EP0676465B1 - Process for gasification of wastes in a circulating fluidized bed - Google Patents
Process for gasification of wastes in a circulating fluidized bed Download PDFInfo
- Publication number
- EP0676465B1 EP0676465B1 EP95104128A EP95104128A EP0676465B1 EP 0676465 B1 EP0676465 B1 EP 0676465B1 EP 95104128 A EP95104128 A EP 95104128A EP 95104128 A EP95104128 A EP 95104128A EP 0676465 B1 EP0676465 B1 EP 0676465B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- reactor
- gasification
- separator
- cracking reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/463—Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
- C10K1/026—Dust removal by centrifugal forces
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
- C10K1/101—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/32—Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/001—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1625—Integration of gasification processes with another plant or parts within the plant with solids treatment
- C10J2300/1628—Ash post-treatment
- C10J2300/1631—Ash recycling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
Definitions
- the invention relates to a method for gasifying waste materials containing combustible components in the circulating fluidized bed, taking out the waste materials in a gasification reactor with the addition of Gasified gas in the swirl state, from upper area of the gasification reactor Gas-solid mixture feeds a separator from which Separator removes dusty gas and separates it separated solids and the solids at least partially in the gasification reactor leads back.
- the invention has for its object to ensure in waste gasification that the formation of highly toxic substances, such as especially dioxins and furans, is avoided as far as possible. At the same time, the amount of exhaust gas formed should be kept low. According to the invention, this is achieved in the process mentioned at the outset by carrying out the gasification in the gasification reactor at temperatures in the range from 800 to 1100 ° C.
- gaseous gasification agent which consists of 20 to 90% by volume of oxygen by leaving the separator draws off a dust-containing gas, the content of free O 2 of which is at most 0.5% by volume, that the gas drawn off from the separator is partially burned in a cracking reactor which is at the same time from 70 to 100% by volume of oxygen-rich O 2 existing gas is supplied, that temperatures in the range of 1200 to 1600 ° C are maintained in the cracking reactor and liquid slag is generated which is discharged from the cracking reactor, and that the cracking gas formed in the cracking reactor is cooled in at least one cooler with a cooling rate of at least 100 Cools down to a maximum temperature of 300 ° C per second.
- a gaseous gasification agent is understood to mean all gases supplied to the gasification reactor, but with the exception of H 2 O in liquid form or in vapor form.
- the O 2 content of the total amount of gaseous gasifying agent is preferably at least 50% by volume.
- the oxygen necessary for the partial oxidation in the gasification reactor is supplied by the gaseous gasification agent preferably in the form of air enriched with oxygen or technically pure oxygen.
- the amount of inert gas which leaves the gasification reactor in the gas-solid mixture is kept low and the dust-containing gas drawn off from the separator has a calorific value of approximately 4000 to 8000 kJ / Nm 3 . If the calorific value of this gas is high enough, there is no need to add additional fuel in the cracking reactor.
- the waste materials to be gasified which can be, for example, municipal or industrial waste, are fed in line (1) to a gasification reactor (2), where they come into contact with hot gases and particles in the state of the circulating fluidized bed.
- Oxygen-containing fluidizing gas is introduced in line (3) and passed through a distribution chamber (4) with a grate (5) into the fluidized bed of the reactor (2).
- additional oxygen-rich gas is added to the fluidized bed above the grate (5), the O 2 content of this gas being higher than in the gas in line (3).
- the O 2 content in the gas is 50 to 90% by volume (calculated as anhydrous).
- the gasification in the reactor (2) takes place at temperatures of 800 to 1100 ° C and mostly at temperatures in the range from 850 to 1000 ° C.
- Ash is removed through the line (6) withdrawn and a separating device (60), e.g. one Sieve. Rough ash parts are drawn in the Line (61) and the fine ash parts are passed through the line (62) to a grinding (63), in order to then if desired, on the transport route (12a) To be able to give up the gap reactor (13).
- a gas-solid mixture leaves the reactor through the channel (8) and flows into a cyclone separator (9), from which dust-containing gas with a free O 2 content of at most 0.5 Vol .-% is withdrawn through line (10).
- a cyclone separator (9) from which dust-containing gas with a free O 2 content of at most 0.5 Vol .-% is withdrawn through line (10).
- Separated solids are returned from the lower area of the separator (9) through line (11) to the reactor (2).
- the line (11) can also have a side draw (12) for removing an excess of solids. This excess of solids can also be passed into the gap reactor (13) on the transport path (12a).
- the dust-containing gas drawn off in the line (10) from the separator (9) is fed to the cracking reactor (13), where partial combustion takes place at temperatures in the range from 1200 to 1600 ° C. and preferably 1250 to 1500 ° C.
- oxygen-rich gas containing 70 to 100% by volume of O 2 is introduced, which can also be technically pure oxygen.
- a line (15) for additional fuel, for example natural gas, is also provided. Partial combustion in the cracking reactor (13) produces liquid slag that flows downwards. Hot cracked gas leaves the reactor (13) together with liquid slag through the channel (17).
- the cracking reactor (13) can be, for example, a combustion chamber, a melting cyclone or a hearth furnace.
- many pollutants introduced in line (10) are destroyed at the high temperatures reached there, and in particular also higher hydrocarbons are split, so that the cracked gas in channel (17) is practically free of hydrocarbons with more than 4 carbon atoms per Molecule is.
- the cooled gas from line (20) is now still further cleaned by washing water, taking it down through a jet washer (28) up through the channel (29) in an aerosol washer (30) through line (31) a venturi washer (32), down there to the channel (33) and then flows up through the spray tower (34).
- the Spray tower (34) is led through line (35) Fresh water to which you also add sodium hydroxide solution can, in particular, chlorine in the gas to be treated tie. It is useful to have one in the spray tower (34) Pack (36) for intensifying the Provide gas-liquid contact.
- the gas that the Leaves spray tower (34) through line (37) is through an activated carbon filter (38) passed to mercury remove before it is in line (39) further, per se known cleaning stages or a combustion, e.g. in a power plant.
- Another Possibility is to gas the line (37) first of all to a known desulfurization undergo before passing it through the filter (38), however this possibility was not shown in the drawing considered.
- Fig. 1 are water supply lines with the Reference number (40) and cooler with reference number (41) Mistake. Used water in the pipes (42) and (43) runs, gets into the settling container (44). Out partially clarified water is fed to this container Reuse in the jet washer (28) and Aerosol washer (30) pulls wastewater through the Line (45) and removes sludge through the Line (46). Mud and sewage are not in shown further processed separately.
- a wastewater-free process for cooling the hot Cracked gas that is generated in the reactor (13) is with the help the schematic representation of FIG. 2 explained.
- the amount of water is so on Temperature and the amount of gas matched that the all of the water along with the chilled gas in the form of Water vapor is drawn off through line (52).
- Solids that dry out at the bottom of the spray tower (50) collect, are removed through line (48).
- the Gas of the line containing water vapor and dust (52) is passed through a filter device (53) in which e.g. around a bag filter or an electrostatic filter can act; you can also have several here Combine filter types. Dust-free gas flows in the Line (54) and is the other, known per se Gas cleaning supplied, which is not shown here.
- a heavy cake containing heavy metals is obtained in an amount of 50 kg / h.
- the gas in line (20) which is produced in an amount of 10800 kg / h, has a calorific value of 5.7 MJ / Nm 3 .
- the slag drawn off in the line (24) is glazed by the pretreatment and can therefore be deposited without any problems.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen in der zirkulierenden Wirbelschicht, wobei man die Abfallstoffe in einem Vergasungsreaktor unter Zufuhr von sauerstoffhaltigem Gas im Wirbelzustand vergast, vom oberen Bereich des Vergasungsreaktors ein Gas-Feststoff-Gemisch einem Abscheider zuführt, aus dem Abscheider staubhaltiges Gas abzieht und getrennt davon abgeschiedene Feststoffe ableitet und die Feststoffe mindestens teilweise in den Vergasungsreaktor zurückführt.The invention relates to a method for gasifying waste materials containing combustible components in the circulating fluidized bed, taking out the waste materials in a gasification reactor with the addition of Gasified gas in the swirl state, from upper area of the gasification reactor Gas-solid mixture feeds a separator from which Separator removes dusty gas and separates it separated solids and the solids at least partially in the gasification reactor leads back.
Im US-Patent 4 469 050 wird die Verbrennung oder Vergasung von kohlenstoffhaltigem Material oder auch von Abfällen in der zirkulierenden Wirbelschicht beschrieben. Die Umsetzung findet im Wirbelzustand unter Luftzufuhr in einem Reaktor statt, an den sich ein Zyklonabscheider anschließt. Vom Zyklon werden die abgeschiedenen Feststoffe mindestens teilweise in den unteren Bereich des Reaktors zurückgeleitet.In U.S. Patent 4,469,050, combustion or Gasification of carbonaceous material or of Waste described in the circulating fluidized bed. The reaction takes place in the vortex state with air supply in a reactor instead of a cyclone separator connects. The separated ones are separated from the cyclone Solids at least partially in the lower range of the reactor.
Der Erfindung liegt die Aufgabe zugrunde, bei der Abfallvergasung dafür zu sorgen, daß die Bildung hochgiftiger Stoffe, wie insbesondere Dioxine und Furane, möglichst weitgehend vermieden wird. Gleichzeitig soll die Menge an gebildetem Abgas gering gehalten werden. Erfindungsgemäß gelingt dies beim eingangs genannten Verfahren dadurch, daß man die Vergasung im Vergasungsreaktor bei Temperaturen im Bereich von 800 bis 1100°C unter Zufuhr von gasförmigem Vergasungsmittel durchführt, das zu 20 bis 90 Vol.-% aus Sauerstoff besteht, daß man aus dem Abscheider ein staubhaltiges Gas abzieht, dessen Gehalt an freiem O2 höchstens 0,5 Vol.-% beträgt, daß man das aus dem Abscheider abgezogene Gas in einem Spaltreaktor partiell verbrennt, dem man gleichzeitig ein sauerstoffreiches, zu 70 bis 100 Vol.-% aus O2 bestehendes Gas zuführt, daß man im Spaltreaktor Temperaturen im Bereich von 1200 bis 1600°C aufrechterhält und flüssige Schlacke erzeugt, die man aus dem Spaltreaktor ableitet, und daß man das im Spaltreaktor gebildete Spaltgas in mindestens einem Kühler mit einer Abkühlgeschwindigkeit von mindestens 100°C pro Sekunde auf eine Temperatur von höchstens 300°C abkühlt. Unter gasförmigem Vergasungsmittel werden alle dem Vergasungsreaktor zugeführten Gase, ausgenommen aber H2O in flüssiger Form oder in Dampfform, verstanden. Vorzugsweise beträgt der O2-Gehalt der Gesamtmenge an gasförmigem Vergasungsmittel mindestens 50 Vol.-%.The invention has for its object to ensure in waste gasification that the formation of highly toxic substances, such as especially dioxins and furans, is avoided as far as possible. At the same time, the amount of exhaust gas formed should be kept low. According to the invention, this is achieved in the process mentioned at the outset by carrying out the gasification in the gasification reactor at temperatures in the range from 800 to 1100 ° C. with the supply of gaseous gasification agent which consists of 20 to 90% by volume of oxygen by leaving the separator draws off a dust-containing gas, the content of free O 2 of which is at most 0.5% by volume, that the gas drawn off from the separator is partially burned in a cracking reactor which is at the same time from 70 to 100% by volume of oxygen-rich O 2 existing gas is supplied, that temperatures in the range of 1200 to 1600 ° C are maintained in the cracking reactor and liquid slag is generated which is discharged from the cracking reactor, and that the cracking gas formed in the cracking reactor is cooled in at least one cooler with a cooling rate of at least 100 Cools down to a maximum temperature of 300 ° C per second. A gaseous gasification agent is understood to mean all gases supplied to the gasification reactor, but with the exception of H 2 O in liquid form or in vapor form. The O 2 content of the total amount of gaseous gasifying agent is preferably at least 50% by volume.
Beim Verfahren der Erfindung gelingt es, feste Vergasungsrückstände durch Verschlacken zu inertisieren. Als Wirbelmedium im Vergasungsreaktor kommen bevorzugt gemahlene Schlacke, Eigenasche, Sand oder ein anderes inertes Granulat infrage. Bei der Vergasung von kommunalem Müll wird dieser üblicherweise vor der Vergasung zunächst vorsortiert, wobei insbesondere Metall- und Glasteile ausgesondert werden. Der verbleibende Restmüll wird dann noch zerkleinert, z.B. auf Stückgrößen von höchstens 70 mm, bevor er vergast wird.In the method of the invention, it is possible to achieve solid Inert gasification residues through slagging. Preferred vortex media in the gasification reactor ground slag, own ash, sand or another inert granules in question. When gassing municipal waste is usually before the Gasification initially pre-sorted, in particular Metal and glass parts are discarded. Of the The remaining waste is then shredded, e.g. to piece sizes of at most 70 mm before it gasifies becomes.
Der für die partielle Oxidation im Vergasungsreaktor nötige Sauerstoff wird durch das gasförmige Vergasungsmittel bevorzugt in Form von mit Sauerstoff angereicherter Luft oder technisch reinem Sauerstoff zugeführt. Dadurch hält man die Menge an Inertgas gering, die den Vergasungsreaktor im Gas-Feststoff-Gemisch verläßt und das aus dem Abscheider abgezogene staubhaltige Gas weist einen Heizwert von etwa 4000 bis 8000 kJ/Nm3 auf. Wenn der Heizwert dieses Gases hoch genug ist, macht dies die Zugabe von Zusatzbrennstoff im Spaltreaktor entbehrlich.The oxygen necessary for the partial oxidation in the gasification reactor is supplied by the gaseous gasification agent preferably in the form of air enriched with oxygen or technically pure oxygen. In this way, the amount of inert gas which leaves the gasification reactor in the gas-solid mixture is kept low and the dust-containing gas drawn off from the separator has a calorific value of approximately 4000 to 8000 kJ / Nm 3 . If the calorific value of this gas is high enough, there is no need to add additional fuel in the cracking reactor.
Um die Bildung von Dioxinen und Furanen möglichst zu unterdrücken, ist es nötig, das aus dem Spaltreaktor abgezogene Spaltgas, vor allem beim Durchschreiten des Temperaturbereichs zwischen 800°C und 300°C, möglichst schockartig abzukühlen. Es empfiehlt sich eine Abkühlgeschwindigkeit von mindestens 100°C pro Sekunde und vorzugsweise von mindestens 200°C pro Sekunde.To the formation of dioxins and furans as possible suppress, it is necessary that from the cleavage reactor withdrawn fission gas, especially when walking through the Temperature range between 800 ° C and 300 ° C, if possible to cool down in shock. One is recommended Cooling rate of at least 100 ° C per second and preferably at least 200 ° C per second.
Für die schnelle Abkühlung des aus dem Spaltreaktor abgezogenen Spaltgases kommen vor allem zwei Wege infrage, einerseits das direkte Einsprühen einer Überschußmenge an Kühlwasser und andererseits eine so dosierte Menge an Kühlwasser in das Spaltgas einzudüsen, daß kein Abwasser entsteht.For the rapid cooling of the from the gap reactor drawn off cracked gas come in two main ways questionable, on the one hand, the direct spraying of a Excess amount of cooling water and so on the other inject metered amount of cooling water into the cracked gas, that there is no waste water.
Die Weiterbehandlung des gekühlten Spaltgases, das noch Schadstoffe, wie z.B. Quecksilber, Schwefelverbindungen, sowie Chlor- und Stickstoffverbindungen enthält, erfolgt in bekannter Weise. Erleichtert wird die Gasreinigung dann, wenn man das gekühlte Spaltgas einer vorhandenen Verbrennungseinrichtung, z.B. einem Kraftwerk, zuführen kann, dessen Gasreinigungseinrichtungen in diesem Fall mitgenutzt werden.The further treatment of the cooled cracked gas that still Pollutants such as Mercury, sulfur compounds, and contains chlorine and nitrogen compounds in a known manner. Gas cleaning is made easier then when you have the cooled cracked gas of an existing Incinerator, e.g. a power plant can, whose gas cleaning devices in this case be shared.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt:
- Fig. 1
- das Fließschema der Abfallvergasung mit angeschlossener Kühleinrichtung und
- Fig. 2
- eine zweite Variante der Kühleinrichtung.
- Fig. 1
- the flow diagram of the waste gasification with connected cooling device and
- Fig. 2
- a second variant of the cooling device.
Die zu vergasenden Abfallstoffe, bei denen es sich z.B. um kommunalen oder industriellen Müll handeln kann, werden in der Leitung (1) einem Vergasungsreaktor (2) zugeführt, wo sie mit heißen Gasen und Partikeln im Zustand der zirkulierenden Wirbelschicht in Kontakt kommen. Sauerstoffhaltiges Fluidisierungsgas wird in der Leitung (3) herangeführt und durch eine Verteilkammer (4) mit einem Rost (5) in die Wirbelschicht des Reaktors (2) geleitet. Durch die Sekundärgasleitung (3a) gibt man zusätzliches sauerstoffreiches Gas in die Wirbelschicht oberhalb des Rostes (5), wobei der O2-Gehalt dieses Gases höher sein kann als im Gas der Leitung (3). Bezogen auf die Gesamtmenge des dem Reaktor (2) zugeführten Gases beträgt der O2-Gehalt im Gas 50 bis 90 Vol.-% (wasserfrei gerechnet).The waste materials to be gasified, which can be, for example, municipal or industrial waste, are fed in line (1) to a gasification reactor (2), where they come into contact with hot gases and particles in the state of the circulating fluidized bed. Oxygen-containing fluidizing gas is introduced in line (3) and passed through a distribution chamber (4) with a grate (5) into the fluidized bed of the reactor (2). Through the secondary gas line (3a), additional oxygen-rich gas is added to the fluidized bed above the grate (5), the O 2 content of this gas being higher than in the gas in line (3). Based on the total amount of gas fed to the reactor (2), the O 2 content in the gas is 50 to 90% by volume (calculated as anhydrous).
Die Vergasung im Reaktor (2) erfolgt bei Temperaturen von 800 bis 1100°C und zumeist bei Temperaturen im Bereich von 850 bis 1000°C. Asche wird durch die Leitung (6) abgezogen und einer Trenneinrichtung (60), z.B. einem Sieb, zugeführt. Grobe Aschenteile zieht man in der Leitung (61) ab und die feinen Aschenteile gibt man durch die Leitung (62) zu einer Mahlung (63), um sie dann, falls gewünscht, auf dem Transportweg (12a) dem Spaltreaktor (13) aufgeben zu können.The gasification in the reactor (2) takes place at temperatures of 800 to 1100 ° C and mostly at temperatures in the range from 850 to 1000 ° C. Ash is removed through the line (6) withdrawn and a separating device (60), e.g. one Sieve. Rough ash parts are drawn in the Line (61) and the fine ash parts are passed through the line (62) to a grinding (63), in order to then if desired, on the transport route (12a) To be able to give up the gap reactor (13).
Am oberen Ende des Reaktors (2) verläßt ein Gas-Feststoff-Gemisch den Reaktor durch den Kanal (8) und strömt in einen Zyklon-Abscheider (9), aus welchem staubhaltiges Gas mit einem Gehalt an freiem O2 von höchstens 0,5 Vol.-% durch die Leitung (10) abgezogen wird. Abgeschiedene Feststoffe werden vom unteren Bereich des Abscheiders (9) durch die Leitung (11) zum Reaktor (2) zurückgeführt. Die Leitung (11) kann noch einen Seitenabzug (12) zum Entfernen eines Feststoff-Überschusses aufweisen. Auch diesen Feststoff-Überschuß kann man auf dem Transportweg (12a) in den Spaltreaktor (13) leiten.At the upper end of the reactor (2), a gas-solid mixture leaves the reactor through the channel (8) and flows into a cyclone separator (9), from which dust-containing gas with a free O 2 content of at most 0.5 Vol .-% is withdrawn through line (10). Separated solids are returned from the lower area of the separator (9) through line (11) to the reactor (2). The line (11) can also have a side draw (12) for removing an excess of solids. This excess of solids can also be passed into the gap reactor (13) on the transport path (12a).
Das in der Leitung (10) aus dem Abscheider (9) abgezogene staubhaltige Gas wird dem Spaltreaktor (13) zugeführt, wo eine partielle Verbrennung bei Temperaturen im Bereich von 1200 bis 1600°C und vorzugsweise 1250 bis 1500°C stattfindet. In der Leitung (14) wird sauerstoffreiches, zu 70 bis 100 Vol.-% aus O2 bestehendes Gas herangeführt, bei dem es sich auch um technisch reinen Sauerstoff handeln kann. Ferner ist eine Leitung (15) für Zusatzbrennstoff, z.B. Erdgas, vorgesehen. Bei der partiellen Verbrennung im Spaltreaktor (13) entsteht flüssige Schlacke, die nach unten abfließt. Heißes Spaltgas verläßt zusammen mit flüssiger Schlacke den Reaktor (13) durch den Kanal (17).The dust-containing gas drawn off in the line (10) from the separator (9) is fed to the cracking reactor (13), where partial combustion takes place at temperatures in the range from 1200 to 1600 ° C. and preferably 1250 to 1500 ° C. In line (14), oxygen-rich gas containing 70 to 100% by volume of O 2 is introduced, which can also be technically pure oxygen. A line (15) for additional fuel, for example natural gas, is also provided. Partial combustion in the cracking reactor (13) produces liquid slag that flows downwards. Hot cracked gas leaves the reactor (13) together with liquid slag through the channel (17).
Bei dem Spaltreaktor (13) kann es sich z.B. um eine Brennkammer, einen Schmelzzyklon oder auch um einen Herdofen handeln. Im Reaktor (13) werden bei den dort erreichten hohen Temperaturen viele in der Leitung (10) herangeführte Schadstoffe zerstört und insbesondere auch höhere Kohlenwasserstoffe gespalten, so daß das Spaltgas im Kanal (17) praktisch frei von Kohlenwasserstoffen mit mehr als 4 C-Atomen pro Molekül ist. Für eine ökonomische Spaltung im Spaltreaktor (13) ist es vorteilhaft, wenn nur wenig oder praktisch kein Zusatzbrennstoff gebraucht wird. Dies erreicht man dadurch, daß man dem Reaktor (13) durch die Leitung (10) ein Gas mit einem Heizwert von 3000 bis 8000 kJ/Nm3 und vorzugsweise von mindestens 5000 kJ/Nm3 zuführt. Hierfür ist es wichtig, daß man dem Vergasungsreaktor (2), zusammen mit dem Vergasungsmittel, nur möglichst wenig Inertgas zuführt. Feststoffe, die auf dem Transportweg (12a) in den Reaktor (13) gelangen, werden dort eingeschmolzen.The cracking reactor (13) can be, for example, a combustion chamber, a melting cyclone or a hearth furnace. In the reactor (13), many pollutants introduced in line (10) are destroyed at the high temperatures reached there, and in particular also higher hydrocarbons are split, so that the cracked gas in channel (17) is practically free of hydrocarbons with more than 4 carbon atoms per Molecule is. For economical splitting in the splitting reactor (13), it is advantageous if only little or practically no additional fuel is used. This is achieved by feeding a gas with a calorific value of 3000 to 8000 kJ / Nm 3 and preferably of at least 5000 kJ / Nm 3 to the reactor (13) through line (10). It is important for this that the gasification reactor (2), together with the gasification agent, is fed with as little inert gas as possible. Solids that get into the reactor (13) on the transport path (12a) are melted there.
Gemäß Fig. 1 erfolgt die schockartige Kühlung des heißen Spaltgases, das den Reaktor (13) im Kanal (17) verläßt, im Kühler (18) durch im Überschuß eingedüstes Kühlwasser, das in der Leitung (19) herangeführt wird. Dabei wird gleichzeitig die Schlacke zu Granulat verfestigt. Im Kühler (18) erreicht man Abkühlgeschwindigkeiten, insbesondere im Temperaturbereich zwischen 800°C und 300°C, von 100 bis 300°C pro Sekunde und mehr. Das gekühlte, mit Wasserdampf gesättigte Spaltgas, das den Kühler in der Leitung (20) verläßt, weist üblicherweise eine Temperatur im Bereich von 60 bis 95°C auf.1 the shock-like cooling of the hot takes place Fission gas, which leaves the reactor (13) in the channel (17), in the cooler (18) by excess cooling water injected, which is introduced in line (19). Doing so at the same time the slag solidifies into granules. in the Cooler (18) one reaches cooling speeds, especially in the temperature range between 800 ° C and 300 ° C, from 100 to 300 ° C per second and more. The cooled cracked gas saturated with water vapor Cooler leaves in the line (20), usually has a temperature in the range of 60 to 95 ° C.
Wasser, das Schlackengranulat mit sich führt, gelangt durch die Leitung (21) in den Schleusenbehälter (22) und von da in den Trennbehälter (23), aus dem man durch die Leitung (24) Schlackengranulat abzieht. Das abgetrennte Wasser wird in der Leitung (19) zurückgeführt, wobei man in der Leitung (25) Wasser zum Ergänzen von Verlusten zugibt.Water that carries slag granules with it arrives through the line (21) in the lock container (22) and thence into the separation container (23), from which one can pass through the Line (24) pulls out slag granules. The severed Water is returned in line (19), where in the line (25) water to add losses admits.
Das gekühlte Gas der Leitung (20) wird nun noch weiter durch Wasserwäschen gereinigt, wobei es abwärts durch einen Strahlwäscher (28), durch den Kanal (29), aufwärts in einem Aerosolwäscher (30), durch die Leitung (31) zu einem Venturiwäscher (32), dort abwärts zum Kanal (33) und dann aufwärts durch den Sprühturm (34) strömt. Dem Sprühturm (34) führt man durch die Leitung (35) Frischwasser zu, dem man auch noch Natronlauge zugeben kann, um insbesondere Chlor im zu behandelnden Gas zu binden. Es ist zweckmäßig, im Sprühturm (34) eine Packung (36) zum Intensivieren des Gas-Flüssigkeits-Kontakts vorzusehen. Das Gas, das den Sprühturm (34) durch die Leitung (37) verläßt, wird durch ein Aktivkohlefilter (38) geleitet, um Quecksilber zu entfernen, bevor es in der Leitung (39) weiteren, an sich bekannten Reinigungsstufen oder aber einer Verbrennung, z.B. in einem Kraftwerk, zugeführt wird. Eine weitere Möglichkeit besteht darin, das Gas der Leitung (37) zunächst einer an sich bekannten Entschwefelung zu unterziehen, bevor man es durch das Filter (38) leitet, doch wurde diese Möglichkeit in der Zeichnung nicht berücksichtigt.The cooled gas from line (20) is now still further cleaned by washing water, taking it down through a jet washer (28) up through the channel (29) in an aerosol washer (30) through line (31) a venturi washer (32), down there to the channel (33) and then flows up through the spray tower (34). The Spray tower (34) is led through line (35) Fresh water to which you also add sodium hydroxide solution can, in particular, chlorine in the gas to be treated tie. It is useful to have one in the spray tower (34) Pack (36) for intensifying the Provide gas-liquid contact. The gas that the Leaves spray tower (34) through line (37) is through an activated carbon filter (38) passed to mercury remove before it is in line (39) further, per se known cleaning stages or a combustion, e.g. in a power plant. Another Possibility is to gas the line (37) first of all to a known desulfurization undergo before passing it through the filter (38), however this possibility was not shown in the drawing considered.
In Fig. 1 sind Wasser-Zufuhrleitungen mit der Bezugsziffer (40) und Kühler mit der Bezugsziffer (41) versehen. Gebrauchtes Wasser, das in den Leitungen (42) und (43) abläuft, gelangt in den Absetzbehälter (44). Aus diesem Behälter führt man teilweise geklärtes Wasser zur Wiederverwendung im Strahlwäscher (28) und Aerosolwäscher (30) zurück, zieht Abwasser durch die Leitung (45) ab und entfernt Schlamm durch die Leitung (46). Schlamm und Abwasser werden in nicht dargestellter Weise getrennt weiterbehandelt.In Fig. 1 are water supply lines with the Reference number (40) and cooler with reference number (41) Mistake. Used water in the pipes (42) and (43) runs, gets into the settling container (44). Out partially clarified water is fed to this container Reuse in the jet washer (28) and Aerosol washer (30) pulls wastewater through the Line (45) and removes sludge through the Line (46). Mud and sewage are not in shown further processed separately.
Ein abwasserfreies Verfahren zum Kühlen des heißen Spaltgases, das im Reaktor (13) entsteht, wird mit Hilfe der schematischen Darstellung der Fig. 2 erläutert. Hier wird das heiße Gas, das zusammen mit flüssiger Schlacke den Reaktor (13) im Kanal (17) verläßt, vgl. Fig. 1, in einen Sprühturm (50) von oben eingeleitet, in welchen man gleichzeitig Wasser einsprüht, das in der Leitung (51) herangeführt wird. Die Menge an Wasser ist so auf die Temperatur und die Menge des Gases abgestimmt, daß das gesamte Wasser zusammen mit dem gekühlten Gas in Form von Wasserdampf durch die Leitung (52) abgezogen wird. Feststoffe, die sich trocken am Boden des Sprühturms (50) sammeln, werden durch die Leitung (48) entfernt. Das Wasserdampf und Staub enthaltende Gas der Leitung (52) wird durch eine Filtereinrichtung (53) geführt, bei der es sich z.B. um ein Schlauchfilter oder ein Elektrofilter handeln kann; ferner kann man hier auch mehrere Filtertypen kombinieren. Entstaubtes Gas strömt in der Leitung (54) ab und wird der weiteren, an sich bekannten Gasreinigung zugeführt, die hier nicht dargestellt ist.A wastewater-free process for cooling the hot Cracked gas that is generated in the reactor (13) is with the help the schematic representation of FIG. 2 explained. Here becomes the hot gas that together with liquid slag leaves the reactor (13) in the channel (17), cf. Fig. 1, in a spray tower (50) initiated from above, in which one at the same time spraying water into the line (51) is introduced. The amount of water is so on Temperature and the amount of gas matched that the all of the water along with the chilled gas in the form of Water vapor is drawn off through line (52). Solids that dry out at the bottom of the spray tower (50) collect, are removed through line (48). The Gas of the line containing water vapor and dust (52) is passed through a filter device (53) in which e.g. around a bag filter or an electrostatic filter can act; you can also have several here Combine filter types. Dust-free gas flows in the Line (54) and is the other, known per se Gas cleaning supplied, which is not shown here.
Die hier zusammen mit Fig. 1 beschriebene Variante der Behandlung des Abgases der Leitung (20) kann durch solche bekannten Maßnahmen modifiziert werden, wie man sie aus Anlagen zur Abfall-Verbrennung kennt.The variant of the described here together with FIG Treatment of the exhaust gas of the line (20) can by such Known measures are modified, how to get them out Knows plants for waste incineration.
In einer Anlage gemäß Fig. 1, jedoch ohne die
Trenneinrichtung (60), die Mahlung (63) und den
Transportweg (12a), werden pro Stunde 7500 kg Abfälle mit
folgender Analyse vergast:
Die Vergasung erfolgt bei 900°C, im Spaltreaktor liegt
die Temperatur bei 1450°C. Die nachfolgend genannten
Daten wurden teilweise berechnet:
Nach Entwässerung des Schlammes der Leitung (46) erhält man einen schwermetallhaltigen Filterkuchen in einer Menge von 50 kg/h. Das Gas der Leitung (20), das in einer Menge von 10800 kg/h anfällt, besitzt einen Heizwert von 5,7 MJ/Nm3. Die in der Leitung (24) abgezogene Schlacke ist durch die Vorbehandlung verglast und deshalb problemlos deponierbar.After dewatering the sludge from line (46), a heavy cake containing heavy metals is obtained in an amount of 50 kg / h. The gas in line (20), which is produced in an amount of 10800 kg / h, has a calorific value of 5.7 MJ / Nm 3 . The slag drawn off in the line (24) is glazed by the pretreatment and can therefore be deposited without any problems.
Claims (7)
- A method for gasification of waste substances containing combustible constituents in a circulating fluidised bed, wherein the waste substances are gasified in a gasification reactor in the fluidised state with oxygen-containing gas being supplied, from the upper region of the gasification reactor a gas/solids mixture is fed to a separator, dust-containing gas is removed from the separator and separately therefrom solids separated off are discharged and the solids are returned at least in part to the gasification reactor, characterised in that the gasification in the gasification reactor is effected at temperatures in the range from 800 to 1100°C with gaseous gasification agent being supplied which consists of 20 to 90% by volume oxygen, that a dust-containing gas, the content of free O2 of which is at most 0.5% by volume, is withdrawn from the separator, that the gas withdrawn from the separator is partially burned in a cracking reactor to which an oxygen-rich gas consisting of 70 to 100% by volume of O2 is simultaneously fed, that temperatures in the range from 1200 to 1600°C are maintained in the cracking reactor and liquid slag is produced which is discharged from the cracking reactor, and that the cracked gas formed in the cracking reactor is cooled to a temperature of at most 300°C in at least one cooler at a cooling rate of at least 100°C per second.
- A method according to Claim 1, characterised in that the cracked gas formed in the cracking reactor is cooled in at least one cooler in direct contact with excess water sprayed in, and waste water is removed from the cooler.
- A method according to Claim 1, characterised in that the cracked gas formed in the cracking reactor is cooled in at least one cooling means with cooling water sprayed in, and cooled cracked gas at a temperature of at most 300°C and containing the cooling water as water vapour is removed from the cooling means.
- A method according to one of Claims 1 to 3,
characterised in that the cracked gas is cooled in a cooler with an entry temperature of at least 800°C and an exit temperature of at most 300°C at a cooling rate of at least 100°C per second. - A method according to one of Claims 1 to 4,
characterised in that the dust-containing gas removed from the separator has a calorific value of about 3000 to 8000 kJ/sm3. - A method according to one of Claims 1 to 5,
characterised in that fuel is supplied to the cracking reactor. - A method according to one of Claims 1 to 6,
characterised in that the cracking reactor is fed with solids removed from the gasification reactor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4412004 | 1994-04-07 | ||
DE4412004A DE4412004A1 (en) | 1994-04-07 | 1994-04-07 | Process for gasifying waste materials in the circulating fluidized bed |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0676465A1 EP0676465A1 (en) | 1995-10-11 |
EP0676465B1 true EP0676465B1 (en) | 1998-08-05 |
Family
ID=6514841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95104128A Expired - Lifetime EP0676465B1 (en) | 1994-04-07 | 1995-03-21 | Process for gasification of wastes in a circulating fluidized bed |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0676465B1 (en) |
DE (2) | DE4412004A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922090A (en) | 1994-03-10 | 1999-07-13 | Ebara Corporation | Method and apparatus for treating wastes by gasification |
DE19544200A1 (en) * | 1995-11-28 | 1997-06-05 | Metallgesellschaft Ag | Process for treating exhaust gas from the gasification of carbonaceous material |
EP0776962B1 (en) * | 1995-11-28 | 2002-10-02 | Ebara Corporation | Method and apparatus for treating wastes by gasification |
DE69613811D1 (en) * | 1996-04-09 | 2001-08-16 | Ansaldo Ricerche S R L | Method and system for the production and use of fuel gases, in particular gases made from biomass and waste |
US5980858A (en) | 1996-04-23 | 1999-11-09 | Ebara Corporation | Method for treating wastes by gasification |
US6902711B1 (en) | 1996-04-23 | 2005-06-07 | Ebara Corporation | Apparatus for treating wastes by gasification |
US5900224A (en) * | 1996-04-23 | 1999-05-04 | Ebara Corporation | Method for treating wastes by gasification |
JP4454045B2 (en) * | 1996-09-04 | 2010-04-21 | 株式会社荏原製作所 | Swivel melting furnace and two-stage gasifier |
DE19652770A1 (en) * | 1996-12-18 | 1998-06-25 | Metallgesellschaft Ag | Process for gasifying solid fuels in the circulating fluidized bed |
DE69730870T2 (en) * | 1997-04-22 | 2005-09-29 | Ebara Corp. | METHOD AND DEVICE FOR TREATING COOLING BY GASIFICATION |
DE102004049364A1 (en) * | 2004-10-08 | 2006-04-20 | Kerr-Mcgee Pigments Gmbh | Generating a fluidized bed for carrying out thermal reactions, especially for thermally cracking iron sulfates from titanium dioxide manufacture, comprises using a fluidizing gas with a high oxygen content |
DE102008029927B4 (en) | 2008-06-26 | 2013-06-20 | Projektentwicklung Energie Und Umwelt Leipzig Gmbh | Flash pyrolysis of organic substances with ionic liquid as a heat carrier for the production of oily or gaseous intermediates |
IL287108B1 (en) * | 2019-04-12 | 2024-08-01 | Enerkem Inc | Production of synthesis gas from gasifying and reforming carbonaceous material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3130031A1 (en) * | 1981-07-30 | 1982-04-08 | Davy McKee AG, 6000 Frankfurt | METHOD FOR GASIFYING COAL |
FR2559776B1 (en) * | 1984-02-16 | 1987-07-17 | Creusot Loire | SYNTHESIS GAS PRODUCTION PROCESS |
DE4125522C1 (en) * | 1991-08-01 | 1992-10-29 | Energiewerke Schwarze Pumpe Ag, O-7610 Schwarze Pumpe, De | Simultaneous disposal of solid and liq. waste material, avoiding environmental pollution - by combustion in solid bed pressure gasification plant, quenching hot effluent gases then mixing with oxygen@-contg. gases and combusting further |
ATE134698T1 (en) * | 1991-11-29 | 1996-03-15 | Noell En Und Entsorgungstechni | METHOD FOR THE THERMAL RECYCLING OF WASTE MATERIALS |
-
1994
- 1994-04-07 DE DE4412004A patent/DE4412004A1/en not_active Withdrawn
-
1995
- 1995-03-21 DE DE59503039T patent/DE59503039D1/en not_active Expired - Lifetime
- 1995-03-21 EP EP95104128A patent/EP0676465B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0676465A1 (en) | 1995-10-11 |
DE59503039D1 (en) | 1998-09-10 |
DE4412004A1 (en) | 1995-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0594231B1 (en) | Process for gasifying waste products containing combustible substances | |
EP0545241B1 (en) | Process for thermic valorisation of waste materials | |
DE69718020T2 (en) | MELTING TUBES AND METHOD FOR GASIFYING WASTE IN THE SAME | |
DE3121206C2 (en) | Solid waste gasification method | |
EP0676465B1 (en) | Process for gasification of wastes in a circulating fluidized bed | |
EP0412587B1 (en) | Process for purifying raw combustible gas from solid-fuel gasification | |
DE2624302A1 (en) | PROCEDURE FOR CARRYING OUT EXOTHERMAL PROCESSES | |
DE3724563A1 (en) | METHOD FOR THERMALLY TREATING WASTE AND APPARATUS FOR CARRYING OUT THIS METHOD | |
DE3307848A1 (en) | METHOD FOR REBURNING AND PURIFYING PROCESS EXHAUST GAS | |
DE4104252C2 (en) | Disposal procedure for polluted, carbon-containing waste materials | |
DE1909263A1 (en) | Method and device for smoldering fine-grained bituminous substances which form a dust-like smoldering residue | |
DE4435349C1 (en) | Destruction of pollutants and gasifying of waste in a fluidised bed | |
EP1201731A1 (en) | Process for fluidized bed gasifying carbon containing solids and gasifier therefor | |
EP1558709B1 (en) | Method for gasifying substances containing carbon by using a plasma | |
EP0523815A1 (en) | Process for fabrication of synthesis or fuel gases from pasty or solid refuse or waste materials or from low-grade fuels in gasification reactor | |
EP0689574B1 (en) | Waste disposal process and device | |
DE60204353T2 (en) | METHOD AND DEVICE FOR GASOLATING CARBONATED MATERIAL | |
DE3333187C2 (en) | Process for the production of synthesis gas | |
DE4413923C2 (en) | Method for generating synthesis and / or fuel gas in a high-temperature Winkler gasifier | |
DE4109063A1 (en) | Combustible waste utilisation method - involves gasifying lumps by using medium flowing in same direction before flame reaction chamber | |
AT392079B (en) | METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT | |
DE19513832B4 (en) | Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification | |
DE60208013T2 (en) | GASIFICATION AND VAPORING DEVICE | |
DE3439600A1 (en) | Process for generating low-sulphur gas from finely ground carbonaceous solids | |
DE3130031A1 (en) | METHOD FOR GASIFYING COAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19960411 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980129 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 59503039 Country of ref document: DE Date of ref document: 19980910 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981104 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990212 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990216 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990224 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990228 Year of fee payment: 5 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20000505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20001001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050321 |