EP0680594B1 - Heat exchanger device and method of transferring heat - Google Patents
Heat exchanger device and method of transferring heat Download PDFInfo
- Publication number
- EP0680594B1 EP0680594B1 EP94905894A EP94905894A EP0680594B1 EP 0680594 B1 EP0680594 B1 EP 0680594B1 EP 94905894 A EP94905894 A EP 94905894A EP 94905894 A EP94905894 A EP 94905894A EP 0680594 B1 EP0680594 B1 EP 0680594B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- tube system
- tubes
- tube
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
Definitions
- the present invention refers to heat exchangers and in particular to heat exchangers in low temperature systems where heat is to be transferred from a fluid in a circulatory system to a fluid in another system.
- An example of use of such systems is between a solar collector circuit and an accumulator tank.
- Heat exchangers are known in the art, for example of US 4,619,317, US 3,556,199, US 3,448,792, SU 958 830.
- US 4,619,317 relates to a heat exchanger comprising a support frame and a feed line, a heater for the forward flow, heat exchange tubes, a heater for the return flow and a discharge line for a heat transfer medium.
- the heat exchange tubes are capillary tubes which are fixed interlocking one another by means of connecting elements, and the ends of the capillary tubes lead into the forward flow heater and the return flow heater of the heat transfer medium.
- the heat exchange capillaries particularly have an external diameter of from 0,1 to 10 mm and wall thicknesses of from 40 % to 5 % of the external diameter of the heat exchange capillaries.
- the clear spacing between the capillary windings are 1 to 5 times the external diameter of the heat exchange capillaries. Large and small heat exchanger packs or blocks of any desired capacity can be produced.
- the individual helices of the heat exchange capillaries always have the same pressure drop being provided with the same internal diameter and having the same length.
- the heat exchange capillaries are arranged with a mutual interlock and connected to one another by connecting elements. These are for example straight wires or even capillaries mounted between the support frames.
- the US 3,556,199 relates to a free convection cooling method and apparatus.
- a heat exchanger submerged in a coolant bath being constructed and arranged to obtain the greatest possible temperature-density differential between the circulating transport fluid and environmental coolant productive of strong natural convection currents.
- heated fluid from a source is pumped to an inlet manifold.
- the actual heat source is formed by an engine or electronic package or the like with respect to which the heat transport fluid is passed in heat absorbing relation.
- the liquid of the bath the heat exchanger being provided in has a temperature lower than that at which transport fluid is delivered to heat exchanger.
- the temperature differential is utilised to cool or to remove excess heat from the transport fluid. Nowhere in the heat exchanger are conditions created in which transport fluid of maximum temperature encounters coolant of minimum temperature. Hot spots or isolated locations of maximum temperature differential which may produce localised heavy convection currents with little or no convection flow in other portions of the heat exchanger, are avoided.
- the US 3,448,792 relates to a formal convection condenser and a method of use.
- a rapid heat transfer from a heat exchange fluid to a cooler fluid is effected by deposition of a condenser in the cooler fluid.
- the heat condenser comprises at least two coils, a smaller coil being positioned within a larger coil.
- the coils are held in a spaced relationship to each other and an inner and an outer shielding by spacers.
- the spacers are providing a vertical gap between the coils and shield means.
- the condenser apparatus is positioned in a liquid container or tank containing a liquid such as water.
- the apparatus is preferably positioned near the bottom of the container.
- the heat exchange fluid is superheated steam of a temperature of about 212 to about 900 degrees Fahrenheit or more.
- the superheated steam is gained for example by passing water at a temperature of about 70 degrees Fahrenheit through a heat storage composition maintained at a temperature of about 900 degrees Fahrenheit. Afterwards the superheated steam is passed into the condenser being submerged in a tank of water. The water having an original temperature of about 70 degrees Fahrenheit afterwards is rapidly heated at a temperature of about 140 degrees Fahrenheit. Thereby strong convection currents are generated by the heat differential. This causes a rapid circulation of water throughout the tank of water being heated.
- a problem in connection with fluid operated solar collector systems is in a simple and non-expensive way to be able to separate the circulatory system of the solar collector from a fluid operated energy storage system without any considerable part of the supplied energy being lost.
- This problem is solved by a heat exchanger according to the invention as claimed, the heat exchanger being provided between the systems.
- the heat exchanger structure according to the invention is particularly intended to optimize the heat transfer for use in which
- FIG. 1 shows a typical mode of application for the heat exchanger according to the invention in the solar heating technique.
- the contents of an accumulator tank 1 is heated by heat exchange from the solar collector fluid.
- the heat exchanger should either be in the tank (2a) built in or connected for self-circulation outside the tank (2b).
- the solar collector fluid is supplied at 3a and is returned at 4a while self- circulation 5a, 6a occurs in the tank 1 through the heat exchanger 2a.
- the solar collector fluid circulates the path 3b, 2b, 4b while the fluid in the tank 1 is supplied to the heat exchanger 2b at 5b and is passed through tubes 7 back to the tank at 6b.
- the heat exchanger performs a temperature raise of the cold water at the bottom of the tank from for example 30 °C up to 60 to 70 °C at through flow. This is performed at a logarithmic temperature difference between primary and secondary side of only about 5 degrees.
- a heat exchanger promotes the stratification of the tank, enables low values of flows in the solar collector circuit and totally leads to a system with higher performance. This can be accomplished by lower material consumption in the form of thinner tubes in the solar circuit and much less material in the heat exchanger which makes the system much more cost-effective.
- the heat exchanger is constructed from capillary tubes connected in parallel.
- a substantially laminar flow in the tubes is obtained, whereby the the heat transfer between the fluid that is pumped through the tubes and the surrounding fluid is considerably improved with respect to tubes of thicker dimensions.
- the heat exchanger will be particularly well dimensioned at an inner diameter of 1 - 2 mm, preferably 1.5 mm and a wall thickness less than 0.5 mm, preferably about 0.25 mm.
- the length of each tube should be one metre or more and the number of tubes depends on the power that is to be transmitted.
- the sizes are based on tubes of copper and pumping of water with antifreeze in the primary circuit.
- the capillary tubes can be arranged in various ways in order to obtain a good heat exchange, whereby in itself prior known arrangements may be used.
- the capillary tubes 8 on the outside are provided with a sparsely wound on wire 9, see figure 2.
- the wire 9, which preferably is constituted by a smooth wire of copper, in the completed heat exchanger serves the function that it partly creates a defined distance between concentric helices of capillary tubes provided with the wire, and partly enhances the heat transfer on the outside by using flange effect and eddy forming of the wire.
- the capillary tubes 8 can also be wound by a wire of other metal or by a wire consisting of several entwined thinner wires. Normally the wound on wire has only to be fixed to the capillary tube at the ends thereof but it is also possible to fix the wire at evenly spaced intervals or along the entire length thereof. Suitable means for this may be soldering, bonding, immersing in liquid tin or the like. As the heat exchanger is constructed from helically wound capillary tubes all or only a part of the capillary tubes can be wound with wire. It is also possible to use capillary tubes without a wound on wire for a heat exchanger according to the invention, whereby other means may be arranged to keep appropriate distance between the tube helices.
- capillary tubes In order to produce a heat exchanger according to the invention a number of capillary tubes are first cut to mainly equal length. All capillary tubes will be connected in parallel and they have to be approximately of equal length in order to obtain the same pressure drop and by this the same temperature drop at flowing through at the inside.
- the capillary tubes then are formed to helices with various diameters in such a way that the pitch angle for each helix is alike. Thereby is achieved that the various helices obtain mainly the same length.
- a different number of capillaries is provided in respective helix in such a way that the number capillaries is generally proportional to the diameter.
- the helix 12 with the smallest diameter contains two capillary tubes 12a and 12b wound in helix with the diameter 20 mm whereby the number of turns per tube becomes about 40 and the length of the helix about 400 mm.
- the next helix 13 with the diameter 30 mm contains three capillary tubes (13a-13c) forming about 27 turns each in order to attain the same length.
- the third turn 14 with 40 mm diameter contains four capillary tubes (14a-14d), which each attain about 20 turns and the fourth helix 15 with 40 mm diameter contains five capillary tubes (15a-15e), which attains about 16 turns for same length.
- the 14 capillary tubes in the example will fill up this space equally and the heat transfer from the primary flow to the secondary becomes equal over the entire tube slot.
- the external diameter of the capillary tube was 2,8 mm and the wire 1 mm.
- the surrounding tube 10 extends longer than the very heat exchanger part 2 with the capillary tubes to improve the self circulation.
- the tube 10 shall also be able to accommodate couplings (not shown) between the capillary tubes and the external solar collector circuit, which can be realized in an arbitrary way which allows mainly uniform tube lengths and minor obstruction in the self circulatory circuit.
- Coupling to the ends of the capillary tubes can preferably be performed by following method: All tubes are brought together into a cover, after which the cover is filled with solder. Thereafter the cover is cut off so that all tube openings appear in the section surface, which then simply can be coupled to inflow and drain respectively. This procedure has proved to be a cost-effective method to join the tubes, without which a heat exchanger with many capillary tubes according to the invention could not have been produced without problems.
- each cutaway tube end should obtain an elongated curved elliptical shape along the helix.
- the heat exchanger 2 In order to allow self circulation in the secondary circuit the heat exchanger 2 needs also to be dimensioned such, that the secondary fluid flow is not obstructed too much by the package of helically wound capillary tubes. This is achieved thereby that the fluid volume surrounding the capillary tubes in the heat exchanger part 2 relates to the fluid volume inside the capillary tubes as at least 2:1 and preferably more than 5:1. There is of course also an upper limit above which the heat transfer is deteriorated.
- the flow direction of the fluid in the self circulatory circuit is in the main perpendicular to the capillary tubes, whereby the specific heat transfer capability is enhanced.
- a combination of heat transfer from a tube in undisturbed fluid and superponated active flow is utilized and is determined by the density difference between cold and hot water at inlet and outlet respectively secondary side of the heat exchanger as well as the total height of the tube 10.
- the pressure drop on the self-circulatory side can be within the interval 30 - 100 Pa.
- the internal pressure loss by pumping should be at least about 100 times larger, preferably about 1000 times larger or more, and can be within the interval of about 10 - 100 kPa.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9300209A SE9300209L (sv) | 1993-01-23 | 1993-01-23 | Värmeväxlare |
SE9300209 | 1993-01-23 | ||
PCT/SE1994/000048 WO1994017355A1 (en) | 1993-01-23 | 1994-01-24 | Heat exchanger device and method of transferring heat |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0680594A1 EP0680594A1 (en) | 1995-11-08 |
EP0680594B1 true EP0680594B1 (en) | 2000-09-27 |
Family
ID=20388645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94905894A Expired - Lifetime EP0680594B1 (en) | 1993-01-23 | 1994-01-24 | Heat exchanger device and method of transferring heat |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0680594B1 ( ) |
AT (1) | ATE196686T1 ( ) |
AU (1) | AU5981994A ( ) |
DE (1) | DE69426016T2 ( ) |
SE (1) | SE9300209L ( ) |
WO (1) | WO1994017355A1 ( ) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0942250A1 (de) * | 1998-03-09 | 1999-09-15 | Romabau AG | Tieftemperatur-Wärmetauscher |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116790A (en) * | 1958-03-28 | 1964-01-07 | Kohlenscheidungs Gmbh | Tube heat exchanger |
US3251401A (en) * | 1964-05-11 | 1966-05-17 | M B Gardner Co Inc | Heat exchanger |
US3448792A (en) * | 1966-11-07 | 1969-06-10 | Hooker Chemical Corp | Thermal convection condenser and method of use |
US3556199A (en) * | 1968-05-13 | 1971-01-19 | United Aircraft Prod | Free convection cooling method and apparatus |
US3718181A (en) * | 1970-08-17 | 1973-02-27 | Du Pont | Plastic heat exchange apparatus |
DE2731027C2 (de) * | 1977-07-08 | 1979-07-12 | Elpag Ag Chur, Chur (Schweiz) | Verfahren zur Herstellung von dünnwandigen Metallrohren |
NL7811007A (nl) * | 1978-11-06 | 1980-05-08 | Akzo Nv | Inrichting voor het overdragen van warmte door middel van holle draden. |
NO148830C (no) * | 1979-10-15 | 1983-12-21 | Cinderella | Anordning til forvarming av vaeske, f.eks. vaeskeformig freon |
DE3126618C2 (de) * | 1981-07-06 | 1986-08-07 | Akzo Gmbh, 5600 Wuppertal | Wärmeaustauscher aus Hohlfäden |
DE3320632A1 (de) * | 1983-06-08 | 1984-12-13 | Hoechst Ag, 6230 Frankfurt | Waermeaustauscher |
-
1993
- 1993-01-23 SE SE9300209A patent/SE9300209L/ not_active Application Discontinuation
-
1994
- 1994-01-24 EP EP94905894A patent/EP0680594B1/en not_active Expired - Lifetime
- 1994-01-24 DE DE69426016T patent/DE69426016T2/de not_active Expired - Fee Related
- 1994-01-24 WO PCT/SE1994/000048 patent/WO1994017355A1/en active IP Right Grant
- 1994-01-24 AU AU59819/94A patent/AU5981994A/en not_active Abandoned
- 1994-01-24 AT AT94905894T patent/ATE196686T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
SE9300209D0 (sv) | 1993-01-23 |
DE69426016D1 (de) | 2000-11-02 |
EP0680594A1 (en) | 1995-11-08 |
AU5981994A (en) | 1994-08-15 |
SE9300209L (sv) | 1994-07-24 |
DE69426016T2 (de) | 2001-02-22 |
ATE196686T1 (de) | 2000-10-15 |
WO1994017355A1 (en) | 1994-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10854344B2 (en) | Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials | |
US20010032718A1 (en) | System and method for cooling transformers | |
US11419241B2 (en) | Heat exchanging arrangement and subsea electronic system | |
EP2766685B1 (en) | Combined gas-water tube hybrid heat exchanger | |
GB1140533A (en) | Liquid-metal cooled nuclear reactors | |
US4785878A (en) | Double-spiral heat exchanger | |
EP0680594B1 (en) | Heat exchanger device and method of transferring heat | |
US11761709B2 (en) | Heat exchanger | |
JP7416854B2 (ja) | スタッドにより形成された少なくとも1つの流体供給分配ゾーンを組み込んだチャネルを備えるプレートを有するタイプの熱交換器モジュール | |
JP2005201625A (ja) | 熱交換器およびその製造方法 | |
EP3882933A1 (en) | Systems and methods for thermal management in inductors | |
US4073267A (en) | Vapor generator | |
RU2534396C1 (ru) | Теплообменник и вытеснитель используемый в нем | |
CN109945705B (zh) | 一种放热能力高度变化的环路热管蓄热器 | |
JPH04167A (ja) | 熱交換器 | |
CN217275735U (zh) | 一种高效的复合材料的翅片式热交换器 | |
CN206758229U (zh) | 电力变压器 | |
CN118242922A (zh) | 一种用于制取蒸汽的蓄热式管壳换热装置 | |
Golovko et al. | Development and investigations of compact heat-transfer equipment for a nuclear power station equipped with a high-temperature gas-cooled reactor | |
JPH07159073A (ja) | 熱交換器 | |
RU2036406C1 (ru) | Кожухотрубный змеевиковый теплообменник | |
RU2024157C1 (ru) | Обмотка возбуждения с жидкостным охлаждением | |
RU2023227C1 (ru) | Теплообменный элемент | |
SU960974A1 (ru) | Трубчатый бак трансформатора | |
GB2172695A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19970131 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000927 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20000927 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000927 |
|
REF | Corresponds to: |
Ref document number: 196686 Country of ref document: AT Date of ref document: 20001015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KELLER & PARTNER PATENTANWAELTE AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69426016 Country of ref document: DE Date of ref document: 20001102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010124 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20071214 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080124 Year of fee payment: 15 Ref country code: DE Payment date: 20080124 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080115 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090801 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090125 |