EP0679177A1 - Compositions detersives pour lave-vaisselle - Google Patents

Compositions detersives pour lave-vaisselle

Info

Publication number
EP0679177A1
EP0679177A1 EP94907190A EP94907190A EP0679177A1 EP 0679177 A1 EP0679177 A1 EP 0679177A1 EP 94907190 A EP94907190 A EP 94907190A EP 94907190 A EP94907190 A EP 94907190A EP 0679177 A1 EP0679177 A1 EP 0679177A1
Authority
EP
European Patent Office
Prior art keywords
composition
weight
available oxygen
preferred
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP94907190A
Other languages
German (de)
English (en)
Other versions
EP0679177A4 (fr
Inventor
Fiona Susan 5 Cheswick Drive Macbeath
Lynda Anne 21 Mayfield Road Jones
John Christopher Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP94907190A priority Critical patent/EP0679177A1/fr
Publication of EP0679177A1 publication Critical patent/EP0679177A1/fr
Publication of EP0679177A4 publication Critical patent/EP0679177A4/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0073Anticorrosion compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present invention relates to detergent compositions, suitable for use in machine dishwashing, exhibiting good bleachable stain removal and enhanced anti silver- tarnishing properties, and to a process for making said compositions.
  • Detergent compositions designed for use in automatic dishwasher machines are well known, and a consistent effort has been made by detergent manufacturers to improve the cleaning and/or rinsing efficiency of said compositions on dishes and glassware, as reflected by numerous patent publications.
  • the present invention is concerned with the silver- tarnishing problem encountered when detergent compositions which contain oxygen-bleaching species are employed in machine dishwashing methods.
  • a problem encountered with the use of such bleaches is the tarnishing of any silverware components of the washload.
  • Oxygen bleaches tend to give rise to the problem of tarnishing more than chlorine bleaches.
  • the level of tarnishing observed can range from slight discolouration of the silverware to the formation of a dense black coating on the surface of the silverware.
  • the formulator thus faces the dual challenge of formulating a product which maximises bleachable soil cleaning but minimises the occurrence of tarnishing of silverware components of the washload.
  • the rate of release of oxygen bleach should be rapid enough to provide satisfactory cleaning, but not so rapid that tarnishing is enabled. It is the Applicant's finding that it is necessary for the release of the oxygen bleach to be delayed in order to allow a protective paraffin coating of the silverware to form. This coating protects the silver surface from the potential tarnishing effect of the oxygen bleach species.
  • compositions suitable for use in machine dishwashing methods having enhanced anti-silver tarnishing properties, as well as good cleaning performance, particularly bleachable soil removal performance.
  • the present invention also encompasses a making process for the detergent compositions herein, which optimizes the anti silver-tarnishing performance of the resulting product.
  • EPA 150 387 discloses chlorine-bleach based machine dishwashing compositions containing a paraffin wax as suds suppressor.
  • EPA 186 088 discloses machine dishwashing compositions based on carbonates and silicates and optionally chlorine or oxygen bleaches, containing paraffin oils as dust binders. None of these references disclose the control of the rate of release of the bleach systems.
  • an oxygen-releasing bleaching agent such that the level of available oxygen measured according to the method herein is from 0.3% to 2.5%, preferably 0.5% to 1.7% wherein the rate of release of said available oxygen is such that the available oxygen is completely released from the composition in a time interval of from 3.5 minutes to 10.0 minutes, using the test protocol described in the present description.
  • compositions contain as essential components a builder, an oxygen-releasing bleaching species and a paraffin oil.
  • the level of available oxygen and rate of release of available oxygen is controlled.
  • the first essential component of the detergent compositions of the present invention is a detergent builder compound present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • the level of alkali metal carbonate or bicarbonate in the present compositions should preferably be inferior to 7%, more preferably inferior to 5%, by weight of the total composition. Most preferably the present composition should be free of alkali metal carbonate or bicarbonate species.
  • Suitable detergent builder compounds include, but are not restricted to monomeric polycarboxylates, or their acid forms homo or copolymeric polycarboxylie acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • Suitable monomeric or oligomeric carboxylate builders can be selected from a wide range of compounds but such compounds preferably have a first carboxyl logarithmic acidity/constant (pK ⁇ ) of less than 9, preferably of between 2 and 8.5, more preferably of between 4 and 7.5.
  • the logarithmic acidity constant is defined by reference to the equilibrium
  • A is the fully ionized carboxylate anion of the builder salt.
  • acidity constants are defined at 25°C and at zero ionic strength.
  • Literature values are taken where possible (see Stability Constants of Metal-Ion Complexes, Special Publication No. 25, The Chemical Society, London) : where doubt arises they are determined by potentiometric titration using a glass electrode.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Monomeric and oligomeric builders can be selected from acyclic, alicyclic, heterocyclic and aromatic carboxylates having the general formulae wherein Ri represents H,C ⁇ _3o alkyl or alkenyl optionally substituted by hydroxy, carboxy, sulfo or phosphono groups or attached to a polyethylenoxy moiety containing up to 20 ethyleneoxy groups; R represents H, C1-.4 alkyl, alkenyl or hydroxy alkyl, or alkaryl, sulfo, or phosphono groups; X represents a single bond; 0; S; SO; S0 2 ; or NRi;
  • Y represents H; carboxy;hydroxy; carboxymethyloxy; or Ci- 30 alkyl or alkenyl optionally substituted by hydroxy or carboxy groups;
  • Z represents H; or carboxy; m is an integer from 1 to 10; n is an integer from 3 to 6; p, q are integers from 0 to 6, p + q being from 1 to 6; and wherein, X, Y, and Z each have the same or different representations when repeated in a given molecular formula, and wherein at least one Y or Z in a molecule contain a carboxy1 group.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-l,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5- tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5- tetrahydrofuran - cis - dicarboxylates, 2,2,5,5- tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as components of builder systems of detergent compositions in accordance with the present invention.
  • Suitable water soluble organic salts are the homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756.
  • Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000. These materials are normally used at levels of from 0.5% to 10% by weight more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
  • Water-soluble detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates) , phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates) , and sulfates.
  • polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
  • phytic acid e.g., silicates, carbonates (including bicarbonates and sesquicarbonates) , and sulfates.
  • carbonates including bicarbonates and sesquicarbonates
  • sulfates sulfates.
  • the levels of incorporation of carbonates or bicarbonates or mixtures thereof, is however preferably limited to less than 7% by weight of the composition.
  • phosphate builders as well as builders containing borate- forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40 Q C.
  • Specific examples of phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Suitable silicates include the water soluble sodium silicates with an Si0 2 : Na 2 0 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an Si0 2 : Na 2 0 ratio of 2.0 is the most preferred silicate.
  • Silicates are preferably present in the machine dishwashing detergent compositions at the invention at a level of from 5% to 50% by weight of the composition, more preferably from 10% to 40% by weight, most preferably from 12% to 25% by weight.
  • Examples of such less water soluble builders include the crystalline layered silicates and the largely water insoluble sodium aluminosilicates.
  • Crystalline layered sodium silicates have the general formula
  • M is sodium or hydrogen
  • x is a number from 1.9 to 4 and y is a number from 0 to 20.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A- 3417649 and DE-A-3742043.
  • x in the general formula above has a value of 2, 3 or 4 and is preferably 2. More preferably M is sodium and y is 0 and preferred examples of this formula comprise the oi, -, B -, V " and $ " - forms of Na 2 Si 2 05. These materials are available from Hoechst AG FRG as respectively
  • NaSKS-5, NaSKS-7, NaSKS-11 and NaSKS-6 The most preferred material is " -Na 2 Si 2 ⁇ 5, NaSKS-6.
  • the crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water- soluble ionisable material.
  • the solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof. The primary requirement is that the material should contain at least one functional acidic group of which the pKa should be less than 9, providing a capability for at least partial neutralisation of the hydroxyl ions released by the crystalline layered silicate.
  • incorporation in the particulate of other ingredients additional to the crystalline layered silicate and ionisable water soluble compound can be advantageous particularly in the processing of the particulate and also in enhancing the stability of detergent compositions in which the particulates are included.
  • certain types of agglomerates may require the addition of one or more binder agents in order to assist in binding the silicate and ionisable water soluble material so as to produce particulates with acceptable physical characteristics.
  • the crystalline layered sodium silicate containing particulates can take a variety of physical forms such as extrudates, marumes, agglomerates, flakes or compacted granules.
  • a preferred process for preparing compacted granules comprising crystalline layered silicate and a solid, water-soluble ionisable material has been disclosed in the commonly assigned British Application No. 9108639.7 filed on 23 April 1991.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [ (A10 2 ) z (Si0 2 )y] . XH 2 0 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • aluminosilicate ion exchange materials are further characterised by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaC0 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
  • the aluminosilicate ion exchange materials herein are still further characterised by their calcium ion exchange rate which is at least 130 mg equivalent of CaC0 3 / litre / minute / (g/litre) [2 grains Ca + + / gallon/ minute/ gram/ gallon) ] of aluminosilicate (anhydrous basis) , and which generally lies within the range of from 130 mg equivalent of CaC0 3 / litre/ minute/ (gram/litre) [2 grains/ gallon/ minute/ (gram/ gallon)] to 390 mg equivalent of CaC0 3 / litre/ minute/ (gram/litre) [4 grains/ gallon/ minute/ (gram/ gallon)], based on calcium ion hardness.
  • Optimum alu inosilicates for builder purposes exhibit a calcium ion exchange rate of at least 260 mg equivalent of CaC0 3 /litre/ minute/ (gram/litre) [4 grains/gallon/minute/
  • the aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in US Patent No. 3,985,669. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
  • Zeolite X has the formula Na 86 [ (A10 2 ) 86 (Si0 2 ) 10 6-] • 276 H 2 0 has the formula Na 6 [ (A10 2 ) 6 (Si0 2 ) 6 ] 7.5 H 2 0) .
  • the second essential feature of the invention is a bleaching agent selected from oxygen-releasing agents such as inorganic perhydrate salts, peroxyacid bleach precursors, organic peroxyacids and mixtures thereof.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Sodium perborate which is the most preferred perhydrate for inclusion in the detergent compositions in accordance with the invention, can be in the form of the onohydrate of nominal formula NaB0 2 H 2 0 2 or the tetrahydrate NaB0 2 H 2 0 2 .3H 2 0.
  • the perborate tetrahydrate species is preferred over the monohydrate species because of its slow dissolution and therefore better controlled release of available oxygen.
  • Sodium percarbonate which is another preferred perhydrate for inclusion in detergent compositions in accordance with the invention, is an addition compound having a formula corresponding to 2Na 2 C03.3H 2 0 2 , and is available commercially as a crystalline solid.
  • the percarbonate is most preferably incorporated into such compositions in coated form.
  • the most preferred coating material comprises mixed salt of an alkali metal sulphate and carbonate.
  • the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to
  • the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na 2 S ⁇ 4.n.Na 2 C ⁇ 3 wherein n is form 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
  • Another suitable coating material is sodium silicate of Si0 2 : Na 0 ratio from 1.6 : 1 to 3.4 : 1, preferably 2.8 :
  • silicate solids by weight of the percarbonate.
  • Magnesium silicate can also be included in the coating.
  • suitable coating materials include the alkali and alkaline earth metal sulphates and carbonates.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of particular usefulness in the machine dishwashing detergent compositions.
  • the level of inorganic perhydrate salt is typically from 2% to 25%, more preferably from 3.5% to 20% by weight of the total composition.
  • Peroxyacid bleach precursors are preferably used in combination with the above perhydrate salts.
  • the bleach precursors useful herein contain one or more N- or 0- acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
  • the most preferred classes are esters such as are disclosed in GB-A-836988, 864798, 1147871 and 2143231 and imides such as are disclosed in GB- A-855735 & 1246338.
  • Particularly preferred precursor compounds are the N,N,N 1 ,N 1 tetra acetylated compounds of formula
  • x can be 0 or an integer between 1 & 6.
  • TAMD tetra acetyl methylene diamine
  • TAED tetra acetyl ethylene diamine
  • TAHD tetraacetyl hexylene diamine
  • peroxyacid bleach precursor compounds are the amide substituted compounds of the following general formulae:
  • R 1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms
  • R 2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms
  • R 5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • R 1 preferably contains from about 6 to 12 carbon atoms.
  • R 2 preferably contains from about 4 to 8 carbon atoms.
  • R 1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat.
  • R 2 Analogous structural variations are permissible for R 2 .
  • the substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
  • R 5 is preferably H or methyl.
  • R 1 and R 5 should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • peroxyacid bleach precursor compounds include sodium nonanoyloxy benzene sulfonate, sodium trimethyl hexanoyloxy benzene sulfonate and sodium acetoxy benzene sulfonate.
  • the peroxyacid bleach precursors are normally incorporated at levels up to 7% by weight of active material, more preferably from 1% to 5% by weight of active material, of the total composition.
  • the bleaching species herein may also contain organic peroxyacids of which a particularly preferred class are the amide substituted peroxyacids of general formula :
  • R 1 , R 2 and R 5 are as defined previously for the corresponding amide substituted peroxyacid bleach precursor compounds.
  • organic peroxyacids include diperoxy dodecanedioic acid, diperoxy tetra decanedioic acid, diperoxyhexadecanedioic acid, mono- and diperazelaic acid, mono- and diperbrassylie acid, monoperoxy phthalic acid, perbenzoic acid, and their salts as disclosed in, for example, EP-A-0341947.
  • the peroxyacids can be used at levels up to 7% by weight, more preferably from 1% to 5% by weight of the composition.
  • the level of available oxygen in the present compositions should be carefully controlled; the level of available oxygen should be in the range 0.3% to 2.5%, preferably 0.5% to 1.7%, more preferably 0.6% to 1.2%, most preferably from 0.7% to 1.1%, measured according to the method described hereunder.
  • the rate of release of available oxygen is also controlled; the rate of release of available oxygen from the compositions herein should be such that, when using the method described hereinafter, the available oxygen is not completely released from the composition until after 3.5 minutes, preferably the available oxygen is released in a time interval of from 3.5 minutes o 10.0 minutes, more preferably from 4.0 minutes to 9.0 minutes, most preferably from 5.0 minutes to 8.5 minutes.
  • the control of available oxygen release rate can be achieved by various means.
  • Said means can include careful choice of the oxygen- releasing species on the basis of its having a suitable dissolution profile. And, in particular careful choice of particle size and grade of bleach to provide acceptable dissolution characteristics.
  • Said means can also include coating the bleaching agent with a coating designed to provide said controlled rate of release.
  • the coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
  • the coating material may be applied using various methods.
  • the coating material is typically present at a weight ratio of coating material to bleaching agent of from 1:99 to 1:2, preferably from 1:49 to 1:9.
  • a preferred coating material comprises the paraffin oil herein.
  • a particularly preferred coated bleaching agent particle comprises a bleaching agent, preferably an inorganic perhydrate salt particle, with a dual coating comprising an inner wax (paraffin) coating and an outer silica coating, wherein the wax (paraffin) typically has a melting point in the range 50°C to 90°C.
  • This dual coating allows for improved particle flow and for improved control over rate of dissolution in the wash solution.
  • One method for applying the coating material involves agglomeration. Any conventional agglomerator/mixer may be used including but not limted to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
  • Other means of providing controlled release may include mechanical means for altering the physical characteristics of the bleaching agent to control its solubility and rate of release, particularly for oxygen bleach compounds in dry form; suitable protocols could include compaction, mechanical injection, manual injection, solubility adjustment of the bleaching compound by selected particle size etc. Compaction of the oxygen bleaching agent is a particularly preferred means of control of rate of release of oxygen herein. Additional protocols could include ionic strength adjustment for regulating the rate of dissolution for the bleaching compound.
  • a further controlled release means could involve blending of the bleaching compound with a less soluble or hydrophobic compound acting as a carrier, for example clays, zeolite, polymeric resins etc.
  • the rate of release can be measured according to the method now described: Method for Measuring Level of Total Available Oxygen fAvO ⁇ and Rate of Release, in a Machine Dishwashing Detergent Composition
  • a beaker of water (typically 2L) is placed on a stirrer Hotplate, and the stirrer speed is selected to ensure that the product is evenly dispersed through the solution.
  • the detergent composition (typically 8g of product which has been sampled down from a bulk supply using a Pascal sampler) , is added and simultaneously a stop clock is started.
  • the temperature control should be adjusted so as to maintain a constant temperature of 20°C throughout the experiment.
  • Samples are taken from the detergent solution at 2 minute time intervals for 20 mins, starting after 1 minute, and are titrated by the "titration procedure" described below to determine the level of available oxygen at each point.
  • the level of AvO, measured in units of % available oxygen by weight, for the sample at each time interval corresponds to the amount of titre according to the following equation
  • AvO level is plotted versus time as follows
  • the paraffin oil is the paraffin oil
  • the present compositions must contain from 0.05% to 2.5%, preferably from 0.1% to 0.6% by weight of the total composition of a paraffin oil typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50; preferred paraffin oil selected from predominantly branched C 2 5_45 species with a ratio of cyclic to noncyclic hydrocarbons of from 1:10 to 2:1, preferably from 1:5 to 1:1.
  • a paraffin oil meeting these characteristics, having a ratio of cyclic to noncyclic hydrocarbons of about 32:68, is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
  • compositions of the invention may comprise additional ingredients, which are often quite desirable ones.
  • Chlorine bleaches include the alkali metal hypochlorites and chlorinated cyanuric acid salts.
  • the use of chlorine bleaches in the composition of the invention is optional and preferably minimized, and more preferably the present compositions contain no chlorine bleach.
  • a highly preferred component of the compositions of the invention is a surfactant system comprising surfactant selected from anionic, cationic, nonionic ampholytic and zwitterionic surfactants and mixtures thereof.
  • the surfactant system is preferably present at a level of from 0.5% to 30% by weight, more preferably 1% to 25% by weight, most preferably from 2% to 20% by weight of the compositions.
  • Sulphonates include alkyl benzene sulphonates having from 5 to 15 carbon atoms in the alkyl radical, and alpha- sulphonated methyl fatty acid testers in which the fatty acid is derived from a C 6 -C18 fatty source.
  • Preferred sulphate surfactants are alkyl sulphates having from 6 to 16, preferably 6 to 10 carbon atoms in the alkyl radical.
  • Useful surfactant system comprises a mixture of two alkyl sulphate materials whose respective mean chain lengths differ from each other.
  • the cation in each instance is again an alkali metal, preferably sodium.
  • the alkyl sulfate salts may be derived from natural or synthetic hydrocarbon sources.
  • the C 6 -C 16 alkyl ethoxysulfate salt comprises a primary alkyl ethoxysulfate which is derived from the condensation product of a alcohol condensed with an average of from one to seven ethylene oxide groups, per mole.
  • anionic surfactants suitable for the purposes of the invention are the alkali metal sarcosinates of formula
  • R-CON (R 1 ) CH 2 COOM wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R 1 is a C1-C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • R 1 is a C1-C4 alkyl group
  • M is an alkali metal ion.
  • Preferred examples are the lauroyl, Cocoyl (C 12 -C 1 ) , myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • alkyl ester sulfonate surfactants which include linear esters of Cs-C 2 n carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous S0 3 according to "The Journal of the American Oil Chemists Society," 52 (1975), pp. 323- 329.
  • Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • the preferred alkyl ester sulfonate surfactants have the structural formula:
  • R 3 is a C8"C 20 hydrocarbyl, preferably an alkyl, or combination thereof
  • R 4 is a C ⁇ -Cg hydrocarbyl, preferably an alkyl, or combination thereof
  • M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine.
  • R 3 is c 10 ⁇ 16 alkyl
  • R 4 is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R 3 is C ⁇ o ⁇ Ci 6 alkyl.
  • One preferred class of nonionic surfactants useful in the present invention comprises the water soluble ethoxylated Cg-Cig fatty alcohols and Cg-C ⁇ g mixed ethoxylated/propoxylated fatty alcohols and mixtures thereof.
  • the ethoxylated fatty alcohols are the c 10 ⁇ c 16 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the c 12"" c 16 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • C6-C16 alcohol itself can be obtained from natural or synthetic sources.
  • C6-C16 alcohols derived from natural fats, or Ziegler olefin build-up, or OXO synthesis can form suitable sources for the alkyl group.
  • synthetically derived materials include Dobanol 25 (RTM) sold by Shell Chemicals (UK) Ltd which is a blend of C 12 - C] ⁇ alcohols, Ethyl 24 sold by the Ethyl Corporation which is a blend of Ci2 ⁇ c i5 alcohols, and a blend of C 13 -C 15 alcohols in the ratio 67% C 13 ,33% sold under the trade name Lutensol by BASF GmbH and Synperonic (RTM) by ICI Ltd. , and Lial 125 sold by Liquichimica Italiana.
  • Examples of naturally occuring materials from which the alcohols can be derived are coconut oil and palm kernel oil and the corresponding fatty acids.
  • Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula
  • Z is a moiety derived from glucose
  • R is a saturated hydrophobic alkyl group that contains from 6 to 16 carbon atoms preferably from 6 to 14 carbon atoms
  • t is from 0 to 10 and n is 2 or 3
  • x is from 1.1 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent compositions are disclosed in EP-B 0070074, 0070077, 0075996 and 0094118.
  • Another preferred nonionic surfactant is a polyhydroxy fatty acid amide surfactant compound having the structural formula:
  • R 1 is H, C ⁇ C ⁇ hydrocarbyl, 2-hydroxy ethyl, 2- hydroxy propyl, or a mixture thereof, preferably C ⁇ -C alkyl, more preferably C ⁇ or C 2 alkyl, most preferably C- alkyl (ie., methyl); and R 2 is a C 5 -C 15 hydrocarbyl, preferably straight chain C5 ⁇ C 13 alkyl or alkenyl, more preferably straight chain C 5 -Cn alkyl or alkenyl, most preferably straight chain C 5 -C 9 alkyl or alkenyl, or mixture thereof: and Z is a polyhydroxyhydrocarbyl having linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxlylated derivative
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH,
  • n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof.
  • R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof.
  • Most preferred are glycityls wherein n is 4, particularly - CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2- hydroxy propyl.
  • R -CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, or tallowamide.
  • Z can be 1-deoxyglucityl, 2-deoxyfrucittyl, 1- deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl or 1- deoxymannityl, or 1-deoxymalto-triotityl.
  • Preferred compounds are N-methyl N-ldeoxyglucityl C ⁇ -C ⁇ s fatty acid amides.
  • a further class of surfactants are the semi-polar surfactants such as amine oxides.
  • Suitable amine oxides are selected from mono C 6 -C 20 , preferably C 6 -C 10 N-alkyl or alkenyl amine oxides and propylene-1,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxpropyl groups.
  • Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono Cg-C ⁇ g, preferably Cg-
  • Another optional ingredient useful in detergent compositions is one or more enzymes.
  • Preferred enzymatic materials include amylases, neutral and alkaline proteases, lipases, and esterases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • protease enzymes include those sold under the tradenames Alcalase and Savinase by Novo Industries A/S (Denmark) and Maxatase by International Bio-Synthetics, Inc. (The Netherlands).
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.005% to 2% active enzyme by weight of the composition.
  • Preferred amylases include, for example, -amylases obtained from a special strain of B licheniforms, described in more detail in GB 1,269,839 (Novo).
  • Preferred commercially available amylases include for example, Rapidase, sold by International Bio-Synthetics Inc, and Terma yl, sold by Novo Industries A/S. The invention at a level of from 0.001% to 2% active enzyme by weight of the composition.
  • a preferred lipase is derived from Pseudo onas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene is Aspergillus orvza. as host, as described in European Patent Application, EP-A-0258068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • Another optional ingredient is a lime soap dispersant compound, present at a level of from 0.05% to 40% by weight, more preferably 0.1% to 20% by weight, most preferably from 0.25% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • Preferred lime soap dispersants include C13-15 ethoxylated alcohol sulphates with an average degree of ethoxylation of 3.
  • the detergent compositions of the invention may fully contain from 0.005% to 3% by weight of the composition, preferably from 0.01% to 1% by weight, most preferably from 0.05% to 0.8% by weight of a chelant (heavy metal sequestrant) .
  • a suitable chelant for inclusion in the detergent compositions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • Preferred EDDS ethylenediamine-N,N'-disuccinic acid
  • EDDS compounds are the free acid form and the sodium or magnesium salt thereof.
  • Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 4 EDDS.
  • Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg 2 EDDS.
  • the magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
  • chelants include the organic phosphonates, including amino alkylene poly (alkylene phosphonate) , alkali metal ethane 1-hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates and diethylene triamine penta methylene phosphonates.
  • the phosphonate compounds may be present either in their acid form or as a complex of either an alkali or alkaline metal ion, the molar ratio of said metal ion to said phosphonate compound being at least 1:1. Such complexes are described in US-A-4,259,200.
  • the organic phosphonate compounds where present are in the form of their magnesium salt.
  • the level of phosphorus containing chelants in the compositions of the invention is preferably minimised, with their complete exclusion from the compositions being most preferred.
  • Another optional component of the detergent compositions of the invention is a silicone suds controlling agent present at levels of from 0.01% to 5% by weight, more preferably from 0.05% to 3% by weight, most preferably from 0.05% to 1% by weight of the composition.
  • silicone suds controlling agent any suds controlling agent which comprises a silicone antifoam compound.
  • silicone suds controlling agents include agents containing silicone-silica mixtures and particulates in which the silicone, or silicone-silica mixture, is incorporated in a water-soluble or water-dispersible carrier material.
  • the silicone suds controlling agents may comprise silicone, or silicone- silica mixutes dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components of the detergent composition.
  • silicone silicone has become a generic term which encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • silicone antifoam compounds can be described as siloxanes having the general structure :
  • each R independently can be an alkyl or an aryl radical.
  • substituents are methyl, ethyl, propyl, isobutyl, and phenyl.
  • Preferred polydiorganosiloxanes are polydimethylsiloxanes having trimethylsilyl endblocking units and having a viscosity at 25°C of from 5 x 10 ⁇ 5 m 2 /s to 0.1m /s i.e. a value of n in the range 40 to 1500. These are preferred because of their ready availability and their relatively low cost.
  • a preferred type of silicone suds controlling agent useful in the compositions herein comprises a mixture of an alkylated siloxane of the type hereinabove disclosed and solid silica.
  • the solid silica can be a fumed silica, a precipitated silica or a silica made by the gelformation technique.
  • the silica particles suitable have an average particle size of from 0.1 to 50 micrometers, preferably from 1 to 20 micrometers and a surface area of at least 50m 2 /g. These silica particles can be rendered hydrophobic by treating them with dialkylsilyl groups and/or trialkylsilyl groups either bonded directly onto the silica or by means of a silicone resin. It is preferred to employ a silica the particles of which have been rendered hydrophobic with dimethyl and/or trimethyl silyl groups.
  • the suds controlling agents for inclusion in the detergent compositions in accordance with the invention suitably contain an amount of silica such that the weight ratio of silica to silicone lies in the range from 1:100 to 3:10, preferably from 1:50 to 1:7.
  • a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethyl- silanated)silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above 50 m 2 /g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
  • Another preferred silicone suds controlling agent is disclosed in Bartollota et Al. US Patent 3,933,672.
  • Other particularly useful suds suppressors are the self- emulsifying silicone suds suppressors, described in German Patent Application DTOS 2,646,126 published April 28, 1977.
  • An example of such a compound is DC0544, commercially available from Dow Corning, which is a siloxane/glycol copolymer.
  • a highly preferred silicone suds controlling agent is a particulate of the type disclosed in EP-A-0210731 comprising a silicone antifoam and an organic material having a melting point in the range 50° to 85°C, wherein the organic material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses similar particulate suds controlling agents wherein the organic material however, is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • silicone suds controlling agents are described in copending European Application 91870007.1 in the name of the Procter and Gamble Company which discloses granular suds controlling agents comprising a silicone antifoam compound, a carrier material an organic coating material and glycerol at a weight ratio of glycerol: silicone antifoam compound of 1:2 to 3:1.
  • Copending European Application 91201342.0 also discloses highly preferred granular suds controlling agents comprising a silicone antifoam compound, a carrier material, an organic coating material and crystalline or amorphous aluminosilicate at a weight ratio of aluminosilicate: silicone antifoam compound of 1:3 to 3:1.
  • Ther preferred carrier material in both of the above described highly preferred granular suds controlling agents is starch.
  • the preferred methods of incorporation of the silicone suds controlling agents comprise either application of the silicone suds controlling agent in liquid form by spray-on to one or more of the major components of the composition or alternatively the formation of the silicone suds controlling agents into separate particulates that can then be mixed with the other solid components of the composition.
  • the incorporation of the suds controlling agents as separate particulates also permits the inclusion therein of other suds controlling materials such as C 20 -C 24 fatty acids, microcrystalline waxes and high MWt copolymers of ethylene oxide and propylene oxide which would otherwise adversely affect the dispersibility of the matrix. Techniques for forming such suds controlling particulates are disclosed in the previously mentioned Bartolotta et al US Patent No. 3,933,672.
  • compositions of the invention include antiredeposition, and soil-suspension agents, corrosion inhibitors, perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids, gels and tablets, granular forms being preferred.
  • the bulk density of the granular detergent compositions in accordance with the present invention is typically of at least 650 g/litre, more usually at least 700 g/litre and more preferably from 800 g/litre to 1200 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrial cup disposed below the funnel.
  • the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
  • the particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • the liquid should be thixotropic (ie; exhibit high viscosity when subjected to low stress and lower viscosity when subjected to high stress) , or at least have very high viscosity, for example, of from 1,000 to 10,000,000 centipoise.
  • a viscosity control agent or a thixotropic agent to provide a suitable liquid product form.
  • Suitable thixotropic or viscosity control agents include methyl cellulose, carboxymethylcellulose, starch, polyvinyl, pyrrolidone, gelatin, colloidal silica, and natural or synthetic clay minerals.
  • Pasty compositions in accordance with the invention generally have viscosities of about 5,000 centipoise and up to several hundred million centipoise.
  • a small amount of a solvent or solubilizing agent or of a gel-forming agent can be included. Most commonly, water is used in this context and forms the continuous phase of a concentrated dispersion. Certain nonionic surfactants at high levels form a gel in the presence of small amount of water and other solvents. Such gelled compositions also envisaged in the present invention. pH of the compositions
  • the pH of a 1% solution of the present compositions is preferably from 9.6 to 12, preferably from 9.8 to 11.5, most preferably from 10.0 to 11.0.
  • a preferred making process for the compositions herein comprises pre-mixing of the paraffin oil with a dispersing agent and the resultive intimate pre-mix being sprayed onto the remainder of the composition.
  • the dispersing agent can advantageously consist of a nonionic surfactant such as described hereinabove, which therefore serves two functions in the present composition.
  • a preferred dispersing agent is Plurafac LF404 sold by BASF.
  • An alternate route consists in spraying the intimate mixture of paraffin oil and dispersing agent onto the particles of bleaching agent, resulting in a reduction in the rate of dissolution in water of said bleaching agent and therefore providing a control over the rate of release of available oxygen.
  • the coated particles of bleaching agent are then dry-mixed with the remainder of the composition.
  • the particles of bleaching agents are compacted before being dry-mixed with the remainder of the composition .
  • This technique slows down the dissolution rate in water, and is therefore advantageously applied to otherwise fast dissolving species like perborate monohydrate.
  • the paraffin oil is typically compacted along with the bleaching species, and optionally other ingredients like sodium sulphate and/or binders.
  • the resulting particles are then dry-mixed with the remainder of the ingredients.
  • MA/AA Copolymers of 1:4 maleic/acrylic acid, average molecular weight about 80,000
  • Silicate Amorphous Sodium Silicate (Si0 2 :Na 2 0 ratio normally follows)
  • Protease Proteolytic enzyme sold under the trade name Savinase by Novo Industries
  • A/S Amylase Amylolytic enzyme sold under the trade name
  • Nonionic C1 3 -C 5 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the trade name Plurafac LF404 by BASF GmbH.
  • TAED Tetraacetyl ethylene diamine
  • machine dishwashing detergents according to the invention are prepared (parts by weight) :
  • Paraffin oil ( 2 ) 0.5 0.5 0.3
  • composition of Example I was compared for anti-silver tarnishing performance, to a reference composition (composition A) containing no paraffin oil.
  • composition A a reference composition containing no paraffin oil.
  • the complete release of the available oxygen of Example 1 was measured using the method described herein to occur over a time interval of 8 minutes in accord with the invention, whereas for Compositon A the complete release of available oxygen measured using said method occurred over a time interval of 2 minutes.
  • Example I The tea stain removal ability of Example I was furthermore measured to be equal to that of Composition A.

Abstract

La présente invention se rapporte à une composition détersive contenant de 1 % à 80 % en poids d'un composé adjuvant pour détergent; de 0,005 % à 2,5 % en poids d'une huile paraffineuse; un agent de blanchiment à libération d'oxygène, choisi de façon que le niveau d'oxygène disponible dans la composition, mesuré selon le procédé décrit, est compris entre 0,3 % et 2,5 % et le taux de libération d'oxygène disponible étant tel que l'oxygène est entièrement libéré de la composition en un intervalle de 3,5 minutes à 10 minutes, mesuré selon le protocol d'essai présenté dans le descriptif.
EP94907190A 1993-01-18 1994-01-11 Compositions detersives pour lave-vaisselle Ceased EP0679177A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94907190A EP0679177A1 (fr) 1993-01-18 1994-01-11 Compositions detersives pour lave-vaisselle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP93870004 1993-01-18
EP93870004 1993-01-18
EP94907190A EP0679177A1 (fr) 1993-01-18 1994-01-11 Compositions detersives pour lave-vaisselle
PCT/US1994/000355 WO1994016047A1 (fr) 1993-01-18 1994-01-11 Compositions detersives pour lave-vaisselle

Publications (2)

Publication Number Publication Date
EP0679177A1 true EP0679177A1 (fr) 1995-11-02
EP0679177A4 EP0679177A4 (fr) 1995-11-22

Family

ID=8215313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94907190A Ceased EP0679177A1 (fr) 1993-01-18 1994-01-11 Compositions detersives pour lave-vaisselle

Country Status (4)

Country Link
EP (1) EP0679177A1 (fr)
AU (1) AU6086494A (fr)
CA (1) CA2153314C (fr)
WO (1) WO1994016047A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE193056T1 (de) * 1993-07-16 2000-06-15 Procter & Gamble Waschmittelzusammensetzungen für geschirrspülmaschinen
GB2294268A (en) * 1994-07-07 1996-04-24 Procter & Gamble Bleaching composition for dishwasher use
DE4437486A1 (de) * 1994-10-20 1996-04-25 Henkel Kgaa Kristalline Schichtsilikate in maschinellen Geschirrspülmitteln
DE19819187A1 (de) 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548684A1 (fr) * 1983-07-08 1985-01-11 Charbonnages Ste Chimique Compositions detergentes contenant un derive chloroisocyanurique convenant pour le lavage de la vaisselle en machine a laver et leur procede de preparation
EP0135226A2 (fr) * 1983-08-15 1985-03-27 Unilever N.V. Compositions enzymatiques pour les machines à laver la vaisselle
EP0150387A1 (fr) * 1984-01-02 1985-08-07 Henkel Kommanditgesellschaft auf Aktien Utilisation de compositions antimousses contenant de la paraffine dans des moyens pour le nettoyage mécanique d'objets de surfaces dures
EP0186088A2 (fr) * 1984-12-24 1986-07-02 Henkel Kommanditgesellschaft auf Aktien Agents sans phosphate pour les machines à laver la vaisselle
EP0337523A1 (fr) * 1988-03-21 1989-10-18 Unilever N.V. Compositions détergentes en poudre et leur procédé de préparation
WO1992006163A1 (fr) * 1990-10-06 1992-04-16 The Procter & Gamble Company Compositions detersives
WO1992006166A1 (fr) * 1990-09-29 1992-04-16 Henkel Kommanditgesellschaft Auf Aktien Preparation pour agent de blanchiment
WO1992009680A1 (fr) * 1990-11-14 1992-06-11 The Procter & Gamble Company Compositions detergentes sans phosphates pour lave-vaisselle a systemes de blanchiment a l'oxygene

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237024A (en) * 1978-06-16 1980-12-02 Certified Chemicals, Inc. Dishwashing composition and method of making the same
GR79230B (fr) * 1982-06-30 1984-10-22 Procter & Gamble
GB8321923D0 (en) * 1983-08-15 1983-09-14 Unilever Plc Machine-dishwashing compositions
US4859358A (en) * 1988-06-09 1989-08-22 The Procter & Gamble Company Liquid automatic dishwashing compositions containing metal salts of hydroxy fatty acids providing silver protection
US5045225A (en) * 1988-12-30 1991-09-03 Lever Brothers Co., Division Of Conopco Inc. Self hydrophobing silicone/hydrocarbon antifoam compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548684A1 (fr) * 1983-07-08 1985-01-11 Charbonnages Ste Chimique Compositions detergentes contenant un derive chloroisocyanurique convenant pour le lavage de la vaisselle en machine a laver et leur procede de preparation
EP0135226A2 (fr) * 1983-08-15 1985-03-27 Unilever N.V. Compositions enzymatiques pour les machines à laver la vaisselle
EP0150387A1 (fr) * 1984-01-02 1985-08-07 Henkel Kommanditgesellschaft auf Aktien Utilisation de compositions antimousses contenant de la paraffine dans des moyens pour le nettoyage mécanique d'objets de surfaces dures
EP0186088A2 (fr) * 1984-12-24 1986-07-02 Henkel Kommanditgesellschaft auf Aktien Agents sans phosphate pour les machines à laver la vaisselle
EP0337523A1 (fr) * 1988-03-21 1989-10-18 Unilever N.V. Compositions détergentes en poudre et leur procédé de préparation
WO1992006166A1 (fr) * 1990-09-29 1992-04-16 Henkel Kommanditgesellschaft Auf Aktien Preparation pour agent de blanchiment
WO1992006163A1 (fr) * 1990-10-06 1992-04-16 The Procter & Gamble Company Compositions detersives
WO1992009680A1 (fr) * 1990-11-14 1992-06-11 The Procter & Gamble Company Compositions detergentes sans phosphates pour lave-vaisselle a systemes de blanchiment a l'oxygene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9416047A1 *

Also Published As

Publication number Publication date
CA2153314C (fr) 1999-07-20
AU6086494A (en) 1994-08-15
WO1994016047A1 (fr) 1994-07-21
EP0679177A4 (fr) 1995-11-22
CA2153314A1 (fr) 1994-07-21

Similar Documents

Publication Publication Date Title
CA2154157C (fr) Compositions detergentes pour lave-vaisselle
EP0706559B1 (fr) Composition pour lave-vaisselle contenant un agent de blanchiment oxygene, de l'huile de paraffine et un compose benzotriazole pour inhiber le ternissement de l'argent
US5698504A (en) Machine dishwashing composition containing oxygen bleach and paraffin oil and benzotriazole compound silver tarnishing inhibitors
EP0652933B1 (fr) Compositions detersives
EP0634478B1 (fr) Compositions détergentes pour le lavage en machine de la vaisselle
CA2146051C (fr) Composition de blanchiment
US5776874A (en) Anti-tarnishing machine dishwashing detergent compositions containing a paraffin oil
CA2145176C (fr) Composition detergente renfermant un dispersant a base de savon de chaux et de la lipase
US5824630A (en) Machine dishwashing composition containing oxygen bleach and paraffin oil and nitrogen compound silver tarnishing inhibitors
US5772786A (en) Detergent composition comprising lime soap dispersant and lipase enzymes
CA2144103C (fr) Compositions de blanchiment
GB2283494A (en) Machine dishwashing
CA2153314C (fr) Compositions detergentes pour lave-vaisselle
WO1994007985A1 (fr) Composition de detergent contenant un dispersant de savon de chaux et des lipases
WO1994016047A9 (fr) Compositions detersives pour lave-vaisselle
WO1995012652A1 (fr) Compositions detergentes
WO1994007974A1 (fr) Composition de detergent comprenant un tensioactif dispersant le savon de chaux
CA2145177C (fr) Composition detergente renfermant un surfactif non ionique et non alcoxyle
EP0679178A4 (fr)
EP0662119B1 (fr) Utilisation d'un dispersant de savon de chaux dans une composition détergente contenant des lipases
EP0662118B1 (fr) Utilisation d'une composition de detergent contenant un dispersant de savon de chaux et des lipases
EP0662115A1 (fr) Composition de detergent comprenant un tensioactif dispersant le savon de chaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19951010

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19981105

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010701