in a combustion chamber with two burner heads - Google Patents

Cooling the take-off injector in a combustion chamber with two burner heads Download PDF

Info

Publication number
EP0689007A1
EP0689007A1 EP95401466A EP95401466A EP0689007A1 EP 0689007 A1 EP0689007 A1 EP 0689007A1 EP 95401466 A EP95401466 A EP 95401466A EP 95401466 A EP95401466 A EP 95401466A EP 0689007 A1 EP0689007 A1 EP 0689007A1
Authority
EP
European Patent Office
Prior art keywords
injector
fuel
take
circuit
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401466A
Other languages
German (de)
French (fr)
Other versions
EP0689007B1 (en
Inventor
Jean-Paul Daniel Allary
Denis Jean Maurice Sandelis
Guy D'agostino
Pierre Schroer
Henry Roger Leclerc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0689007A1 publication Critical patent/EP0689007A1/en
Application granted granted Critical
Publication of EP0689007B1 publication Critical patent/EP0689007B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means

Definitions

  • the present invention relates to the cooling of the take-off injector of a combustion chamber with two heads.
  • the idle head In two-head combustion chambers, the idle head is continuously supplied with fuel, whatever the speed of the turbomachine. On the other hand, the take-off head is supplied with fuel only beyond a determined minimum speed which corresponds to approximately 20% of the nominal speed. In idle phase it is therefore necessary to cool the take-off injector properly and in particular the nozzle of the injector which includes the fuel injection orifices, in order to avoid any problem of coking of the fuel circuits and any problem fuel vapor cap formation.
  • a cooling solution has already been adopted on the CFM56-5B turbojet which consists in circulating the flow of fuel which feeds the idle injector into the take-off injector. This circulation of fuel cools this takeoff injector in passing, thus avoiding coking.
  • the CFM56-5B injectors are of the aeromechanical type with double flow per module.
  • the fuel supply circuit of the idle injector has two coaxial tubes, and the take-off injector is supplied by a third tube placed in the center of the first two and communicating with the interior of the combustion chamber. through the injection holes in the nozzle. These orifices are thus arranged at a relatively great distance from the passage between the ends of the first two tubes.
  • the object of the present invention is to improve the cooling of the take-off injector and in particular of its nozzle.
  • the present invention therefore relates to a device for cooling the take-off injector of a double injector fitted to a combustion chamber with two heads of a turbomachine, said double injector further comprising an idle injector which is supplied with fuel by a first circuit, said take-off injector having a nozzle provided with fuel injection orifices which are supplied with fuel by a second circuit separate from the first circuit.
  • this device is characterized in that the first fuel circuit comprises a first conduit which directs the entire flow of fuel supplying said idle injector to the end of the take-off injector and a second annular duct which is coaxial with the first duct and which returns said fuel flow to the idle injector, by the fact that the second fuel circuit comprises a third annular conduit interposed between the first conduit and the second conduit, and by the fact that in the nozzle are formed channels allowing the passage of fuel between the first conduit and the second conduit, said channels alternating with the injection orifices of said nozzle.
  • the reference 1 represents a double injector intended for the supply of an annular combustion chamber with double head of a turbomachine, which comprises a head 2 for its fixing on the external casing of the turbomachine, a take-off injector 3, distant of the head 2 and an idle injector 4 or pilot disposed midway between the head 2 and the take-off injector 3.
  • the take-off injector 3 comprises at its end a take-off nozzle 5 having orifices 6 for injecting , in the combustion chamber, a flow of fuel introduced into the head 2 through a feed orifice 7.
  • the idle injector 4 also includes an idle nozzle 8 fed by a flow of fuel introduced into the head 2 through a supply port 9.
  • the take-off nozzle 5 comprises a nozzle 10 mounted in the internal bore 11 of a socket 12, this socket 12 being itself mounted at the end of the hollow body 13 which forms the external wall of the double injector 1.
  • the end piece 10, of axis 14, has a blind axial bore 15 which communicates with the head orifice 9 by a first tube 16, and an annular cavity 17 which communicates with the injection orifices 6.
  • the annular cavity 17 surrounds the blind bore 15 and is separated from the latter by a cylindrical sleeve 18 at the upstream end of which is fixed the end of the first tube 16.
  • This second tube 19 surrounds the first tube 16.
  • An annular space 20 is delimited by the second tube 19, on the one hand , and the sleeve and the hollow body 13, on the other hand. Channels 21 are provided in the endpiece 10 in order to put the blind bore 15 into communication with the annular space 20.
  • the annular space 20 extends from the nozzle 3 to the head 2 of the double injector 1, where it is in permanent communication with the feed channel 22 of the idle head 4. It is delimited externally by a third tube 23, the downstream end 24 of which is tightly fixed to the sleeve 12.
  • the idle injector 4 feed circuit includes the inlet 9, the internal passage of the first tube 16, the blind bore 15, the channels 21, the annular space 20 and the feed channel 22. Thus, all the fuel flow Q1 which feeds by the idle injector 4 passes through the channels 21 located in the nozzle 10.
  • the feed circuit for the take-off injector 2 comprises the inlet orifice 7, the annular space 25 delimited by the first tube 16 and the second tube 19, the annular cavity 17 and the injection orifices 6.
  • the injection orifices 6 comprise, from the annular cavity 17, a first axial portion 6a and a second portion 6b inclined radially and tangentially which opens into the combustion chamber .
  • These injection orifices 6 are six in number in the example shown in the drawings, but this number could be different from six.
  • the nozzle 10 which constitutes the hottest part of the double injector 1 and therefore the part most sensitive to coking phenomena, has a large heat exchange surface with all of the fuel flow Q1 of the idle injector 4. This leads to a significant reduction in the risks of coking of the residual fuel in the take-off module circuit by decreasing the temperatures of the walls of the take-off circuit. Thermal calculations have shown a substantial gain of 68% on the surface of the walls at risk, in terms of coking, that is to say with a temperature above 200 ° C.

Abstract

The cooler consists of a second circuit which carries fuel through the take-off injector in all operating modes, comprising an inner duct (16) and a coaxial outer return channel (20), with an additional annular duct (25) between the two. The tip of the injector has inclined channels (21) alternating with its outlet orifices (6b) to return any surplus fuel from the inner duct to the return channel. The injector has, for example, six outlet orifices, with the same number of inclined channels situated between them. <IMAGE>

Description

La présente invention concerne le refroidissement de l'injecteur de décollage d'une chambre de combustion à deux têtes.The present invention relates to the cooling of the take-off injector of a combustion chamber with two heads.

Dans les avions modernes, la lutte contre la pollution atmosphérique, d'une part, et la recherche de performances optimales, d'autre part, peuvent conduire à l'utilisation de chambres de combustion à deux têtes alimentées en carburant par un double injecteur qui comporte une première alimentation pour la tête pilote ou tête de ralenti et une deuxième alimentation pour la tête de décollage.In modern airplanes, the fight against air pollution, on the one hand, and the search for optimal performance, on the other hand, can lead to the use of combustion chambers with two heads supplied with fuel by a double injector which comprises a first supply for the pilot head or idle head and a second supply for the take-off head.

Dans les chambres de combustion à deux têtes, la tête de ralenti est alimentée en permanence en carburant, quel que soit le régime de la turbomachine. En revanche, la tête de décollage n'est alimentée en carburant qu'au delà d'un régime minimum déterminé qui correspond à environ 20 % du régime nominal. En phase de ralenti il est donc nécessaire de refroidir convenablement l'injecteur de décollage et notamment l'embout de l'injecteur qui comporte les orifices d'injection de carburant, afin d'éviter tout problème de cokéfaction des circuits de carburant et tout problème de formation de bouchon de vapeur de carburant.In two-head combustion chambers, the idle head is continuously supplied with fuel, whatever the speed of the turbomachine. On the other hand, the take-off head is supplied with fuel only beyond a determined minimum speed which corresponds to approximately 20% of the nominal speed. In idle phase it is therefore necessary to cool the take-off injector properly and in particular the nozzle of the injector which includes the fuel injection orifices, in order to avoid any problem of coking of the fuel circuits and any problem fuel vapor cap formation.

Il a déjà été adopté sur le turboréacteur CFM56-5B une solution de refroidissement qui consiste à faire circuler le débit de carburant qui alimente l'injecteur de ralenti dans l'injecteur de décollage. Cette circulation de carburant refroidit au passage cet injecteur de décollage évitant ainsi la cokéfaction. Cependant, dans cette application particulière, seul le carburant du circuit primaire du circuit de ralenti circule dans la tête de décollage. En effet, les injecteurs du CFM56-5B sont de type aéromécanique à double débit par module. En outre, le circuit d'alimentation du carburant de l'injecteur de ralenti comporte deux tubes coaxiaux, et l'injecteur de décollage est alimenté par un troisième tube disposé au centre des deux premiers et communiquant avec l'intérieur de la chambre de combustion par les orifices d'injection ménagés dans l'embout. Ces orifices sont ainsi disposés à une distance relativement grande du passage entre les extrémités des deux premiers tubes.A cooling solution has already been adopted on the CFM56-5B turbojet which consists in circulating the flow of fuel which feeds the idle injector into the take-off injector. This circulation of fuel cools this takeoff injector in passing, thus avoiding coking. However, in this particular application, only the fuel of the primary circuit of the idling circuit circulates in the take-off head. The CFM56-5B injectors are of the aeromechanical type with double flow per module. In addition, the fuel supply circuit of the idle injector has two coaxial tubes, and the take-off injector is supplied by a third tube placed in the center of the first two and communicating with the interior of the combustion chamber. through the injection holes in the nozzle. These orifices are thus arranged at a relatively great distance from the passage between the ends of the first two tubes.

Le but de la présente invention est d'améliorer le refroidissement de l'injecteur de décollage et notamment de son embout.The object of the present invention is to improve the cooling of the take-off injector and in particular of its nozzle.

La présente invention concerne donc un dispositif pour refroidir l'injecteur de décollage d'un double injecteur équipant une chambre de combustion à deux têtes d'une turbomachine, ledit double injecteur comportant en outre un injecteur de ralenti qui est alimenté en carburant par un premier circuit, ledit injecteur de décollage présentant un embout pourvu d'orifices d'injection de carburant qui sont alimentés en carburant par un deuxième circuit séparé du premier circuit.The present invention therefore relates to a device for cooling the take-off injector of a double injector fitted to a combustion chamber with two heads of a turbomachine, said double injector further comprising an idle injector which is supplied with fuel by a first circuit, said take-off injector having a nozzle provided with fuel injection orifices which are supplied with fuel by a second circuit separate from the first circuit.

Selon l'invention, ce dispositif est caractérisé par le fait que le premier circuit de carburant comporte un premier conduit qui dirige la totalité du débit de carburant alimentant ledit injecteur de ralenti jusqu'à l'embout de l'injecteur de décollage et un deuxième conduit annulaire qui est coaxial au premier conduit et qui retourne ledit débit de carburant vers l'injecteur de ralenti,
   par le fait que le deuxième circuit de carburant comporte un troisième conduit annulaire interposé entre le premier conduit et le deuxième conduit, et
   par le fait que dans l'embout sont ménagés des canaux permettant le passage du carburant entre le premier conduit et le deuxième conduit, lesdits canaux alternant avec les orifices d'injection dudit embout.
According to the invention, this device is characterized in that the first fuel circuit comprises a first conduit which directs the entire flow of fuel supplying said idle injector to the end of the take-off injector and a second annular duct which is coaxial with the first duct and which returns said fuel flow to the idle injector,
by the fact that the second fuel circuit comprises a third annular conduit interposed between the first conduit and the second conduit, and
by the fact that in the nozzle are formed channels allowing the passage of fuel between the first conduit and the second conduit, said channels alternating with the injection orifices of said nozzle.

Grâce à cette disposition, la valeur du débit de carburant de refroidissement est augmentée et les surfaces d'échange thermique dans l'embout sont optimisées.Thanks to this arrangement, the value of the cooling fuel flow is increased and the heat exchange surfaces in the nozzle are optimized.

D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels:

  • la figure 1 est une coupe d'un double injecteur pouvant équiper une chambre de combustion à double tête d'une turbomachine, ledit double injecteur étant muni du dispositif de refroidissement selon l'invention;
  • la figure 2 est une coupe à grande échelle de l'injecteur de décollage du double injecteur de la figure 1;
  • la figure 3 est une coupe, selon la ligne III III, de l'embout de l'injecteur de décollage de la figure 2;
  • la figure 4 montre le schéma de principe de la circulation des débits de carburant qui alimentent l'injecteur de ralenti et l'injecteur de décollage.
Other characteristics and advantages of the invention will emerge on reading the following description given by way of example and with reference to the appended drawings in which:
  • Figure 1 is a section of a double injector which can equip a double-head combustion chamber of a turbomachine, said double injector being provided with the cooling device according to the invention;
  • Figure 2 is a large-scale section of the takeoff injector of the double injector of Figure 1;
  • Figure 3 is a section along line III III of the tip of the take-off injector of Figure 2;
  • FIG. 4 shows the basic diagram of the circulation of the fuel flows which supply the idle injector and the take-off injector.

La référence 1 représente un double injecteur destiné à l'alimentation d'une chambre de combustion annulaire à double tête d'une turbomachine, qui comporte une tête 2 pour sa fixation sur le carter extérieur de la turbomachine, un injecteur de décollage 3, éloigné de la tête 2 et un injecteur de ralenti 4 ou pilote disposé à mi-distance entre la tête 2 et l'injecteur de décollage 3. L'injecteur de décollage 3 comporte à son extrémité une buse de décollage 5 comportant des orifices 6 pour injecter, dans la chambre de combustion, un débit de carburant introduit dans la tête 2 par un orifice d'alimentation 7. L'injecteur de ralenti 4 comporte également une buse de ralenti 8 alimentée par un débit de carburant intrtroduit dans la tête 2 par un orifice d'alimentation 9.The reference 1 represents a double injector intended for the supply of an annular combustion chamber with double head of a turbomachine, which comprises a head 2 for its fixing on the external casing of the turbomachine, a take-off injector 3, distant of the head 2 and an idle injector 4 or pilot disposed midway between the head 2 and the take-off injector 3. The take-off injector 3 comprises at its end a take-off nozzle 5 having orifices 6 for injecting , in the combustion chamber, a flow of fuel introduced into the head 2 through a feed orifice 7. The idle injector 4 also includes an idle nozzle 8 fed by a flow of fuel introduced into the head 2 through a supply port 9.

La buse de décollage 5 comporte un embout 10 monté dans l'alésage interne 11 d'une douille 12, cette douille 12 étant elle-même montée à l'extrémité du corps creux 13 qui forme la paroi externe du double injecteur 1.The take-off nozzle 5 comprises a nozzle 10 mounted in the internal bore 11 of a socket 12, this socket 12 being itself mounted at the end of the hollow body 13 which forms the external wall of the double injector 1.

L'embout 10, d'axe 14, présente un alésage axial borgne 15 qui communique avec l'orifice de tête 9 par un premier tube 16, et une cavité annulaire 17 qui communique avec les orifices d'injection 6. La cavité annulaire 17 entoure l'alésage borgne 15 et est séparée de ce dernier par un manchon cylindrique 18 à l'extrémité amont duquel est fixé l'extrémité du premier tube 16. Un deuxième tube 19, fixé à l'extrémité amont de la paroi annulaire qui sépare la cavité annulaire 17 de la douille 12, met en communication la cavité annulaire 17 avec l'orifice de tête 7. Ce deuxième tube 19 entoure le premier tube 16. Un espace annulaire 20 est délimité par le deuxième tube 19, d'une part, et la douille et le corps creux 13, d'autre part. Des canaux 21 sont ménagés dans l'embout 10 afin de mettre en communication l'alésage borgne 15 avec l'espace annulaire 20.The end piece 10, of axis 14, has a blind axial bore 15 which communicates with the head orifice 9 by a first tube 16, and an annular cavity 17 which communicates with the injection orifices 6. The annular cavity 17 surrounds the blind bore 15 and is separated from the latter by a cylindrical sleeve 18 at the upstream end of which is fixed the end of the first tube 16. A second tube 19, fixed at the upstream end of the annular wall which separates the annular cavity 17 of the sleeve 12, places the annular cavity 17 in communication with the head orifice 7. This second tube 19 surrounds the first tube 16. An annular space 20 is delimited by the second tube 19, on the one hand , and the sleeve and the hollow body 13, on the other hand. Channels 21 are provided in the endpiece 10 in order to put the blind bore 15 into communication with the annular space 20.

L'espace annulaire 20 s'étend depuis l'embout 3 jusqu'à la tête 2 du double injecteur 1, où il est en communication permanente avec le canal 22 d'alimentation de la tête de ralenti 4. Il est délimité extérieurement par un troisième tube 23 dont l'extrémité aval 24 est fixée de manière étanche à la douille 12.The annular space 20 extends from the nozzle 3 to the head 2 of the double injector 1, where it is in permanent communication with the feed channel 22 of the idle head 4. It is delimited externally by a third tube 23, the downstream end 24 of which is tightly fixed to the sleeve 12.

Le circuit d'alimentation de l'injecteur de ralenti 4 comprend l'orifice d'entrée 9, le passage interne du premier tube 16, l'alésage borgne 15, les canaux 21, l'espace annulaire 20 et le canal d'alimentation 22. Ainsi, tout le débit de carburant Q1 qui alimente par l'injecteur de ralenti 4 transite par les canaux 21 situés dans l'embout 10.The idle injector 4 feed circuit includes the inlet 9, the internal passage of the first tube 16, the blind bore 15, the channels 21, the annular space 20 and the feed channel 22. Thus, all the fuel flow Q1 which feeds by the idle injector 4 passes through the channels 21 located in the nozzle 10.

Le circuit d'alimentation de l'injecteur de décollage 2 comprend l'orifice d'entrée 7, l'espace annulaire 25 délimité par le premier tube 16 et le deuxième tube 19, la cavité annulaire 17 et les orifices d'injection 6.The feed circuit for the take-off injector 2 comprises the inlet orifice 7, the annular space 25 delimited by the first tube 16 and the second tube 19, the annular cavity 17 and the injection orifices 6.

Comme on le voit plus clairement sur les figures 2 et 3, les orifices d'injection 6 comportent, à partir de la cavité annulaire 17, une première portion 6a axiale et une deuxième portion 6b inclinée radialement et tangentiellement qui débouche dans la chambre de combustion. Ces orifices d'injection 6 sont au nombre de six dans l'exemple montré sur les dessins, mais ce nombre pourrait être différent de six.As can be seen more clearly in FIGS. 2 and 3, the injection orifices 6 comprise, from the annular cavity 17, a first axial portion 6a and a second portion 6b inclined radially and tangentially which opens into the combustion chamber . These injection orifices 6 are six in number in the example shown in the drawings, but this number could be different from six.

Les canaux 21, également au nombre de six, alternent circonférentiellement avec les orifices d'injection 6. Ainsi, l'embout 10, qui constitue la partie la plus chaude du double injecteur 1 et donc la partie la plus sensible aux phénomènes de cokéfaction, comporte une surface d'échange thermique importante avec la totalité du débit de carburant Q1 de l'injecteur de ralenti 4. Ceci conduit à une diminution importante des risques de cokéfaction du carburant résiduel dans le circuit du module de décollage par diminution des températures des parois du circuit de décollage. Des calculs de thermique ont démontré un gain substantiel de 68 % sur la surface des parois à risques, en termes de cokéfaction, c'est-à-dire avec une température supérieure à 200°C.The channels 21, also six in number, alternate circumferentially with the injection orifices 6. Thus, the nozzle 10, which constitutes the hottest part of the double injector 1 and therefore the part most sensitive to coking phenomena, has a large heat exchange surface with all of the fuel flow Q1 of the idle injector 4. This leads to a significant reduction in the risks of coking of the residual fuel in the take-off module circuit by decreasing the temperatures of the walls of the take-off circuit. Thermal calculations have shown a substantial gain of 68% on the surface of the walls at risk, in terms of coking, that is to say with a temperature above 200 ° C.

Claims (1)

Dispositif pour refroidir l'injecteur de décollage (3) d'un double injecteur (1) équipant une chambre de combustion à deux têtes d'une turbomachine, ledit double injecteur (1) comportant en outre un injecteur de ralenti (4) qui est alimenté en carburant par un premier circuit, ledit injecteur de décollage (3) présentant un embout (10) pourvu d'orifices d'injection (6) de carburant qui sont alimentés en carburant par un deuxième circuit séparé du premier circuit,
caractérisé par le fait que le premier circuit de carburant comporte un premier conduit (16, 15) qui dirige la totalité du débit de carburant (Q1) alimentant ledit injecteur de ralenti (4) jusqu'à l'embout (10) de l'injecteur de décollage (3) et un deuxième conduit (20) annulaire qui est coaxial au premier conduit (16) et qui retourne ledit débit de carburant (Q1) vers l'injecteur de ralenti (4),
   par le fait que le deuxième circuit de carburant comporte un troisième conduit annulaire (25, 17) interposé entre le premier conduit (16, 15) et le deuxième conduit (20), et
   par le fait que dans l'embout (10) sont ménagés des canaux (21) permettant le passage du carburant entre le premier conduit (16) et le deuxième conduit (20), lesdits canaux (21) alternant avec les orifices d'injection (6) dudit embout (10).
Device for cooling the take-off injector (3) of a double injector (1) fitted to a combustion chamber with two heads of a turbomachine, said double injector (1) further comprising an idle injector (4) which is supplied with fuel by a first circuit, said take-off injector (3) having a nozzle (10) provided with fuel injection orifices (6) which are supplied with fuel by a second circuit separate from the first circuit,
characterized in that the first fuel circuit has a first conduit (16, 15) which directs the entire fuel flow (Q1) supplying said idle injector (4) to the end piece (10) of the take-off injector (3) and a second annular conduit (20) which is coaxial with the first conduit (16) and which returns said fuel flow (Q1) to the idle injector (4),
by the fact that the second fuel circuit comprises a third annular duct (25, 17) interposed between the first duct (16, 15) and the second duct (20), and
by the fact that in the nozzle (10) are formed channels (21) allowing the passage of fuel between the first conduit (16) and the second conduit (20), said channels (21) alternating with the injection orifices (6) of said tip (10).
EP95401466A 1994-06-22 1995-06-21 Cooling the take-off injector in a combustion chamber with two burner heads Expired - Lifetime EP0689007B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407624 1994-06-20
FR9407624A FR2721694B1 (en) 1994-06-22 1994-06-22 Cooling of the take-off injector of a combustion chamber with two heads.

Publications (2)

Publication Number Publication Date
EP0689007A1 true EP0689007A1 (en) 1995-12-27
EP0689007B1 EP0689007B1 (en) 1998-11-11

Family

ID=9464487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401466A Expired - Lifetime EP0689007B1 (en) 1994-06-22 1995-06-21 Cooling the take-off injector in a combustion chamber with two burner heads

Country Status (5)

Country Link
US (1) US5577386A (en)
EP (1) EP0689007B1 (en)
JP (1) JP2992456B2 (en)
DE (1) DE69505895T2 (en)
FR (1) FR2721694B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841517A3 (en) * 1996-11-07 1998-12-23 BMW Rolls-Royce GmbH Fuel injection device for a gas turbine combustion chamber with a liquid cooled injection nozzle
WO2000022347A1 (en) * 1998-10-09 2000-04-20 General Electric Company Fuel injection assembly for gas turbine engine combustor
US6357237B1 (en) 1998-10-09 2002-03-19 General Electric Company Fuel injection assembly for gas turbine engine combustor
EP2900974A4 (en) * 2012-09-28 2016-06-08 United Technologies Corp Flow modifier for combustor fuel nozzle tip
EP3076083A1 (en) * 2015-03-31 2016-10-05 Delavan Inc Fuel nozzles
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
US10309651B2 (en) 2011-11-03 2019-06-04 Delavan Inc Injectors for multipoint injection

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770283B1 (en) * 1997-10-29 1999-11-19 Snecma COMBUSTION CHAMBER FOR TURBOMACHINE
US6072172A (en) * 1997-12-22 2000-06-06 Bausch & Lomb Incorporated Method and apparatus for detecting packages in carton
US6082113A (en) * 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
US6289676B1 (en) 1998-06-26 2001-09-18 Pratt & Whitney Canada Corp. Simplex and duplex injector having primary and secondary annular lud channels and primary and secondary lud nozzles
US6711898B2 (en) 1999-04-01 2004-03-30 Parker-Hannifin Corporation Fuel manifold block and ring with macrolaminate layers
US6321541B1 (en) * 1999-04-01 2001-11-27 Parker-Hannifin Corporation Multi-circuit multi-injection point atomizer
US6256995B1 (en) 1999-11-29 2001-07-10 Pratt & Whitney Canada Corp. Simple low cost fuel nozzle support
US6351948B1 (en) * 1999-12-02 2002-03-05 Woodward Fst, Inc. Gas turbine engine fuel injector
FR2817017B1 (en) * 2000-11-21 2003-03-07 Snecma Moteurs COMPLETE COOLING OF THE TAKE-OFF INJECTORS OF A TWO-HEAD COMBUSTION CHAMBER
US6718770B2 (en) * 2002-06-04 2004-04-13 General Electric Company Fuel injector laminated fuel strip
US7061077B2 (en) * 2002-08-30 2006-06-13 Fairchild Semiconductor Corporation Substrate based unmolded package including lead frame structure and semiconductor die
US6898926B2 (en) * 2003-01-31 2005-05-31 General Electric Company Cooled purging fuel injectors
US6959535B2 (en) * 2003-01-31 2005-11-01 General Electric Company Differential pressure induced purging fuel injectors
US6898938B2 (en) 2003-04-24 2005-05-31 General Electric Company Differential pressure induced purging fuel injector with asymmetric cyclone
DE10324985B4 (en) * 2003-06-03 2005-06-16 Man B & W Diesel Ag fuel Injector
US7225996B2 (en) * 2003-12-25 2007-06-05 Kawasaki Jukogyo Kabushiki Kaisha Fuel supply method and fuel supply system for fuel injection device
US7654088B2 (en) * 2004-02-27 2010-02-02 Pratt & Whitney Canada Corp. Dual conduit fuel manifold for gas turbine engine
EP1815499B1 (en) 2004-11-09 2009-10-21 Philips Intellectual Property & Standards GmbH Fluorescent lamp capable of slow release of organic evaporating materials at low temperature
US20070033945A1 (en) * 2005-08-10 2007-02-15 Goldmeer Jeffrey S Gas turbine system and method of operation
US20070119179A1 (en) * 2005-11-30 2007-05-31 Haynes Joel M Opposed flow combustor
US8387390B2 (en) * 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
US20070151251A1 (en) * 2006-01-03 2007-07-05 Haynes Joel M Counterflow injection mechanism having coaxial fuel-air passages
FR2896030B1 (en) * 2006-01-09 2008-04-18 Snecma Sa COOLING A MULTIMODE INJECTION DEVICE FOR A COMBUSTION CHAMBER, IN PARTICULAR A TURBOREACTOR
US8056326B2 (en) 2007-05-31 2011-11-15 Caterpillar Inc. Regeneration device having cooled injection housing
FR2920525B1 (en) * 2007-08-31 2014-06-13 Snecma SEPARATOR FOR SUPPLYING THE COOLING AIR OF A TURBINE
US8151716B2 (en) * 2007-09-13 2012-04-10 General Electric Company Feed injector cooling apparatus and method of assembly
US7992390B2 (en) * 2008-09-23 2011-08-09 Pratt & Whitney Canada Corp. External rigid fuel manifold
US8393154B2 (en) * 2009-02-12 2013-03-12 Pratt & Whitney Canada Corp. Fuel delivery system with reduced heat transfer to fuel manifold seal
US9221704B2 (en) * 2009-06-08 2015-12-29 Air Products And Chemicals, Inc. Through-port oxy-fuel burner
CN102639250B (en) * 2009-11-16 2015-03-25 贝尔直升机泰克斯特龙公司 Dual-path fluid injection jet
US8205598B2 (en) * 2010-02-08 2012-06-26 International Engine Intellectual Property Company, Llc Fuel injector nozzle
EP2362142A1 (en) * 2010-02-19 2011-08-31 Siemens Aktiengesellschaft Burner assembly
US8590311B2 (en) 2010-04-28 2013-11-26 General Electric Company Pocketed air and fuel mixing tube
US20110265485A1 (en) * 2010-04-30 2011-11-03 General Electric Company Fluid cooled injection nozzle assembly for a gas turbomachine
WO2012021709A1 (en) 2010-08-11 2012-02-16 Cummins Intellectual Properties, Inc Engine with injector mounting and cooling arrangement
EP2520858A1 (en) * 2011-05-03 2012-11-07 Siemens Aktiengesellschaft Fuel cooled pilot fuel lance for a gas turbine
EP2906875A4 (en) * 2012-10-11 2016-07-20 Ecomb Ab Publ Supply device for a combustion chamber
US10400674B2 (en) 2014-05-09 2019-09-03 United Technologies Corporation Cooled fuel injector system for a gas turbine engine and method for operating the same
US9989257B2 (en) * 2015-06-24 2018-06-05 Delavan Inc Cooling in staged fuel systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2441725A1 (en) * 1978-11-20 1980-06-13 Rolls Royce GAS TURBINE
WO1994008179A1 (en) * 1992-09-28 1994-04-14 Parker-Hannifin Corporation Multiple passage cooling circuit for gas turbine fuel injector nozzle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB819042A (en) * 1956-09-27 1959-08-26 Dowty Fuel Syst Ltd Improvements relating to liquid fuel burners
US5269468A (en) * 1992-06-22 1993-12-14 General Electric Company Fuel nozzle
FR2712379B1 (en) * 1993-11-10 1995-12-29 Snecma Combustion chamber for a turbomachine provided with a gas separator.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2441725A1 (en) * 1978-11-20 1980-06-13 Rolls Royce GAS TURBINE
WO1994008179A1 (en) * 1992-09-28 1994-04-14 Parker-Hannifin Corporation Multiple passage cooling circuit for gas turbine fuel injector nozzle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841517A3 (en) * 1996-11-07 1998-12-23 BMW Rolls-Royce GmbH Fuel injection device for a gas turbine combustion chamber with a liquid cooled injection nozzle
US6003781A (en) * 1996-11-07 1999-12-21 Bmw Rolls-Royce Gmbh Fuel injection device with a liquid-cooled injection nozzle for a combustion chamber of a gas turbine
WO2000022347A1 (en) * 1998-10-09 2000-04-20 General Electric Company Fuel injection assembly for gas turbine engine combustor
US6357237B1 (en) 1998-10-09 2002-03-19 General Electric Company Fuel injection assembly for gas turbine engine combustor
US10309651B2 (en) 2011-11-03 2019-06-04 Delavan Inc Injectors for multipoint injection
EP2900974A4 (en) * 2012-09-28 2016-06-08 United Technologies Corp Flow modifier for combustor fuel nozzle tip
US9400104B2 (en) 2012-09-28 2016-07-26 United Technologies Corporation Flow modifier for combustor fuel nozzle tip
EP3076083A1 (en) * 2015-03-31 2016-10-05 Delavan Inc Fuel nozzles
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
US11111888B2 (en) 2015-03-31 2021-09-07 Delavan Inc. Fuel nozzles

Also Published As

Publication number Publication date
JPH0814063A (en) 1996-01-16
EP0689007B1 (en) 1998-11-11
FR2721694A1 (en) 1995-12-29
DE69505895T2 (en) 1999-06-02
JP2992456B2 (en) 1999-12-20
US5577386A (en) 1996-11-26
FR2721694B1 (en) 1996-07-19
DE69505895D1 (en) 1998-12-17

Similar Documents

Publication Publication Date Title
EP0689007B1 (en) Cooling the take-off injector in a combustion chamber with two burner heads
EP1770333B1 (en) Anti-coking injector arm
EP1770332B1 (en) Device for guiding an element into an orifice of a gas turbine combustion chamber wall
EP0182687A1 (en) Injection system with a variable geometry
CA2776843C (en) Multi-point injector for a turbine engine combustion chamber
EP1593911A1 (en) Air and fuel delivery system for a post combustor burning ring
FR2970068A1 (en) COOLING CIRCUIT FOR FUEL INJECTOR IN GAS TURBINE
EP0689006B1 (en) Method and device for supplying fuel and for cooling the take-off injector in a combustion chamber with two burner heads
EP2488791B1 (en) Multipoint injection device for a combustion chamber of a turbine engine
EP3052861B1 (en) Fuel injector for a turbomachine
EP1621817B1 (en) Afterburner with assured ignition
FR2889732A1 (en) Combustion chamber for turbomachine, has annular inner and outer walls including perforations emerging relative to tabs and constituted of holes whose axis forms, with longitudinal axis, angle comprised between preset values
FR2996286A1 (en) INJECTION DEVICE FOR A TURBOMACHINE COMBUSTION CHAMBER
FR2942640A1 (en) POST-COMBUSTION CHAMBER FOR TURBOMACHINE
EP2671025B1 (en) Injection device for a turbo machine combustion chamber
FR2996287A1 (en) Multipoint fuel injection device for annular combustion chamber of e.g. turbojet, of airplane, has venturi including internal cavity supplied with air and communicating with air passage orifices leading to radial inner wall of venturi
EP4179256B1 (en) Annular combustion chamber for an aircraft turbomachine
EP1155781A1 (en) Thermoabrasive blast gun
FR3026469A1 (en) ANNULAR ROOM OF COMBUSTION CHAMBER WITH REGULAR AIR SUPPLY LOCALLY
FR3113302A1 (en) Combustion chamber for a turbomachine
FR2779316A1 (en) Device for mixing cold gas at the output of a plasma torch.
FR2474648A1 (en) Steam generator for turbine - has mixer burner which generates steam direct in combustion chamber
FR2735214A1 (en) Forced air injection method for aircraft gas turbine combustor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19971015

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981117

REF Corresponds to:

Ref document number: 69505895

Country of ref document: DE

Date of ref document: 19981217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69505895

Country of ref document: DE

Representative=s name: MITSCHERLICH & PARTNER PATENT- UND RECHTSANWAE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69505895

Country of ref document: DE

Representative=s name: MITSCHERLICH, PATENT- UND RECHTSANWAELTE PARTM, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R082

Ref document number: 69505895

Country of ref document: DE

Representative=s name: MITSCHERLICH, PATENT- UND RECHTSANWAELTE, PART, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R082

Ref document number: 69505895

Country of ref document: DE

Representative=s name: MITSCHERLICH & PARTNER PATENT- UND RECHTSANWAE, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R081

Ref document number: 69505895

Country of ref document: DE

Owner name: SNECMA, FR

Free format text: FORMER OWNER: HISPANO SUIZA, COLOMBRS CEDEX, FR

Effective date: 20121005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130523

Year of fee payment: 19

Ref country code: GB

Payment date: 20130527

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140606

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69505895

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69505895

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140621