EP0677719A1 - Remote control device for igniting the warhead of a projectile - Google Patents
Remote control device for igniting the warhead of a projectile Download PDFInfo
- Publication number
- EP0677719A1 EP0677719A1 EP95104881A EP95104881A EP0677719A1 EP 0677719 A1 EP0677719 A1 EP 0677719A1 EP 95104881 A EP95104881 A EP 95104881A EP 95104881 A EP95104881 A EP 95104881A EP 0677719 A1 EP0677719 A1 EP 0677719A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- remote control
- control device
- distance
- guide beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/30—Command link guidance systems
- F41G7/301—Details
- F41G7/303—Sighting or tracking devices especially provided for simultaneous observation of the target and of the missile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C13/00—Proximity fuzes; Fuzes for remote detonation
- F42C13/02—Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation
- F42C13/026—Remotely actuated projectile fuzes operated by optical transmission links
Definitions
- the invention relates to a remote control device according to the preamble of claim 1.
- Such a device is known from US Pat. No. 4,214,534.
- the weapon from which the projectile is fired is equipped with a radar device which emits a narrow beam in the direction of the projectile trajectory in order to transmit impulses to the projectile. If a predetermined number of pulses has been received and added up on board the projectile, an ignition command for the warhead is derived therefrom. The corresponding point in time after the projectile is fired can be varied at the command post using the pulse repetition frequency. However, since the projectile speed is not constant, the number of pulses does not give an exact measure of the distance at which the projectile is fired. In addition, reliable projectile tracking using a narrow radar beam is technically very complex.
- a more precise target distance ignition results if the projectile is equipped with an active retroreflective range finder, as in the case of the optronic range finder according to US Pat. No. 4,223,607 or US Pat. No. 4,776,274.
- the technical outlay on equipment and thus the price of a projectile increase extraordinarily if it has to be equipped with an active, fireproof range finder for triggering the ignition.
- the reliability of the triggering depends on the reflection conditions on the target object, and triggering defined behind a fixed point illuminated by the range finder is not possible.
- the preset firing interval can no longer be changed, which would be desirable, in particular with very long firing distances, to adapt to currently changing target conditions, for example in order to switch from a wrong target to a real target or when shooting from a trip to moving targets.
- the invention is based in particular on the technical problem, the effectiveness of the use of large-caliber projectiles, such as grenades or missiles from the gun barrel of howitzers or main battle tanks, which can be fired over great distances by switching on a precisely defined and also correctable air explosive point during the mission , despite the inevitable longitudinal scatter in the kinematics of the ammunition, to increase significantly.
- large-caliber projectiles such as grenades or missiles from the gun barrel of howitzers or main battle tanks
- the instantaneous distances from the command post to the target object and to the projectile fired at this target object are measured quasi-continuously, and an ignition command is transmitted to the projectile from the command post as soon as the distance difference and thus the remaining distance from the current projectile location to the target object are in view of one has reduced the predetermined value optimized for the effect of the warhead.
- the target object can also be an object that moves relative to the command post, such as an enemy battle tank, since the remaining distance is determined at least quasi-continuously and the optimum firing distance is therefore always maintained. Switching to impact ignition is possible at any time and without delay, by setting the remaining distance specified for the ignition trigger at the command post to zero or by switching off the distance measurement or the ignition command modulator.
- the remote control device can be used particularly advantageously in the case of remotely steerable projectiles which are in constant contact with the beacon and are directed directly via this to a target object aimed at from the command post. Because then, as described in DE-OS 41 37 843, the guide beam can be coupled into the main rifle scope in addition to the laser beam of the range finder and thus be harmonized with the optical target observation. While this rangefinder, which is switched on only rarely and briefly, delivers the target distance, the current projectile distance can be determined via the beacon itself, by superimposing the steering information, which works practically in continuous wave mode, with pulse information for the retroreflective distance measurement.
- the same laser resonator can be used for this, which also delivers the guide beam by temporarily shifting its wavelength and additionally modulating it, and by receiving the pulse reflex transit times or phase differences of the frequency-changed beam in a frequency-selective manner to determine the current projectile distance.
- the respective firing distance can be optimally adapted to different warheads of the projectiles just started from the tube by means of the distance difference measurement; with regard to the projectile family with its warhead spectrum to avoid repetition, full reference is made to today's own parallel application "".
- the projectile 11, symbolically simplified in the drawing, is directed against a target object 12. It is preferably a projectile 11 equipped with its own propulsion or post-accelerator, in particular with a rocket engine, which is why a constant or even known projectile speed cannot be expected.
- the projectile 11 can be controlled - at least in the final phase of the target approach - in a guide beam 13 aimed at the target object 12.
- the guide beam 13 is expediently coupled into the mirror head 14 of the main telescopic sight of an weapon guidance system equipped with an integrated laser rangefinder 24, in particular for the turret of a main battle tank.
- a steering device 15 adapted to the main riflescope contains a laser resonator 16 and a modulator 17.
- the latter for example, embosses areas which are delimited from one another in the cross-sectional area of the beam 18 supplied by the resonator 16 and distinguishes them from one another and thereby makes them a guide beam 13 because a laser Receiver 19 in the projectile 11 can thereby supply control information for returning the projectile 11 to the center of the guide beam 13 in accordance with the current position in the steel cross section.
- the opening angle 21 of the beacon 13 is reduced with a greater distance L1 from the command post 22 in order to have an approximately constant cross section of the beacon 13 at the location of the receiver 19 and thus a constant one to achieve dynamic behavior of the trajectory correction.
- the guide beam 13 can be raised after the start of the projectile 11 with respect to the line of sight to the target object 12, so that on the one hand the approach movement of the projectile 11 is not disturbed by obstacles which may be near the line of sight in front of the target object 12 and on the other hand the resulting from direct illumination Probability of betrayal is reduced at the location of the target object 12; this also prevents disturbing ground reflections.
- the guide beam 13 Only in the final phase of the target approach is the guide beam 13 swung down into the line of sight to the target 12 for an immediate approach. This time is determined in the command post 22 in accordance with the target distance 42 measured at the start of the projectile 11 and the roughly known average speed of the projectile 11. Now the current target distance 42 is measured again and, at the latest, the ongoing measurement of the projectile distance 41 is recorded at the latest.
- the target distance L2 from the command post 22 is determined via the mirror head 14 by means of a laser distance measuring device 24, for example by means of the reflex pulse transit time, for which the command post 22 is preferably equipped with an Nd-Yag laser.
- An additional laser source for determining the current projectile distance L1 is avoided if the energy supplied by the resonator 16 is used for the guide beam 13.
- a further frequency modulation of a much shorter wavelength is superimposed on the modulation frequencies of the laser steering field - now over the entire beam cross section.
- the frequency of the steel 18 is shifted by means of a tuning element 25, which is preferably a Raman cell.
- a retroreflector 26 matched to this specific frequency modulation to determine the projectile distance L1 at the rear of the projectile 11 leads in every storage position within the beacon 13 and also over large distances with a sufficient signal-to-noise ratio for frequency-selective excitation of a tuned receiver 27 for a further distance measuring device 28.
- the projectile distance L1 obtained continuously or periodically can also serve as a control variable for the zoom 20 in order to reduce it to make the guide beam opening angle 21 not dependent on the mission time but actually dependent on the distance and thus take into account any non-reproducible speed fluctuations of the projectile 11 which may result from irregularities in the operation of a rocket motor when expanding the beam.
- An ignition modulator 29 delivers an ignition command 30 via the constant projectile contact of the guide beam 13 when a distance sensor 31 determines the reaching of a triggering distance dL specified as the ignition criterion from the difference between the two current distances L2-L1.
- the projectile warhead 32 is initiated at an effective distance from the target object 12. If, on the other hand, the warhead 32 is to be initiated by a strike detonator 33 in the specific application case, only the guide beam 13 need be directed at the target object 12 in the final phase of the projectile approach without triggering the ignition modulator 29, for example with the distance transmitter 31 reset to zero; or by appropriately changing the function specification before launching, for example by means of a selector switch on the projectile.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Radar Systems Or Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Die Erfindung betrifft eine Fernsteuereinrichtung gemäß dem Oberbegriff des Anspruches 1.The invention relates to a remote control device according to the preamble of claim 1.
Eine derartige Einrichtung ist aus der US-PS 4 214 534 bekannt. Dort ist die Waffe, aus der das Projektil verschossen wird, mit einem Radargerät ausgestattet, das einen schmalen Strahl in Richtung der Projektil-Flugbahn abgibt, um Impulse an das Projektil zu übermitteln. Wenn an Bord des Projektils eine vorgegebenen Impulszahl empfangen und aufsummiert wurde, wird daraus ein Zündkommando für den Gefechtskopf abgeleitet. Der entsprechende Zeitpunkt ab dem Abfeuern des Projektils ist am Gefechtsstand über die Pulsfolgefrequenz variierbar. Da aber die Projektilgeschwindigkeit nicht konstant ist, ergibt die Pulszahl kein genaues Maß für die Entfernung, in der das Projektil gezündet wird. Außerdem ist eine sichere Projektilverfolgung mittels eines schmalen Radarstrahles technisch sehr aufwendig.Such a device is known from US Pat. No. 4,214,534. There the weapon from which the projectile is fired is equipped with a radar device which emits a narrow beam in the direction of the projectile trajectory in order to transmit impulses to the projectile. If a predetermined number of pulses has been received and added up on board the projectile, an ignition command for the warhead is derived therefrom. The corresponding point in time after the projectile is fired can be varied at the command post using the pulse repetition frequency. However, since the projectile speed is not constant, the number of pulses does not give an exact measure of the distance at which the projectile is fired. In addition, reliable projectile tracking using a narrow radar beam is technically very complex.
Um die geschwindigkeitsabhängige Unsicherheit der zeitabgeleiteten Zündentfernung zu verringern, ist es etwa nach der DE-OS 39 03 639 vorgesehen, eine Korrekturgröße in Abhängigkeit von der Rohraustrittsgeschwindigkeit des verschossenen Projektils auszuwerten. Die Tatsache, daß die tatsächliche Projektilgeschwindigkeit über die Zielentfernung nicht konstant ist, wird durch eine solche Korrekturinformation aber ebenfalls nicht berücksichtigt, so daß in der Praxis wieder unzulässig schwankende Zündabstände zum Zielobjekt auftreten. Das stört besonders dann, wenn ein Splitter-Gefechtskopf gegen ein in Deckung befindliches Zielobjekt wirken, also definiert bezüglich eines anvisierten Fixpunktes detonieren soll.In order to reduce the speed-dependent uncertainty of the time-derived ignition distance, it is provided according to DE-OS 39 03 639, for example, to evaluate a correction variable depending on the pipe exit speed of the projectile being fired. The fact that the actual projectile speed is not constant over the target distance is due to such correction information is also not taken into account, so that in practice, inadmissibly fluctuating ignition distances to the target object occur. This is particularly troublesome when a splinter warhead acts against a target object in cover, i.e. is intended to detonate in a defined manner with respect to a target fixed point.
Eine präzisere Zielabstandszündung ergibt sich, wenn das Projektil mit einem aktiven Rückstrahl-Entfernungsmesser ausgestattet ist, wie im Falle der optronischen Entfernungsmessers nach der US-PS 4,223,607 oder nach der US-PS 4,776,274. Allerdings steigt der gerätetechnische Aufwand und damit der Preis eines Projektils außerordentlich an, wenn es mit einem aktiven verschußfesten Entfernungsmesser zur Zündauslösung ausgestattet werden muß. Außerdem ist die Zuverlässigkeit der Zündauslösung von den Reflexionsgegebenheiten am Zielobjekt abhängig, und eine Zündauslösung definiert hinter einem vom Entfernungsmesser angestrahlten Fixpunkt ist nicht möglich. Ferner läßt sich beim einmal gestarteten Projektil der voreingestellte Zündabstand nicht mehr verändern, was insbesondere bei sehr großen Schußentfernungen zur Anpassung an aktuell sich ändernde Zielgegebenheiten wünschenswert wäre, etwa um von einem Falschziel noch auf ein Echtziel umzuschwenken oder beim Schießen aus der Fahrt auf bewegte Ziele.A more precise target distance ignition results if the projectile is equipped with an active retroreflective range finder, as in the case of the optronic range finder according to US Pat. No. 4,223,607 or US Pat. No. 4,776,274. However, the technical outlay on equipment and thus the price of a projectile increase extraordinarily if it has to be equipped with an active, fireproof range finder for triggering the ignition. In addition, the reliability of the triggering depends on the reflection conditions on the target object, and triggering defined behind a fixed point illuminated by the range finder is not possible. Furthermore, once the projectile has been started, the preset firing interval can no longer be changed, which would be desirable, in particular with very long firing distances, to adapt to currently changing target conditions, for example in order to switch from a wrong target to a real target or when shooting from a trip to moving targets.
Der Erfindung liegt nämlich insbesondere das technische Problem zugrunde, die Effektivität des Einsatzes zumal großkalibriger Projektile, wie sie als Granaten oder Raketen aus der Rohrwaffe von Haubitzen oder Kampfpanzern über große Distanzen verschießbar sind, durch Einschalten eines präzise vorgegebenen und auch noch während der Mission korrigierbaren Luftsprengpunktes, trotz unvermeidlicher Längsstreuungen in der Kinematik der Munition, wesentlich zu steigern.The invention is based in particular on the technical problem, the effectiveness of the use of large-caliber projectiles, such as grenades or missiles from the gun barrel of howitzers or main battle tanks, which can be fired over great distances by switching on a precisely defined and also correctable air explosive point during the mission , despite the inevitable longitudinal scatter in the kinematics of the ammunition, to increase significantly.
Diese Aufgabe ist erfindungsgemäß im wesentlichen dadurch gelöst, daß die gattungsgemäße Fernsteuereinrichtung auch gemäß dem Kennzeichnungsteil des Hauptanspruches ausgelegt ist.This task is essentially according to the invention solved in that the generic remote control device is also designed according to the characterizing part of the main claim.
Nach dieser Lösung werden quasi-kontinuierlich die Momentanentfernungen vom Gefechtsstand zum Zielobjekt und zum auf dieses Zielobjekt abgefeuerten Projektil gemessen, und an das Projektil wird vom Gefechtsstand ein Zündkommando übermittelt, sobald die Entfernungsdifferenz und damit die Restentfernung vom momentanen Projektilstandort zum Zielobjekt sich auf einen im Hinblick auf die Wirkung des Gefechtskopfes optimiert vorgegebenen Wert verringert hat.According to this solution, the instantaneous distances from the command post to the target object and to the projectile fired at this target object are measured quasi-continuously, and an ignition command is transmitted to the projectile from the command post as soon as the distance difference and thus the remaining distance from the current projectile location to the target object are in view of one has reduced the predetermined value optimized for the effect of the warhead.
Wenn der durch Detonationsdruck oder durch Splitterwirkung zu belegende Wirkbereich hinter einem Hindernis liegt und somit nicht unmittelbar anvisierbar ist, wird für die Zielentfernungsmessung entweder ein Zielpunkt hinter dem Wirkbereich gewählt oder (bezüglich des anvisierten Hindernisses) ein negativer Wert für die Auslöseentfernung vorgegeben. Andererseits kann es sich beim Zielobjekt durchaus auch um ein relativ zum Gefechtsstand sich bewegendes Objekt handeln, wie beispielsweise um einen gegnerischen Kampfpanzer, da die Restentfernung wenigstens quasi-kontinuierlich ermittelt und somit stets der optimale Zündabstand eingehalten wird. Ein Umschalten auf Aufschlagzündung ist jederzeit und verzögerungsfrei möglich, indem die für die Zündauslösung vorgegebene Restentfernung am Gefechtsstand auf Null gesetzt oder aber die Entfernungsmessung bzw. der Zündkommando-Modulator abgeschaltet wird.If the effective range to be documented by detonation pressure or by splintering is behind an obstacle and therefore cannot be targeted directly, either a target point behind the effective range is selected for the target distance measurement or (with regard to the targeted obstacle) a negative value for the triggering distance is specified. On the other hand, the target object can also be an object that moves relative to the command post, such as an enemy battle tank, since the remaining distance is determined at least quasi-continuously and the optimum firing distance is therefore always maintained. Switching to impact ignition is possible at any time and without delay, by setting the remaining distance specified for the ignition trigger at the command post to zero or by switching off the distance measurement or the ignition command modulator.
Besonders vorteilhaft ist die erfindungsgemäße Fernsteuereinrichtung bei fernlenkbaren Projektilen einsetzbar, die ständigen Leitstrahl-Kontakt haben und über diesen unmittelbar auf ein vom Gefechtsstand her anvisiertes Zielobjekt gelenkt werden. Denn dann kann, wie in der DE-OS 41 37 843 näher beschrieben, der Leitstrahl zusätzlich zum Laserstrahl des Entfernungsmessers in das Hauptzielfernrohr eingekoppelt und so mit der optischen Zielbeobachtung harmonisiert werden. Während dieser nur selten und kurzzeitig eingeschaltete Entfernungsmesser die Zielentfernung liefert, kann die laufende Projektilentfernung über den Leitstrahl selbst bestimmt werden, indem die praktisch in Dauerstrichbetrieb arbeitende Lenkinformation von einer Impulsinformation zur Rückstrahl-Entfernungsmessung überlagert wird. Hierfür kann derselbe Laser-Resonator herangezogen werden, der auch den Leitstrahl liefert, indem dessen Wellenlänge kurzfristig verschoben und zusätzlich moduliert wird und die Impulsreflex-Laufzeiten oder Phasendifferenzen des frequenzveränderten Strahles frequenzselektiv zur Bestimmung der aktuellen Projektilentfernung empfangen werden.The remote control device according to the invention can be used particularly advantageously in the case of remotely steerable projectiles which are in constant contact with the beacon and are directed directly via this to a target object aimed at from the command post. Because then, as described in DE-OS 41 37 843, the guide beam can be coupled into the main rifle scope in addition to the laser beam of the range finder and thus be harmonized with the optical target observation. While this rangefinder, which is switched on only rarely and briefly, delivers the target distance, the current projectile distance can be determined via the beacon itself, by superimposing the steering information, which works practically in continuous wave mode, with pulse information for the retroreflective distance measurement. The same laser resonator can be used for this, which also delivers the guide beam by temporarily shifting its wavelength and additionally modulating it, and by receiving the pulse reflex transit times or phase differences of the frequency-changed beam in a frequency-selective manner to determine the current projectile distance.
Besonders zweckmäßig für die praktische Realisierung ist es, den Gefechtsstand eines Kampfpanzers mit an sein Hauptzielfernrohr angeschlossenem Laser-Zielentfernungsmesser zusätzlich um die Leitstrahl-Lenkeinrichtung mit Zündkommando-Modulator zu erweitern, so daß ein aus dem Rohr des Turmes verbrachtes, und danach seinen Raketenmotor startendes, aber nicht eigens mit einem Abstandszündsensor auszustattendes Projektil mittels der Leitstrahl-Fernsteuerung, ohne irgendwelche Tempiererfordernisse im Zuge des Ladevorganges, über große Entfernung präzise auf ein Zielobjekt lenkbar ist und aus der Messung der Restentfernung ebenso präzise in vorbestimmtem Abstand zum Zielobjekt gezündet wird. So kann über die Entfernungsdifferenzmessung der jeweilige Zündabstand optimal an unterschiedliche Gefechtsköpfe der gerade aus dem Rohr gestarteten Projektile angepaßt werden; wobei hinsichtlich der Projektil-Familie mit ihrem Gefechtskopf-Spektrum zur Vermeidung von Wiederholungen voll-inhaltlich auf die eigene heutige Parallel-Anmeldung "..." Bezug genommen wird.It is particularly expedient for the practical implementation to additionally expand the command post of a main battle tank with a laser rangefinder connected to its main telescopic sight by the guide beam steering device with ignition command modulator, so that one that has been brought out of the turret and then starts its rocket engine, but projectile not to be specially equipped with a distance ignition sensor by means of the beacon remote control, without any temperature requirements in the course of the charging process, can be steered precisely over a great distance to a target object and is just as precisely ignited from the measurement of the remaining distance at a predetermined distance from the target object. Thus, the respective firing distance can be optimally adapted to different warheads of the projectiles just started from the tube by means of the distance difference measurement; with regard to the projectile family with its warhead spectrum to avoid repetition, full reference is made to today's own parallel application "...".
Zusätzliche Alternativen und Weiterbildungen sowie weitere Merkmale und Vorteile der Erfindung ergeben sich aus den weiteren Ansprüchen und, auch unter Berücksichtigung der Darlegungen in der nachgehefteten Zusammenfassung, aus nachstehender Beschreibung eines in der Zeichnung unter Beschränkung auf das Wesentliche stark abstrahiert und nicht maßstabsgerecht skizzierten bevorzugten Realisierungsbeispiels zur erfindungsgemäßen Fernsteuereinrichtung. Die einzige Figur der Zeichnung zeigt ein ferngesteuertes Lenkprojektil, an das bei definierter Annäherung an ein anvisiertes Zielobjekt über die Fernsteuerverbindung ein Zündbefehl übermittelt wird.Additional alternatives and further developments as well as further features and advantages of the invention result from the further claims and, also taking into account the explanations in the supplement Summary, from the following description of a preferred implementation example for the remote control device according to the invention, which is highly abstracted in the drawing and limited to the essentials and is not outlined to scale. The only figure in the drawing shows a remote-controlled steering projectile to which an ignition command is transmitted via the remote control connection when a defined approach to a target object is made.
Das in der Zeichnung symbolisch vereinfacht skizzierte Projektil 11 ist gegen ein Zielobjekt 12 gerichtet. Vorzugsweise handelt es sich um ein mit Eigenantrieb oder Nachbeschleuniger, insbesondere mit einem Raketenmotor, ausge-stattetes Projektil 11, weshalb mit einer konstanten oder auch nur verlaufsmäßig bekannten Projektilgeschwindigkeit nicht gerechnet werden kann. Das Projektil 11 ist - jedenfalls in der Endphase der Zielannäherung - in einem des Zielobjekt 12 anvisierenden Leitstrahl 13 steuerbar. Wie in der DE-OS 41 37 843 näher erläutert, ist der Leitstrahl 13 zweckmäßigerweise in den Spiegelkopf 14 des mit integriertem Laser-Zielentfernungsmesser 24 ausgestatteten Hauptzielfernrohres einer Waffenleitanlage, insbesondere für den Turm eines Kampfpanzers, eingekoppelt. Eine an das Hauptzielfernrohr adaptierte Lenkeinrichtung 15 enthält einen Laser-Resonator 16 und einen Modulator 17. Letzterer prägt z.B. gegeneinander abgegrenzte Bereiche in der Querschnittsfläche des vom Resonator 16 gelieferten Strahles 18 voneinander unterscheidbare Kennungen ein und macht diesen dadurch zum Leitstrahl 13, weil ein Laser-Empfänger 19 im Projektil 11 dadurch nach Maßgabe der momentanen Lage im Stahlquerschnitt eine Steuerungsinformation zum Rückführen des Projektils 11 in das Zentrum des Leitstrahles 13 liefern kann. Mittels eines Zoom 20 wird der Öffnungswinkel 21 des Leitstrahles 13 mit größerer Entfernung L1 vom Gefechtsstand 22 verkleinert, um am Orte des Empfängers 19 einen angenähert konstanten Querschnitt des Leitstrahles 13 und damit ein konstantes dynamisches Verhalten der Flugbahnkorrektur zu erzielen. Mittels einer Elevationssteuerung 23 kann der Leitstrahl 13 nach dem Start des Projektils 11 gegenüber der Sichtlinie zum Zielobjekt 12 angehoben werden, damit einerseits nicht die Annäherungsbewegung des Projektils 11 durch vielleicht nahe der Sichtlinie vor dem Zielobjekt 12 aufragende Hindernisse gestört und andererseits die aus direkter Anstrahlung resultierende Verratswahrscheinlichkeit am Orte des Zielobjekts 12 herabgesetzt wird; außerdem werden dadurch störende Bodenreflektionen vermieden. Erst in der Endphase der Zielannäherung wird dann für unmittelbaren Zielanflug der Leitstrahl 13 in die Sichtlinie zum Ziel 12 herabgeschwenkt. Dieser Zeitpunkt bestimmt sich im Gefechtsstand 22 nach Maßgabe der beim Start des Projektils 11 gemessenen Zielentfernung 42 und der grob bekannten Durchschnittsgeschwindigkeit des Projektils 11. Nun wird die aktuelle Zielentfernung 42 noch einmal gemessen und außerdem spätestens jetzt die laufende Messung der Projektilentfernung 41 aufgenommen.The
Die Zielentfernung L2 vom Gefechtsstand 22 wird über den Spiegelkopf 14 mittels einer Laser-Entfernungsmesseinrichtung 24 beispielsweise im Wege der Refleximpulslaufzeit bestimmt, wofür der Gefechtsstand 22 vorzugsweise mit einem Nd-Yag-Laser ausgestattet ist. Eine zusätzliche Laserquelle zur Bestimmung der aktuellen Projektilentfernung L1 wird vermieden, wenn hierfür die aus dem Resonator 16 gelieferte Energie für den Leitstrahl 13 ausgenutzt wird. Für die Bestimmung der Projektilentfernung L1 wird den Modulationsfrequenzen des Laserlenkfeldes - nun über den gesamten Strahlquerschnitt - eine weitere Frequenzmodulation wesentlich kürzerer Wellenlänge (im MHz-Bereich) überlagert. Außerdem erfolgt eine Frequenzverschiebung des Stahles 18 mittels eines Abstimmelementes 25, bei dem es sich bevorzugt um eine Raman-Zelle handelt. Ein auf diese spezifische Frequenzmodulation zur Ermittlung der Projektilentfernung L1 abgestimmter Retroreflektor 26 am Heck des Projektils 11 führt in jeder Ablageposition innerhalb des Leitstrahles 13 und auch über große Distanzen mit hinreichendem Signal-Rausch-Abstand zu frequenzselektiver Anregung eines abgestimmten Empfängers 27 für eine weitere Entfernungsmesseinrichtung 28. Die so kontinuierlich oder periodisch gewonnene Projektilentfernung L1 kann auch als Steuergröße für den Zoom 20 dienen, um die Verringerung des Leitstrahl-Öffnungswinkel 21 nicht missionszeitabhängig sondern tatsächlich entfernungsabhängig zu machen und so bei der Strahlaufweitung etwa nichtreproduzierbare Geschwindigkeitsschwankungen des Projektils 11 zu berücksichtigen, die aus Unregelmäßigkeiten im Betrieb eines Raketenmotors resultieren können.The target distance L2 from the
Ein Zündmodulator 29 liefert über den ständigen Projektilkontakt des Leitstrahles 13 ein Zündkommando 30, wenn ein Abstandsgeber 31 das Erreichen einer als Zündkriterium vorgegebenen Auslöseentfernung dL aus der Differenz der beiden aktuellen Entfernungen L2-L1 ermittelt. Mit Dekodierung dieses Zündkommandos 30 im Projektil-Empfänger 19 wird der Projektil-Gefechtskopf 32 im wirkoptimierten Abstand zum Zielobjekt 12 initiiert. Wenn dagegen im konkreten Einsatzfall der Gefechtskopf 32 einmal durch einen Aufschlagzünder 33 initiiert werden soll, braucht lediglich der Leitstrahl 13 in der Endphase der Projektilannäherung auf das Zielobjekt 12 gerichtet zu werden, ohne den Zündmodulator 29 anzusteuern, also beispielsweise bei auf Null zurückgesetztem Abstandsgeber 31; oder durch entsprechend geänderte Funktionsvorgabe vor dem Abschuß, etwa mittels eines Wahlschalters am Projektil.An
Claims (9)
dadurch gekennzeichnet,
daß wenigstens eine Entfernungsmeßeinrichtung (24, 28) zum Ermitteln der Projektil- und der Zielentfernungen (L1, L2) sowie eine Sendeeinrichtung zur Abgabe eines Zündkommandos (30) bei Erreichen einer vorgegebenen Auslöseentfernung (dL) zwischen Zielobjekt (12) und Projektil (11) vorgesehen ist.Remote control device for igniting the warhead (32) of a projectile (11),
characterized,
that at least one distance measuring device (24, 28) for determining the projectile and target distances (L1, L2) and a transmitting device for emitting an ignition command (30) when a predetermined triggering distance (dL) is reached between target object (12) and projectile (11) is provided.
dadurch gekennzeichnet,
daß Laser-Entfernungsmeßeinrichtungen (24, 28) und eine Laser-Übermittlung des Zündkommandos (30) vorgesehen sind.Remote control device according to claim 1,
characterized,
that laser distance measuring devices (24, 28) and a laser transmission of the ignition command (30) are provided.
dadurch gekennzeichnet,
daß zusätzlich zu einer Laser-Entfernungsmeßeinrichtung (24) zum sporadischen Ermitteln der Zielentfernung (L2) eine Lenkeinrichtung (15) zur Abgabe eines Laser-Leitstrahles (13) über denselben Spiegelkopf (14) vorgesehen ist und der Laser-Leitstrahl (13) eine Frequenzverschiebung für die Ansteuerung der Projektil-Entfernungsmeßeinrichtung (28) erfährt.Remote control device according to claim 2,
characterized,
that in addition to a laser distance measuring device (24) for sporadically determining the target distance (L2), a steering device (15) for emitting a laser guide beam (13) via the same mirror head (14) is provided and the laser guide beam (13) a frequency shift for controlling the projectile distance measuring device (28).
dadurch gekennzeichnet,
daß ein Raman-Abstimmelement (25) für die Entfernungsmessungs-Frequenzverschiebung vorgesehen ist.Remote control device according to claim 3,
characterized,
that a Raman tuning element (25) is provided for the distance measurement frequency shift.
dadurch gekennzeichnet,
daß ein Zündmodulator (29) für die Übermittlung des Zündkommandos (30) über den Leitstrahl (13) vorgesehen ist.Remote control device according to one of the preceding claims,
characterized,
that an ignition modulator (29) is provided for the transmission of the ignition command (30) via the guide beam (13).
dadurch gekennzeichnet,
daß das Projektil (11) heckseitig mit einem Retro-Reflektor (26) ausgestattet ist, der auf die zur Projektilentfernungsmessung verschobene Frequenz des Leitstrahles (13) abgestimmt ist.Remote control device according to one of the preceding claims,
characterized,
that the projectile (11) is equipped on the rear side with a retro reflector (26) which is tuned to the frequency of the guide beam (13) shifted for projectile distance measurement.
dadurch gekennzeichnet,
daß, sie zusätzlich zur Ziel-Entfernungsmeßeinrichtung (24) und zusammen mit der Leitstrahl-Lenkeinrichtung (15) samt Projektil-Entfernungsmeßeinrichtung (28) in den Spiegelkopf (14) des Hauptzielfernrohres im Gefechtsstand (22) eines Kampfpanzers eingekoppelt ist, aus dessen Rohr das Projektil (11) startbar ist.Remote control device according to one of the preceding claims,
characterized,
that, in addition to the target distance measuring device (24) and together with the guide beam steering device (15) together with the projectile distance measuring device (28) in the mirror head (14) of the main telescopic sight in the command post (22) of a main battle tank, from the tube of which the Projectile (11) is startable.
dadurch gekennzeichnet,
daß sie eine Leitstrahl-Elevationssteuerung (23) aufweist, die den Leitstrahl (13) nach dem Start des Projektils (11) zunächst gegenüber der Sichtlinie zum Zielobjekt (12) anhebt und erst in der Annäherungs-Endphase der Projektilbewegung auf das Zielobjekt (12) herabschwenkt.Remote control device according to one of claims 3 to 7,
characterized,
that it has a guide beam elevation control (23) which, after the start of the projectile (11), first raises the guide beam (13) with respect to the line of sight to the target object (12) and only in the approaching final phase of the projectile movement to the target object (12) swings down.
dadurch gekennzeichnet,
daß für Ausstattung des Projektils (11) mit einem Aufschlagzünder (33) der Zündmodulator (29) am Leitstand (22) oder am Projektil (11) unwirksam schaltbar ist.Remote control device according to one of the preceding claims,
characterized,
that for equipping the projectile (11) with an impact detonator (33) the ignition modulator (29) on the control station (22) or on the projectile (11) is ineffective.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4412688A DE4412688C2 (en) | 1994-04-13 | 1994-04-13 | Remote control device for a beacon projectile |
DE4412688 | 1994-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0677719A1 true EP0677719A1 (en) | 1995-10-18 |
EP0677719B1 EP0677719B1 (en) | 1998-10-14 |
Family
ID=6515271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95104881A Expired - Lifetime EP0677719B1 (en) | 1994-04-13 | 1995-04-01 | Remote control device for igniting the warhead of a projectile |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0677719B1 (en) |
DE (2) | DE4412688C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010540880A (en) * | 2007-09-21 | 2010-12-24 | ラインメタル バッフェ ムニツィオン ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for optical programming of projectiles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007061813B3 (en) * | 2007-12-20 | 2009-01-29 | Lkf-Lenkflugkörpersysteme Gmbh | Method for controlled initiation of active body e.g. warhead for military combat practices, requires ignition device for determining position of active body relative to target |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3004317A1 (en) * | 1980-02-06 | 1981-08-13 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Firing system for anti-helicopter projectiles - takes target movement into account whilst missile is in flight, using flight path computer |
DE3123339A1 (en) * | 1981-06-12 | 1982-12-30 | Wegmann & Co, 3500 Kassel | Method for remote detonation of an explosive projectile, especially of an anti-helicopter projectile, and a device and projectile for carrying out the method |
US4657208A (en) * | 1985-06-10 | 1987-04-14 | The United States Of America As Represented By The Secretary Of The Army | Rotating warhead |
GB1605301A (en) * | 1976-10-08 | 1988-08-24 | Secr Defence Brit | Fuzing systems for projectiles |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3485461A (en) * | 1968-04-26 | 1969-12-23 | Us Army | Firing control system for laser-guided projectiles |
US3782667A (en) * | 1972-07-25 | 1974-01-01 | Us Army | Beamrider missile guidance method |
US3844217A (en) * | 1972-09-28 | 1974-10-29 | Gen Electric | Controlled range fuze |
GB1480508A (en) * | 1974-09-06 | 1977-07-20 | Ferranti Ltd | Missile guidance systems |
GB1524122A (en) * | 1976-01-29 | 1978-09-06 | Elliott Brothers London Ltd | Guidance systems for mobile craft |
DE4137843C2 (en) * | 1991-11-16 | 2000-04-20 | Diehl Stiftung & Co | Weapon system with laser rangefinder integrated in the main rifle scope |
-
1994
- 1994-04-13 DE DE4412688A patent/DE4412688C2/en not_active Expired - Fee Related
-
1995
- 1995-04-01 DE DE59503896T patent/DE59503896D1/en not_active Expired - Fee Related
- 1995-04-01 EP EP95104881A patent/EP0677719B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1605301A (en) * | 1976-10-08 | 1988-08-24 | Secr Defence Brit | Fuzing systems for projectiles |
DE3004317A1 (en) * | 1980-02-06 | 1981-08-13 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Firing system for anti-helicopter projectiles - takes target movement into account whilst missile is in flight, using flight path computer |
DE3123339A1 (en) * | 1981-06-12 | 1982-12-30 | Wegmann & Co, 3500 Kassel | Method for remote detonation of an explosive projectile, especially of an anti-helicopter projectile, and a device and projectile for carrying out the method |
US4657208A (en) * | 1985-06-10 | 1987-04-14 | The United States Of America As Represented By The Secretary Of The Army | Rotating warhead |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010540880A (en) * | 2007-09-21 | 2010-12-24 | ラインメタル バッフェ ムニツィオン ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for optical programming of projectiles |
Also Published As
Publication number | Publication date |
---|---|
EP0677719B1 (en) | 1998-10-14 |
DE59503896D1 (en) | 1998-11-19 |
DE4412688A1 (en) | 1995-10-19 |
DE4412688C2 (en) | 2000-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69607944T2 (en) | METHOD AND DEVICE FOR RAILWAY CORRECTION OF A BALLISTIC BULLET BY RADIAL PUSHING | |
EP1366334B1 (en) | Precision-guided hypersonic projectile weapon system | |
DE2714688C2 (en) | Device for correcting the trajectory of a projectile | |
DE60106010T2 (en) | ACCURACY SCHOOL SIMULATOR SYSTEM AND METHOD | |
US20080291075A1 (en) | Vehicle-network defensive aids suite | |
JP3142881B2 (en) | Impulse radar guidance apparatus and method used by guidance projectiles | |
US5036748A (en) | Weapon system | |
DE3106446C2 (en) | Hydropulse drive for a weapon for use under water | |
US4262596A (en) | Overhead attack missile | |
DE977574C (en) | Interception antenna | |
CA1242516A (en) | Terminally guided weapon delivery system | |
US3485461A (en) | Firing control system for laser-guided projectiles | |
US4657208A (en) | Rotating warhead | |
EP0677719A1 (en) | Remote control device for igniting the warhead of a projectile | |
DE2922592C2 (en) | Missile defense method | |
GB1605301A (en) | Fuzing systems for projectiles | |
DE3123339A1 (en) | Method for remote detonation of an explosive projectile, especially of an anti-helicopter projectile, and a device and projectile for carrying out the method | |
DE3543769A1 (en) | Mine for defence against moving objects | |
DE3337873A1 (en) | BULLET FOR GRENADE LAUNCHER SYSTEMS | |
DE4128313A1 (en) | Steered flying body for defence against tactical warhead - has shrapnel effect part initiated dependent upon approach where warhead approaches at higher relative speed | |
DE3004317A1 (en) | Firing system for anti-helicopter projectiles - takes target movement into account whilst missile is in flight, using flight path computer | |
DE3821218A1 (en) | METHOD FOR COMBATING A TARGET OBJECT FROM A FLIGHT PROJECT, AND FLIGHT PROJECT TO EXERCISE THE METHOD | |
DE19827168B4 (en) | Steering method for missiles | |
DE2435949C1 (en) | Proximity fuze using Doppler effect with phase comparator | |
DE69811187T2 (en) | Device for programming a projectile inside a gun barrel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19950923 |
|
17Q | First examination report despatched |
Effective date: 19970605 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEHL STIFTUNG & CO. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59503896 Country of ref document: DE Date of ref document: 19981119 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981125 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040309 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050225 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050401 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050621 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060502 |