EP0687967A1 - Temperature stable current source - Google Patents

Temperature stable current source Download PDF

Info

Publication number
EP0687967A1
EP0687967A1 EP95401363A EP95401363A EP0687967A1 EP 0687967 A1 EP0687967 A1 EP 0687967A1 EP 95401363 A EP95401363 A EP 95401363A EP 95401363 A EP95401363 A EP 95401363A EP 0687967 A1 EP0687967 A1 EP 0687967A1
Authority
EP
European Patent Office
Prior art keywords
transistor
transistors
current
gate
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401363A
Other languages
German (de)
French (fr)
Other versions
EP0687967B1 (en
Inventor
Joaquin Lopez
Jean-Michel Coquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics SA filed Critical SGS Thomson Microelectronics SA
Publication of EP0687967A1 publication Critical patent/EP0687967A1/en
Application granted granted Critical
Publication of EP0687967B1 publication Critical patent/EP0687967B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention lies in the field of electronic circuits using field effect transistors with insulated gates to produce current sources. These circuits use the so-called "MOS" technology and generally are in the form or form part of integrated circuits.
  • MOS field effect transistors
  • the invention relates more precisely to current sources of this type which are designed to exhibit a certain immunity to temperature variations.
  • current sources find many applications in electronics. They are used in particular for the production of calibrated ramp signal generators. For this, the current source supplies a capacitor whose voltage provides the ramp signal.
  • the ramp generators are for example used for programming or erasing memory cells constituting the electrically erasable programmable memories (EEPROM).
  • EEPROM electrically erasable programmable memories
  • a known arrangement in MOS technology for producing a current source consists in using two current mirrors using respectively p-channel MOS transistors (PMOS) and n (NMOS), the NMOS transistors having different threshold values (see diagram of figure 1). It can be shown that the currents flowing in the branches of this circuit are approximately proportional to the mobility of the NMOS transistors and to the square of the difference from their threshold values. It follows that the currents are in fact very dependent on the temperature because the mobility as well as the square of the difference of the threshold values vary very strongly according to the temperature.
  • the invention aims to provide a simple and effective solution to this problem in the case of current sources.
  • the invention relates to a current source characterized in that it comprises a current mirror intended to supply a first current proportional to a second current in a given ratio, a first and a second transistors with effect of fields with isolated gates whose sources are connected to a first common potential, the drain and the gate of the first transistor being connected to the gate of the second transistor by means of a resistor, in that said second current supplies the channel directly of said second transistor, in that said first current supplies the channel of said first transistor via said resistor, in that said first and second transistors are doped so that the conduction threshold of the second transistor is higher than that of the first transistor and in that the dimensional ratio of a transistor being defined as the ratio of the width to the length of its gate, the first and second transistors are dimensioned so that the dimensional ratio of the first transistor is proportional to that of the second transistor in said given ratio.
  • This structure has the effect of imposing on the terminals of the resistor a potential difference equal to the difference of the threshold values of the first and second transistors.
  • the current is therefore proportional to this difference and no longer to its square.
  • the difference in threshold values is not very dependent on temperature variations. As a result, the current will also be little dependent on these variations.
  • the calculation shows that the difference in threshold values is approximately proportional to the absolute temperature.
  • a resistance produced by diffusion with low doping is also proportional to the absolute temperature.
  • the resistance is produced by diffusion or implantation of impurities in the substrate of the integrated circuit with a sufficiently low doping so that the value of the resistance varies linearly with temperature.
  • the choice of a lightly doped diffused resistance does not however make it possible to produce a resistance which is not very bulky and has a very high value, which implies that the current flowing therein cannot be as low as one would like. Also, in order to compensate for this constraint, the ratio between the first and the second current will advantageously be chosen greater than unity.
  • the current source is characterized in that said first and second transistors are n-channel MOS transistors and in that said current mirror is produced by means of third and fourth MOS transistors p channel having their gates connected together and their sources connected to a second potential greater than said first potential, said third transistor being mounted as a diode, said third and fourth transistors being provided to supply said first and second currents respectively in said given ratio.
  • the dimensional ratio of the third transistor will be chosen proportional to that of the fourth transistor in said given ratio.
  • the invention further provides that said current mirror comprises a component having a high dynamic resistance compared to the value of said resistance, said component being connected. between the drain of the third transistor and the gate of the second transistor.
  • said component is a fifth n-channel MOS transistor, the drain of which is connected to the drain of said third transistor, the source of which is connected to the gate of the second transistor and the gate of which is connected to the drain of the second transistor.
  • the fifth transistor mounted in the manner indicated has the advantageous property of ensuring the state of saturation of the second transistor, independently of the supply voltage.
  • FIG. 1 represents a known diagram of a current source. It consists of a current mirror 1 formed by two p-channel MOS transistors PM0 and PM1 respectively supplying the currents J0 and J1 to the n-channel MOS transistors NM0 and NM1, the sources of which are connected to a common potential Vss which can be for example the mass of the circuit and the gates of which are connected together.
  • One of the NM1 transistors is mounted as a diode and is doped so as to have a higher threshold than the second NM0 transistor.
  • the NM0 transistor will be for example a native transistor, that is to say whose channel has the same p-type doping as the substrate, having a threshold of about 0.2 volts while the NM1 transistor is enriched by implantation. boron in the substrate so as to give it a threshold of about 0.8 volts.
  • a second current mirror can be formed by means of a fourth transistor NM2 whose source is connected to the potential Vss and whose gate is connected to the drain of the transistor NM1.
  • the load Z is placed between the drain of the transistor NM2 and the potential Vdd greater than Vss.
  • the circuit transistors are all polarized so as to operate in saturated mode.
  • the dimensional ratios of the transistors NM1 and NM2 of the second current mirror fix the ratio J1 / J2, where J2 is the current flowing in the load Z.
  • J1 k (VT1-VT0) 2 where VT0 and VT1 are respectively the threshold values of the transistors NM0 and NM1, k being a coefficient dependent on the mobilities of the transistors of the circuit.
  • FIG. 2 represents the diagram of a current source in accordance with the invention.
  • the current I1 feeds the drain d of an N-channel MOS transistor N1 whose source is connected to the potential Vss.
  • the current I0 feeds the drain a of another N-channel MOS transistor N0 via a resistor R.
  • the transistor N0 is mounted as a diode and therefore has its gate connected to its drain a.
  • the gate of the transistor N1 is connected to the connection point b of the resistor R to the current mirror 1.
  • the load Z is placed in series with another n-channel MOS transistor N3 whose gate is connected to the drain a of transistor N0 so as to form a current mirror.
  • the transistors N0 and N1 are doped differently so that the threshold VT1 of the transistor N1 is higher than that VT0 of the transistor N0.
  • the transistor N0 is for example a native transistor and the transistor N1 is said to be "enriched" thanks to additional p-type doping of the channel.
  • the voltage across the resistor R is equal to the difference of the threshold values VT1 and VT0 transistors N1 and N0.
  • the current I0 therefore depends on this difference and on the value of the resistance R but no longer depends on the mobilities.
  • VT1-VT0 is practically proportional to the absolute temperature T and is not very sensitive to its variations.
  • Resistor R can be made of polysilicon and will therefore have the property of being little dependent on temperature and variations in the parameters of the manufacturing process. However, it has the disadvantage of requiring a large surface.
  • the circuit of FIG. 3 shows in detail a possible and particularly simple embodiment of the current mirror 1.
  • the mirror 1 is produced by means of two p-channel MOS transistors P0, P1 having their gates connected together and their sources connected to a supply potential Vdd greater than the potential Vss.
  • the transistor P0 is mounted as a diode thanks to the connection between its drain c and its gate.
  • a third n channel MOS transistor N2 having its drain connected to the drain c of the transistor P0, its source connected to the gate of the transistor N1 and its gate connected to the drain of transistor N1.
  • the transistor N2 thus arranged has the effect of ensuring the operation in saturated state of the transistor N1. Furthermore, if the supply potential Vdd is sufficiently high relative to the voltage drops of the drain-source paths of the transistors, the transistors N2 and P1 are biased in saturated state. The transistor N2 in saturated state then has a high dynamic impedance which has the effect of absorbing voltage variations feed. The circuit is therefore both stable in temperature and in supply voltage.
  • a lightly doped transistor for example a native transistor, will be chosen for N2, so that it has a low threshold voltage, thus facilitating its polarization in saturated conditions.
  • the saturation condition of all the transistors is that the supply voltage is greater than the sum of the threshold voltages of the transistors which make up each branch of the circuit.
  • transistors P0, P1 as well as N2 will preferably be dimensioned so as to have the lowest possible static impedance in order to allow correct operation for low values of the supply voltage.
  • the invention cannot be limited to the particular embodiment which has just been described. Many variants are in fact within the reach of those skilled in the art. So as shown in the figure 4, the transistor P1 can be mounted as a diode in place of the transistor P0. Similarly, the circuit of FIG. 3 can be transformed into its dual circuit as shown in FIG. 5. Finally, the transistor N2 could be replaced by a component of another type having a high dynamic impedance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

Afin de rendre le courant (I0) peu sensible à la température, un premier et un second transistors MOS (N0, N1) alimentés par un miroir de courant (1) ont leurs sources reliées à la masse (Vss), le drain (a) et la grille du premier transistor (N0) étant reliés à la grille (b) du second transistor (N1) par l'intermédiaire d'une résistance (R).Le quotient des rapports dimensionnels des transistors (N0, N1) est égal au coefficient (β) du miroir de courant (1) et les transistors (N0, N1) sont dopés pour que le seuil du second transistor (N1) soit supérieur à celui du premier (N0).Application notamment aux générateurs de rampe pour la programmation des cellules EEPROM.In order to make the current (I0) insensitive to temperature, a first and a second MOS transistors (N0, N1) supplied by a current mirror (1) have their sources connected to ground (Vss), the drain (a ) and the gate of the first transistor (N0) being connected to the gate (b) of the second transistor (N1) via a resistor (R). The quotient of the dimensional ratios of the transistors (N0, N1) is equal to the coefficient (β) of the current mirror (1) and the transistors (N0, N1) are doped so that the threshold of the second transistor (N1) is greater than that of the first (N0) .Application in particular to ramp generators for the programming of EEPROM cells.

Description

L'invention se situe dans le domaine des circuits électroniques utilisant des transistors à effet de champs à grilles isolées pour réaliser des sources de courant. Ces circuits utilisent la technologie dite "MOS" et généralement sont sous la forme ou font partie de circuits intégrés. L'invention concerne plus précisément les sources de courant de ce type qui sont conçues pour présenter une certaine immunité aux variations de température.The invention lies in the field of electronic circuits using field effect transistors with insulated gates to produce current sources. These circuits use the so-called "MOS" technology and generally are in the form or form part of integrated circuits. The invention relates more precisely to current sources of this type which are designed to exhibit a certain immunity to temperature variations.

D'une façon générale, les sources de courant trouvent de nombreuses applications en électronique. Elles servent notamment à la réalisation de générateurs de signaux de rampe calibrés. Pour cela, la source de courant alimente une capacité dont la tension fournit le signal de rampe.In general, current sources find many applications in electronics. They are used in particular for the production of calibrated ramp signal generators. For this, the current source supplies a capacitor whose voltage provides the ramp signal.

Les générateurs de rampe sont par exemple utilisés pour effectuer la programmation ou l'effacement de cellules mémoire constituant les mémoires programmables effaçables électriquement (EEPROM).The ramp generators are for example used for programming or erasing memory cells constituting the electrically erasable programmable memories (EEPROM).

Un montage connu en technologie MOS pour réaliser une source de courant consiste à utiliser deux miroirs de courant utilisant respectivement des transistors MOS à canal p (PMOS) et n (NMOS), les transistors NMOS ayant des valeurs de seuil différentes (voir le schéma de figure 1). On peut montrer que les courants circulant dans les branches de ce circuit sont approximativement proportionnels à la mobilité des transistors NMOS et au carré de la différence de leurs valeurs de seuil. Il en résulte que les courants sont en fait très dépendants de la température car la mobilité ainsi que le carré de la différence des valeurs de seuil varient très fortement en fonction de la température.A known arrangement in MOS technology for producing a current source consists in using two current mirrors using respectively p-channel MOS transistors (PMOS) and n (NMOS), the NMOS transistors having different threshold values (see diagram of figure 1). It can be shown that the currents flowing in the branches of this circuit are approximately proportional to the mobility of the NMOS transistors and to the square of the difference from their threshold values. It follows that the currents are in fact very dependent on the temperature because the mobility as well as the square of the difference of the threshold values vary very strongly according to the temperature.

Le problème de la stabilisation en température des circuits électroniques en général est en soi connu mais conduit habituellement à une complication des circuits et à une augmentation de leur consommation.The problem of temperature stabilization of electronic circuits in general is known per se but usually leads to a complication of the circuits and an increase in their consumption.

Aussi, l'invention a pour but de proposer une solution simple et efficace à ce problème dans le cas des sources de courant.Also, the invention aims to provide a simple and effective solution to this problem in the case of current sources.

Dans ce but, l'invention a pour objet une source de courant caractérisée en ce qu'elle comporte un miroir de courant prévu pour fournir un premier courant proportionnel à un second courant dans un rapport donné, un premier et un second transistors à effet de champs à grilles isolées dont les sources sont reliées à un premier potentiel commun, le drain et la grille du premier transistor étant reliés à la grille du second transistor par l'intermédiaire d'une résistance, en ce que ledit second courant alimente directement le canal dudit second transistor, en ce que ledit premier courant alimente le canal dudit premier transistor par l'intermédiaire de ladite résistance, en ce que lesdits premier et second transistors sont dopés de façon à ce que le seuil de conduction du second transistor soit supérieur à celui du premier transistor et en ce que le rapport dimensionnel d'un transistor étant défini comme le rapport de la largeur à la longueur de sa grille, les premier et second transistors sont dimensionnés de façon à ce que le rapport dimensionnel du premier transistor soit proportionnel à celui du second transistor dans ledit rapport donné.For this purpose, the invention relates to a current source characterized in that it comprises a current mirror intended to supply a first current proportional to a second current in a given ratio, a first and a second transistors with effect of fields with isolated gates whose sources are connected to a first common potential, the drain and the gate of the first transistor being connected to the gate of the second transistor by means of a resistor, in that said second current supplies the channel directly of said second transistor, in that said first current supplies the channel of said first transistor via said resistor, in that said first and second transistors are doped so that the conduction threshold of the second transistor is higher than that of the first transistor and in that the dimensional ratio of a transistor being defined as the ratio of the width to the length of its gate, the first and second transistors are dimensioned so that the dimensional ratio of the first transistor is proportional to that of the second transistor in said given ratio.

Cette structure a pour effet d'imposer aux bornes de la résistance une différence de potentiel égale à la différence des valeurs de seuil des premier et second transistors. Le courant est donc proportionnel à cette différence et non plus à son carré. De plus, la différence de valeurs de seuil est peu dépendante des variations de température. Il en résulte que le courant sera également peu dépendant de ces variations.This structure has the effect of imposing on the terminals of the resistor a potential difference equal to the difference of the threshold values of the first and second transistors. The current is therefore proportional to this difference and no longer to its square. In addition, the difference in threshold values is not very dependent on temperature variations. As a result, the current will also be little dependent on these variations.

Par ailleurs, le calcul montre que la différence des valeurs de seuil est approximativement proportionnelle à la température absolue. On sait d'autre part qu'une résistance réalisée par diffusion avec faible dopage est également proportionnelle à la température absolue. Aussi, selon une caractéristique supplémentaire de l'invention particulièrement avantageuse dans le cas d'une réalisation intégrée, la résistance est réalisée par diffusion ou implantation d'impuretés dans le substrat du circuit intégré avec un dopage suffisamment faible pour que la valeur de la résistance varie linéairement en fonction de la température.Furthermore, the calculation shows that the difference in threshold values is approximately proportional to the absolute temperature. We also know that a resistance produced by diffusion with low doping is also proportional to the absolute temperature. Also, according to an additional characteristic of the invention which is particularly advantageous in the case of an integrated embodiment, the resistance is produced by diffusion or implantation of impurities in the substrate of the integrated circuit with a sufficiently low doping so that the value of the resistance varies linearly with temperature.

Le choix d'une résistance diffusée faiblement dopée ne permet cependant pas de réaliser une résistance peu volumineuse et ayant une valeur très élevée, ce qui implique que le courant qui y circule ne peut pas être aussi faible que l'on souhaiterait. Aussi, en vue de compenser cette contrainte, le rapport entre le premier et le second courants sera avantageusement choisi supérieur à l'unité.The choice of a lightly doped diffused resistance does not however make it possible to produce a resistance which is not very bulky and has a very high value, which implies that the current flowing therein cannot be as low as one would like. Also, in order to compensate for this constraint, the ratio between the first and the second current will advantageously be chosen greater than unity.

Selon un mode de réalisation particulier de l'invention, la source de courant est caractérisée en ce que lesdits premier et second transistors sont des transistors MOS à canal n et en ce que ledit miroir de courant est réalisé au moyen de troisième et quatrième transistors MOS à canal p ayant leurs grilles reliées entre elles et leurs sources reliées à un second potentiel supérieur audit premier potentiel, ledit troisième transistor étant monté en diode, lesdits troisième et quatrième transistors étant prévus pour fournir respectivement lesdits premier et second courants dans ledit rapport donné.According to a particular embodiment of the invention, the current source is characterized in that said first and second transistors are n-channel MOS transistors and in that said current mirror is produced by means of third and fourth MOS transistors p channel having their gates connected together and their sources connected to a second potential greater than said first potential, said third transistor being mounted as a diode, said third and fourth transistors being provided to supply said first and second currents respectively in said given ratio.

Selon un autre aspect, on choisira le rapport dimensionnel du troisième transistor proportionnel à celui du quatrième transistor dans ledit rapport donné.According to another aspect, the dimensional ratio of the third transistor will be chosen proportional to that of the fourth transistor in said given ratio.

Afin d'assurer au montage précédent une certaine tolérance aux fluctuations des tensions d'alimentation, l'invention prévoit en outre que ledit miroir de courant comporte un composant présentant une résistance dynamique importante par rapport à la valeur de ladite résistance, ledit composant étant branché entre le drain du troisième transistor et la grille du second transistor.In order to provide the previous assembly with a certain tolerance for fluctuations in supply voltages, the invention further provides that said current mirror comprises a component having a high dynamic resistance compared to the value of said resistance, said component being connected. between the drain of the third transistor and the gate of the second transistor.

Selon un mode de réalisation particulièrement intéressant, ledit composant est un cinquième transistor MOS à canal n, dont le drain est relié au drain dudit troisième transistor, dont la source est reliée à la grille du second transistor et dont la grille est reliée au drain du second transistor.According to a particularly advantageous embodiment, said component is a fifth n-channel MOS transistor, the drain of which is connected to the drain of said third transistor, the source of which is connected to the gate of the second transistor and the gate of which is connected to the drain of the second transistor.

Outre son rôle d'absorber les fluctuations de tensions d'alimentation, le cinquième transistor monté de la façon indiquée a la propriété intéressante d'assurer l'état de saturation du second transistor, indépendamment de la tension d'alimentation.In addition to its role of absorbing fluctuations in supply voltages, the fifth transistor mounted in the manner indicated has the advantageous property of ensuring the state of saturation of the second transistor, independently of the supply voltage.

D'autres aspects de réalisation et avantages de l'invention apparaîtront dans la suite de la description en référence aux figures.

  • La figure 1 représente le schéma d'une source de courant selon l'état de la technique.
  • La figure 2 représente le schéma de la source de courant selon l'invention.
  • La figure 3 représente un mode de réalisation préférentiel de l'invention.
  • La figure 4 représente une variante du schéma de la figure 3.
  • La figure 5 représente le montage dual du schéma de la figure 3.
Other aspects of embodiment and advantages of the invention will appear in the following description with reference to the figures.
  • FIG. 1 represents the diagram of a current source according to the state of the art.
  • FIG. 2 represents the diagram of the current source according to the invention.
  • FIG. 3 represents a preferred embodiment of the invention.
  • FIG. 4 represents a variant of the diagram of FIG. 3.
  • FIG. 5 represents the dual assembly of the diagram of FIG. 3.

La figure 1 représente un schéma connu d'une source de courant. Il est constitué d'un miroir de courant 1 formé de deux transistors MOS à canal p PM0 et PM1 fournissant respectivement les courants J0 et J1 aux transistors MOS à canal n NM0 et NM1 dont les sources sont reliées à un potentiel commun Vss pouvant être par exemple la masse du circuit et dont les grilles sont reliées entre elles. L'un des transistors NM1 est monté en diode et est dopé de façon à présenter un seuil supérieur au second transistor NM0. Le transistor NM0 sera par exemple un transistor natif, c'est-à-dire dont le canal a le même dopage de type p que le substrat, ayant un seuil d'environ 0,2 volt tandis que le transistor NM1 est enrichi par implantation de bore dans le substrat de façon à lui conférer un seuil d'environ 0,8 volt.FIG. 1 represents a known diagram of a current source. It consists of a current mirror 1 formed by two p-channel MOS transistors PM0 and PM1 respectively supplying the currents J0 and J1 to the n-channel MOS transistors NM0 and NM1, the sources of which are connected to a common potential Vss which can be for example the mass of the circuit and the gates of which are connected together. One of the NM1 transistors is mounted as a diode and is doped so as to have a higher threshold than the second NM0 transistor. The NM0 transistor will be for example a native transistor, that is to say whose channel has the same p-type doping as the substrate, having a threshold of about 0.2 volts while the NM1 transistor is enriched by implantation. boron in the substrate so as to give it a threshold of about 0.8 volts.

Pour alimenter une charge Z à courant constant, on peut former un second miroir de courant au moyen d'un quatrième transistor NM2 dont la source est reliée au potentiel Vss et dont la grille est reliée au drain du transistor NM1. La charge Z est placée entre le drain du transistor NM2 et le potentiel Vdd supérieur à Vss.To supply a load Z at constant current, a second current mirror can be formed by means of a fourth transistor NM2 whose source is connected to the potential Vss and whose gate is connected to the drain of the transistor NM1. The load Z is placed between the drain of the transistor NM2 and the potential Vdd greater than Vss.

Les transistors du circuit sont tous polarisés de façon à fonctionner en régime saturé. Les rapports dimensionnels des transistors PM0 et PM1 imposent le rapport β = J0/J1 des courants J0 et J1 circulant respectivement dans ces transistors. De même, les rapports dimensionnels des transistors NM1 et NM2 du second miroir de courant fixent le rapport J1/J2, où J2 est le courant circulant dans la charge Z.The circuit transistors are all polarized so as to operate in saturated mode. The dimensional ratios of the transistors PM0 and PM1 impose the ratio β = J0 / J1 of the currents J0 and J1 flowing respectively in these transistors. Likewise, the dimensional ratios of the transistors NM1 and NM2 of the second current mirror fix the ratio J1 / J2, where J2 is the current flowing in the load Z.

On peut montrer que l'on a en première approximation : J1 = k(VT1-VT0) ²

Figure imgb0001

où VT0 et VT1 sont respectivement les valeurs de seuil des transistors NM0 et NM1, k étant un coefficient dépendant des mobilités des transistors du montage.We can show that we have as a first approximation: J1 = k (VT1-VT0) ²
Figure imgb0001

where VT0 and VT1 are respectively the threshold values of the transistors NM0 and NM1, k being a coefficient dependent on the mobilities of the transistors of the circuit.

Comme ces mobilités ainsi que le terme (VT1-VT0)² dépendent sensiblement de la température, le courant qui en résulte en sera également fortement dépendant.As these mobilities as well as the term (VT1-VT0) ² depend appreciably on the temperature, the current which results from it will also be strongly dependent.

La figure 2 représente le schéma d'une source de courant conforme à l'invention. La source comporte un miroir de courant 1 de rapport β fournissant les courants I0 et I1 selon la relation I0 = βI1. Le courant I1 alimente le drain d d'un transistor MOS à canal n N1 dont la source est reliée au potentiel Vss. Le courant I0 alimente le drain a d'un autre transistor MOS à canal n N0 par l'intermédiaire d'une résistance R. Le transistor N0 est monté en diode et a donc sa grille reliée à son drain a. La grille du transistor N1 est reliée au point de connexion b de la résistance R au miroir de courant 1. Comme pour le montage de la figure 1, la charge Z est placée en série avec un autre transistor MOS à canal n N3 dont la grille est reliée au drain a du transistor N0 de façon à former un miroir de courant.FIG. 2 represents the diagram of a current source in accordance with the invention. The source comprises a current mirror 1 of ratio β providing the currents I0 and I1 according to the relation I0 = βI1. The current I1 feeds the drain d of an N-channel MOS transistor N1 whose source is connected to the potential Vss. The current I0 feeds the drain a of another N-channel MOS transistor N0 via a resistor R. The transistor N0 is mounted as a diode and therefore has its gate connected to its drain a. The gate of the transistor N1 is connected to the connection point b of the resistor R to the current mirror 1. As for the assembly of FIG. 1, the load Z is placed in series with another n-channel MOS transistor N3 whose gate is connected to the drain a of transistor N0 so as to form a current mirror.

Les transistors N0 et N1 sont dopés différemment de façon à ce que le seuil VT1 du transistor N1 soit supérieur à celui VT0 du transistor N0. Le transistor N0 est par exemple un transistor natif et le transistor N1 est dit "enrichi" grâce à un dopage de type p supplémentaire du canal.The transistors N0 and N1 are doped differently so that the threshold VT1 of the transistor N1 is higher than that VT0 of the transistor N0. The transistor N0 is for example a native transistor and the transistor N1 is said to be "enriched" thanks to additional p-type doping of the channel.

En supposant que le transistor N1 est polarisé en régime saturé, on peut écrire en première approximation : I0 = k0(W0/L0)(Va-VT0) ²

Figure imgb0002
I1 = k1(W1/L1)(Vb-VT1) ²
Figure imgb0003

où :

  • k1 et k2 dépendent de la mobilité des électrons et de la capacité des grilles par unité de surface,
  • W0/L0 et W1/L1 sont les rapports dimensionnels (rapport de la largeur à la longueur) des grilles des transistors N0 et N1,
  • Va et Vb sont les potentiels de grille des transistors N0 et N1.
Assuming that transistor N1 is polarized in saturated regime, we can write as a first approximation: I0 = k0 (W0 / L0) (Va-VT0) ²
Figure imgb0002
I1 = k1 (W1 / L1) (Vb-VT1) ²
Figure imgb0003

or :
  • k1 and k2 depend on the mobility of the electrons and the capacity of the grids per unit area,
  • W0 / L0 and W1 / L1 are the dimensional ratios (ratio of the width to the length) of the gates of the transistors N0 and N1,
  • Va and Vb are the gate potentials of transistors N0 and N1.

Comme k1 et k2 sont pratiquement indépendants du dopage, on a k1 = k2.As k1 and k2 are practically independent of doping, we have k1 = k2.

Comme d'autre part I0 = βI1, si on dimensionne les transistors N0 et N1 de façon à avoir : W0/L0 = β(W1/L1)

Figure imgb0004

on en déduit : Vb-Va = VT1-VT0 = R.I0
Figure imgb0005
As on the other hand I0 = βI1, if we size the transistors N0 and N1 so as to have: W0 / L0 = β (W1 / L1)
Figure imgb0004

we can deduce : Vb-Va = VT1-VT0 = R.I0
Figure imgb0005

Ainsi, la tension aux bornes de la résistance R est égale à la différence des valeurs de seuil VT1 et VT0 des transistors N1 et N0. Le courant I0 dépend donc de cette différence et de la valeur de la résistance R mais ne dépend plus des mobilités.Thus, the voltage across the resistor R is equal to the difference of the threshold values VT1 and VT0 transistors N1 and N0. The current I0 therefore depends on this difference and on the value of the resistance R but no longer depends on the mobilities.

Afin d'évaluer la dépendance du courant aux variations de température, il convient de calculer les valeurs de seuil VT1 et VT0 ainsi que leur différence dans un cas particulier. La valeur de seuil VT d'un transistor NMOS est donnée par l'équation : VT = (2KT/q)ln(N/Ni)+[4εNKT.ln(N/Ni)] ½ (1/Cox)

Figure imgb0006

où :
   K = constante de Planck
   T = température absolue
   q = charge de l'électron
   ln = logarithme népérien
   Ni = dopage intrinsèque
   N = dopage du substrat
   ε = coefficient de capacité du silicium
   Cox = capacité de grille par unité de surfaceIn order to assess the dependence of the current on temperature variations, it is necessary to calculate the threshold values VT1 and VT0 as well as their difference in a particular case. The threshold value VT of an NMOS transistor is given by the equation: VT = (2KT / q) ln (N / Ni) + [4εNKT.ln (N / Ni)] ½ (1 / Cox)
Figure imgb0006

or :
K = Planck constant
T = absolute temperature
q = electron charge
ln = natural logarithm
Ni = intrinsic doping
N = doping of the substrate
ε = capacity coefficient of silicon
Beetle = grid capacity per unit area

Avec N = Ne pour le transistor N1 et N = Nnat pour le transistor N0, on en déduit : VT1-VT0 = AT+BT ½ ,

Figure imgb0007

avec :
A = (2K/q)ln(Ne/Nnat)
B=(4εK)½[[Ne.ln(Ne/Ni)]½-[Nnat.ln(Nnat/ni)]½](1/Cox)With N = Ne for transistor N1 and N = Nnat for transistor N0, we deduce: VT1-VT0 = AT + BT ½ ,
Figure imgb0007

with:
A = (2K / q) ln (Ne / Nnat)
B = (4εK) ½ [[Ne.ln (Ne / Ni)] ½ - [Nnat.ln (Nnat / ni)] ½ ] (1 / Cox)

Avec une technologie classique, on aura par exemple :
Ne = 10²³/m³
Nnat = 10²¹/m³
Ni = 1,45 10¹⁶/m³
Cox = 2,7 10⁻³ F/m²,
on obtient alors :
A = 1,58 10⁻³ V/K
B = 2,8 10⁻¹⁷ V/(K)½
With conventional technology, we will have for example:
Ne = 10²³ / m³
Nnat = 10²¹ / m³
Ni = 1.45 10¹⁶ / m³
Beetle = 2.7 10⁻³ F / m²,
we then obtain:
A = 1.58 10⁻³ V / K
B = 2.8 10⁻¹⁷ V / (K) ½

On constate que VT1-VT0 est pratiquement proportionnel à la température absolue T et est peu sensible à ses variations.It can be seen that VT1-VT0 is practically proportional to the absolute temperature T and is not very sensitive to its variations.

La résistance R peut être réalisée en polysilicium et aura donc la propriété d'être peu dépendante de la température et des variations des paramètres du procédé de fabrication. Elle présente cependant l'inconvénient de nécessiter une surface importante. Une autre solution consiste à utiliser une résistance diffusée obtenue par diffusion ou implantation d'impuretés de type n dans le substrat de type p. Dans le cas d'un faible dopage et pour une gamme de température donnée, la valeur d'une résistance diffusée est donnée par la relation : R = (lK/SqN.Dn)T

Figure imgb0008

avec :
l = longueur de la résistance
S = section de la résistance
N = dopage
Dn = coefficient de diffusion.Resistor R can be made of polysilicon and will therefore have the property of being little dependent on temperature and variations in the parameters of the manufacturing process. However, it has the disadvantage of requiring a large surface. Another solution consists in using a diffused resistance obtained by diffusion or implantation of n-type impurities in the p-type substrate. In the case of a weak doping and for a given temperature range, the value of a diffused resistance is given by the relation: R = (lK / SqN.Dn) T
Figure imgb0008

with:
l = resistance length
S = resistance section
N = doping
Dn = diffusion coefficient.

On constate alors que la valeur de la résistance R est pratiquement proportionnelle à la température absolue T. Comme la tension appliquée à ses bornes est elle-même proportionnelle à la température absolue, le courant I0 est donc pratiquement indépendant de la température.It can then be seen that the value of the resistance R is practically proportional to the absolute temperature T. As the voltage applied to its terminals is itself proportional to the absolute temperature, the current I0 is therefore practically independent of the temperature.

Bien entendu ce résultat reste valable à condition que le transistor N1 fonctionne en régime saturé et si le transistor N0 est conducteur, ce qui sera toujours le cas si le potentiel d'alimentation Vdd est suffisamment élevé par rapport aux tensions de seuil de ces transistors et si l'impédance statique du miroir de courant 1 n'est pas très élevée.Of course, this result remains valid provided that the transistor N1 operates in saturated mode and if the transistor N0 is conductive, which will always be the case if the supply potential Vdd is sufficiently high compared to the threshold voltages of these transistors and if the static impedance of current mirror 1 is not very high.

Le circuit de la figure 3 montre de façon détaillée une réalisation possible et particulièrement simple du miroir de courant 1. Le miroir 1 est réalisé au moyen de deux transistors MOS à canal p P0, P1 ayant leurs grilles reliées entre elles et leurs sources reliées à un potentiel d'alimentation Vdd supérieur au potentiel Vss. Le transistor P0 est monté en diode grâce à la connexion entre son drain c et sa grille.The circuit of FIG. 3 shows in detail a possible and particularly simple embodiment of the current mirror 1. The mirror 1 is produced by means of two p-channel MOS transistors P0, P1 having their gates connected together and their sources connected to a supply potential Vdd greater than the potential Vss. The transistor P0 is mounted as a diode thanks to the connection between its drain c and its gate.

Le rapport des courants I0/I1 circulant dans ces transistors est imposé par le quotient de leur rapport dimensionnel. On aura donc : β = (W'0/L'0)/(W'1/L'1)

Figure imgb0009

où W'0 et W'1 sont les largeurs effectives de grille respectivement des transistors P0 et P1 et L'0 et L'1 leurs longueurs effectives de grille.The ratio of the currents I0 / I1 flowing in these transistors is imposed by the quotient of their dimensional ratio. We will therefore have: β = (W'0 / L'0) / (W'1 / L'1)
Figure imgb0009

where W'0 and W'1 are the effective gate widths of the transistors P0 and P1 and L'0 and L'1 respectively their effective gate lengths.

Pour que β soit indépendant des tensions appliquées aux transistors, il est souhaitable cependant que les zones déplétées aux extrémités des grilles soient négligeables par rapport aux longueurs des grilles. Cette condition sera satisfaite en choisissant des longueurs de grilles supérieures à environ 4 µm.For β to be independent of the voltages applied to the transistors, it is desirable however that the depleted areas at the ends of the gates are negligible compared to the lengths of the gates. This condition will be satisfied by choosing gate lengths greater than approximately 4 µm.

Ce résultat ne sera bien sûr obtenu qu'à la condition que la tension d'alimentation Vdd soit suffisante pour que le transistor P1 fonctionne en régime saturé et que la tension aux bornes du transistors P0 soit supérieure en valeur absolue à sa valeur de seuil.This result will of course only be obtained on condition that the supply voltage Vdd is sufficient for the transistor P1 to operate in saturated state and that the voltage across the terminals of the transistors P0 is greater in absolute value than its threshold value.

Afin de rendre le circuit moins sensible aux variations de tension d'alimentation, il est prévu un troisième transistor MOS à canal n N2 ayant son drain relié au drain c du transistor P0, sa source reliée à la grille du transistor N1 et sa grille reliée au drain du transistor N1. Le transistor N2 ainsi disposé a pour effet d'assurer le fonctionnement en régime saturé du transistor N1. Par ailleurs, si le potentiel d'alimentation Vdd est suffisamment élevé par rapport aux chutes de tension des chemins drain-source des transistors, les transistors N2 et P1 sont polarisés en régime saturé. Le transistor N2 en régime saturé présente alors une impédance dynamique importante qui a pour effet d'absorber les variations de tension d'alimentation. Le circuit est donc à la fois stable en température et en tension d'alimentation.In order to make the circuit less sensitive to variations in supply voltage, there is provided a third n channel MOS transistor N2 having its drain connected to the drain c of the transistor P0, its source connected to the gate of the transistor N1 and its gate connected to the drain of transistor N1. The transistor N2 thus arranged has the effect of ensuring the operation in saturated state of the transistor N1. Furthermore, if the supply potential Vdd is sufficiently high relative to the voltage drops of the drain-source paths of the transistors, the transistors N2 and P1 are biased in saturated state. The transistor N2 in saturated state then has a high dynamic impedance which has the effect of absorbing voltage variations feed. The circuit is therefore both stable in temperature and in supply voltage.

Avantageusement, on choisira pour N2 un transistor faiblement dopé, par exemple un transistor natif, de façon à ce qu'il présente une faible tension de seuil facilitant ainsi sa polarisation en régime saturé.Advantageously, a lightly doped transistor, for example a native transistor, will be chosen for N2, so that it has a low threshold voltage, thus facilitating its polarization in saturated conditions.

En pratique, la condition de saturation de tous les transistors est que la tension d'alimentation soit supérieure à la somme des tensions de seuil des transistors qui composent chaque branche du montage.In practice, the saturation condition of all the transistors is that the supply voltage is greater than the sum of the threshold voltages of the transistors which make up each branch of the circuit.

Par ailleurs, les transistors P0, P1 ainsi que N2 seront de préférence dimensionnés de façon à présenter une impédance statique la plus faible possible afin de permettre un fonctionnement correct pour de faibles valeurs de la tension d'alimentation.Furthermore, the transistors P0, P1 as well as N2 will preferably be dimensioned so as to have the lowest possible static impedance in order to allow correct operation for low values of the supply voltage.

Le choix précis des paramètres du circuit dépendra bien entendu de l'application envisagée. Il convient toutefois de remarquer que le choix d'une résistance diffusée peu dopée et peu volumineuse ne permet pas d'avoir un courant I0 très faible (par exemple de 30 µA pour R = 20 kΩ avec VT1 = 0,8 volt et VT0 = 0,2 volt). On aura donc intérêt à choisir β supérieur à 1 (par exemple égal à 10) de façon à réduire la consommation dans la branche de droite du montage.The precise choice of the parameters of the circuit will of course depend on the envisaged application. It should however be noted that the choice of a slightly doped and not very large diffused resistance does not allow a very low current I0 (for example of 30 µA for R = 20 kΩ with VT1 = 0.8 volt and VT0 = 0.2 volts). It will therefore be advantageous to choose β greater than 1 (for example equal to 10) so as to reduce consumption in the right branch of the assembly.

L'invention ne saurait être limitée au mode de réalisation particulier qui vient d'être décrit. De nombreuses variantes sont en effet à la portée de l'homme du métier. Ainsi, comme représenté à la figure 4, on peut monter en diode le transistor P1 à la place du transistor P0. De même, le circuit de la figure 3 peut être transformé en son montage dual tel que représenté à la figure 5. Enfin, le transistor N2 pourrait être remplacé par un composant d'un autre type présentant une forte impédance dynamique.The invention cannot be limited to the particular embodiment which has just been described. Many variants are in fact within the reach of those skilled in the art. So as shown in the figure 4, the transistor P1 can be mounted as a diode in place of the transistor P0. Similarly, the circuit of FIG. 3 can be transformed into its dual circuit as shown in FIG. 5. Finally, the transistor N2 could be replaced by a component of another type having a high dynamic impedance.

Claims (9)

Source de courant caractérisée en ce qu'elle comporte un miroir de courant (1) prévu pour fournir un premier courant (I0) proportionnel à un second courant (I1) dans un rapport donné (β), un premier et un second transistors à effet de champs à grilles isolées (N0, N1) dont les sources sont reliées à un premier potentiel commun (Vss), le drain et la grille (a) du premier transistor (N0) étant reliés à la grille (b) du second transistor (N1) par l'intermédiaire d'une résistance (R), en ce que ledit second courant (I1) alimente directement le canal dudit second transistor (N1), en ce que ledit premier courant (I0) alimente le canal dudit premier transistor (N0) par l'intermédiaire de ladite résistance (R), en ce que lesdits premier et second transistors (N0, N1) sont dopés de façon à ce que le seuil de conduction (VT1) du second transistor (N1) soit supérieur à celui (VT0) du premier transistor (N0) et en ce que, le rapport dimensionnel d'un transistor étant défini comme le rapport de la largeur à la longueur de sa grille, les premier et second transistors (N0, N1) sont dimensionnés de façon à ce que le rapport dimensionnel du premier transistor (N0) soit proportionnel à celui du second transistor (N1) dans ledit rapport donné (β).Current source characterized in that it comprises a current mirror (1) designed to supply a first current (I0) proportional to a second current (I1) in a given ratio (β), first and second effect transistors fields with isolated gates (N0, N1) whose sources are connected to a first common potential (Vss), the drain and the gate (a) of the first transistor (N0) being connected to the gate (b) of the second transistor ( N1) by means of a resistor (R), in that said second current (I1) directly feeds the channel of said second transistor (N1), in that said first current (I0) feeds the channel of said first transistor ( N0) by means of said resistor (R), in that said first and second transistors (N0, N1) are doped so that the conduction threshold (VT1) of the second transistor (N1) is greater than that (VT0) of the first transistor (N0) and in that, the dimensional ratio of a transistor being defined i as the ratio of the width to the length of its gate, the first and second transistors (N0, N1) are dimensioned so that the dimensional ratio of the first transistor (N0) is proportional to that of the second transistor (N1) in said given ratio (β). Source de courant selon la revendication 1, caractérisée en ce qu'elle fait partie d'un circuit intégré et en ce que ladite résistance (R) est réalisée par diffusion ou implantation d'impuretés dans le substrat du circuit intégré avec un dopage suffisamment faible pour que la valeur de ladite résistance (R) varie linéairement en fonction de la température.Current source according to claim 1, characterized in that it forms part of an integrated circuit and in that said resistance (R) is produced by diffusion or implantation of impurities in the substrate of the integrated circuit with sufficiently doping low so that the value of said resistance (R) varies linearly as a function of temperature. Source de courant selon la revendication 2, caractérisée en ce que ledit rapport donné (β) est supérieur à l'unité.Current source according to claim 2, characterized in that said given ratio (β) is greater than unity. Source de courant selon l'une des revendications 1 à 3, caractérisée en ce que lesdits premier et second transistors (N0, N1) sont des transistors MOS à canal n et en ce que ledit miroir de courant (1) est réalisé au moyen de troisième et quatrième transistors MOS à canal p (P0, P1) ayant leurs grilles reliées entre elles et leurs sources reliées à un second potentiel (Vdd) supérieur audit premier potentiel (Vss), ledit troisième transistor (P0) étant monté en diode, lesdits troisième et quatrième transistors (P0, P1) étant prévus pour fournir respectivement lesdits premier et second courants (I0, I1) dans ledit rapport donné (β).Current source according to one of Claims 1 to 3, characterized in that the said first and second transistors (N0, N1) are n-channel MOS transistors and in that the said current mirror (1) is produced by means of third and fourth p-channel MOS transistors (P0, P1) having their gates connected to each other and their sources connected to a second potential (Vdd) greater than said first potential (Vss), said third transistor (P0) being mounted as a diode, said said third and fourth transistors (P0, P1) being provided to respectively supply said first and second currents (I0, I1) in said given ratio (β). Source de courant selon la revendication 4, caractérisée en ce que le rapport dimensionnel dudit troisième transistor (P0) est proportionnel à celui du quatrième transistor (P1) dans ledit rapport donné (β).Current source according to claim 4, characterized in that the dimensional ratio of said third transistor (P0) is proportional to that of the fourth transistor (P1) in said given ratio (β). Source de courant selon la revendication 4 ou 5, caractérisée en ce que ledit miroir de courant (1) comporte un composant (N2) présentant une résistance dynamique importante par rapport à la valeur de ladite résistance (R), ledit composant (N2) étant branché entre le drain (c) du troisième transistor (P0) et la grille (b) du second transistor (N1).Current source according to claim 4 or 5, characterized in that said current mirror (1) comprises a component (N2) having a high dynamic resistance compared to the value of said resistance (R), said component (N2) being connected between the drain (c) of the third transistor (P0) and the gate (b) of the second transistor (N1). Source de courant selon la revendication 6, caractérisée en ce que ledit composant (N2) est un cinquième transistor MOS à canal n, dont le drain est relié au drain (c) dudit troisième transistor (P0), dont la source est reliée à la grille (b) du second transistor (N1) et dont la grille est reliée au drain (d) du second transistor (N1).Current source according to claim 6, characterized in that said component (N2) is a fifth n-channel MOS transistor, the drain of which is connected to the drain (c) of said third transistor (P0), the source of which is connected to the gate (b) of the second transistor (N1) and the gate of which is connected to the drain (d) of the second transistor (N1). Source de courant selon la revendication 7, caractérisée en ce que ledit cinquième transistor (N2) est prévu pour avoir une valeur de seuil (VT2) inférieure à celle (VT1) du second transistor (N1).Current source according to claim 7, characterized in that said fifth transistor (N2) is designed to have a threshold value (VT2) lower than that (VT1) of the second transistor (N1). Source de courant selon l'une des revendications 4 à 8, caractérisée en ce que lesdits troisième et quatrième transistors (P0, P1) ont chacun une longueur de grille au moins égale à 4 µm.Current source according to one of claims 4 to 8, characterized in that said third and fourth transistors (P0, P1) each have a gate length at least equal to 4 µm.
EP95401363A 1994-06-13 1995-06-12 Temperature stable current source Expired - Lifetime EP0687967B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407407 1994-06-13
FR9407407A FR2721119B1 (en) 1994-06-13 1994-06-13 Temperature stable current source.

Publications (2)

Publication Number Publication Date
EP0687967A1 true EP0687967A1 (en) 1995-12-20
EP0687967B1 EP0687967B1 (en) 1998-04-08

Family

ID=9464311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401363A Expired - Lifetime EP0687967B1 (en) 1994-06-13 1995-06-12 Temperature stable current source

Country Status (5)

Country Link
US (1) US5644216A (en)
EP (1) EP0687967B1 (en)
JP (1) JP2684600B2 (en)
DE (1) DE69501980T2 (en)
FR (1) FR2721119B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744262A1 (en) * 1996-01-31 1997-08-01 Sgs Thomson Microelectronics Current reference device providing stable timing for integrated memory circuit
EP0788047A1 (en) * 1996-01-31 1997-08-06 STMicroelectronics S.A. Device for current reference in an integrated circuit
WO2008121123A1 (en) * 2007-03-30 2008-10-09 Linear Technology Corporation Bandgap voltage and current reference

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744303B1 (en) * 1996-01-31 1998-03-27 Sgs Thomson Microelectronics DEVICE FOR NEUTRALIZING AN ELECTRONIC CIRCUIT WHEN IT IS TURNED ON OR TURNED OFF
US5781188A (en) * 1996-06-27 1998-07-14 Softimage Indicating activeness of clips and applying effects to clips and tracks in a timeline of a multimedia work
US5977813A (en) * 1997-10-03 1999-11-02 International Business Machines Corporation Temperature monitor/compensation circuit for integrated circuits
US7211843B2 (en) * 2002-04-04 2007-05-01 Broadcom Corporation System and method for programming a memory cell
GB0211564D0 (en) * 2002-05-21 2002-06-26 Tournaz Technology Ltd Reference circuit
FR2891653A1 (en) * 2005-10-05 2007-04-06 St Microelectronics Sa Block writing method for e.g. electrically erasable and programmable ROM, involves successively writing each word of block to be written in memory during write time, of word, determined by dividing fixed write time lesser than former time
US7821331B2 (en) * 2006-10-23 2010-10-26 Cypress Semiconductor Corporation Reduction of temperature dependence of a reference voltage
CN102681592A (en) * 2012-05-22 2012-09-19 华为技术有限公司 Voltage reference circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052553A1 (en) * 1980-11-14 1982-05-26 Societe Pour L'etude Et La Fabrication De Circuits Integres Speciaux - E.F.C.I.S. Integrated current-source generator in CMOS technology
GB2186453A (en) * 1986-02-07 1987-08-12 Plessey Co Plc Reference circuit
EP0454250A1 (en) * 1990-04-27 1991-10-30 Koninklijke Philips Electronics N.V. Reference generator
EP0483913A1 (en) * 1990-11-02 1992-05-06 Koninklijke Philips Electronics N.V. Band-gap reference circuit
US5180967A (en) * 1990-08-03 1993-01-19 Oki Electric Industry Co., Ltd. Constant-current source circuit having a mos transistor passing off-heat current
EP0531615A2 (en) * 1991-08-09 1993-03-17 Nec Corporation Temperature sensor circuit and constant-current circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249139B2 (en) * 1974-09-04 1977-12-15
US4300091A (en) * 1980-07-11 1981-11-10 Rca Corporation Current regulating circuitry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052553A1 (en) * 1980-11-14 1982-05-26 Societe Pour L'etude Et La Fabrication De Circuits Integres Speciaux - E.F.C.I.S. Integrated current-source generator in CMOS technology
GB2186453A (en) * 1986-02-07 1987-08-12 Plessey Co Plc Reference circuit
EP0454250A1 (en) * 1990-04-27 1991-10-30 Koninklijke Philips Electronics N.V. Reference generator
US5180967A (en) * 1990-08-03 1993-01-19 Oki Electric Industry Co., Ltd. Constant-current source circuit having a mos transistor passing off-heat current
EP0483913A1 (en) * 1990-11-02 1992-05-06 Koninklijke Philips Electronics N.V. Band-gap reference circuit
EP0531615A2 (en) * 1991-08-09 1993-03-17 Nec Corporation Temperature sensor circuit and constant-current circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744262A1 (en) * 1996-01-31 1997-08-01 Sgs Thomson Microelectronics Current reference device providing stable timing for integrated memory circuit
EP0788047A1 (en) * 1996-01-31 1997-08-06 STMicroelectronics S.A. Device for current reference in an integrated circuit
US5903141A (en) * 1996-01-31 1999-05-11 Sgs-Thomson Microelectronics S.A. Current reference device in integrated circuit form
WO2008121123A1 (en) * 2007-03-30 2008-10-09 Linear Technology Corporation Bandgap voltage and current reference
US8085029B2 (en) 2007-03-30 2011-12-27 Linear Technology Corporation Bandgap voltage and current reference

Also Published As

Publication number Publication date
EP0687967B1 (en) 1998-04-08
JPH08123565A (en) 1996-05-17
FR2721119B1 (en) 1996-07-19
DE69501980T2 (en) 1998-08-06
JP2684600B2 (en) 1997-12-03
FR2721119A1 (en) 1995-12-15
DE69501980D1 (en) 1998-05-14
US5644216A (en) 1997-07-01

Similar Documents

Publication Publication Date Title
EP3176669A1 (en) Circuit for generating a reference voltage
EP0756223B1 (en) Reference voltage and/or current generator in integrated circuit
EP0733961B1 (en) Reference current generator in CMOS technology
EP0687967B1 (en) Temperature stable current source
EP0788047B1 (en) Device for current reference in an integrated circuit
CH697322B1 (en) A method of generating a substantially Independent current temperature and device for carrying out this method.
EP0583203B1 (en) Circuit that pulls the input of an integrated circuit into a defined state
FR2842317A1 (en) REFERENCE VOLTAGE SOURCE, TEMPERATURE SENSOR, TEMPERATURE THRESHOLD DETECTOR, CHIP AND CORRESPONDING SYSTEM
FR2670035A1 (en) CIRCUIT FOR PRODUCING REFERENCE VOLTAGE OF A SEMICONDUCTOR MEMORY DEVICE.
FR2890259A1 (en) Reference current generation circuit for bias voltage generation circuit, has current compensation unit removing increment of current increasing in inverse proportion to power supply voltage for forming compensated current
EP0700141B1 (en) Temperature detector on an integrated circuit
FR2832819A1 (en) Temperature compensated current source, uses three branches in a circuit forming two current mirrors to provide reference currents and switches between resistance paths to provide compensation
FR3086405A1 (en) ELECTRONIC DEVICE CAPABLE OF FORMING A TEMPERATURE SENSOR OR A CURRENT SOURCE PROVIDING A TEMPERATURE INDEPENDENT CURRENT.
FR2995723A1 (en) CIRCUIT FOR SUPPLYING VOLTAGE OR CURRENT
EP0649079B1 (en) Regulated voltage generating circuit of bandgap type
FR2890239A1 (en) Integrated circuit, has comparison device comparing measured values of one of transistors and reference values, and biasing device delivering bias voltage, based on comparison, to substrates of transistors for biasing substrates to voltage
EP0902437B1 (en) High-voltage generating circuit for programming or erasing a memory
US4629972A (en) Temperature insensitive reference voltage circuit
FR2834805A1 (en) CURRENT OR VOLTAGE GENERATOR HAVING A STABLE OPERATING POINT IN TEMPERATURE
EP0562980A1 (en) Auto-protected divider bridge
EP3832430A1 (en) Electronic voltage divider circuit in fdsoi technology
FR2757964A1 (en) Voltage regulator for supplying power to integrated circuits
FR2602367A1 (en) METHOD FOR STORING AN INFORMATION BIT IN AN INTEGRATED STATIC LIFE MEMORY CELL OF THE MOS TYPE, TRANSISTOR FOR IMPLEMENTING THE METHOD, AND MEMORY RESULTING THEREFROM
EP1271440B1 (en) High-voltage regulator with external control
FR2826495A1 (en) Buffer circuit, incorporating memory cell and random-access memory

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19951110

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970625

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

REF Corresponds to:

Ref document number: 69501980

Country of ref document: DE

Date of ref document: 19980514

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980622

ITF It: translation for a ep patent filed

Owner name: RIL. X. MOTIVO DEP.;PORTA CHECCACCI E BOTTI S.R.L.

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STMICROELECTRONICS S.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040608

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040609

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040624

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050612

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050612

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228