EP0412587B1 - Process for purifying raw combustible gas from solid-fuel gasification - Google Patents

Process for purifying raw combustible gas from solid-fuel gasification Download PDF

Info

Publication number
EP0412587B1
EP0412587B1 EP90201697A EP90201697A EP0412587B1 EP 0412587 B1 EP0412587 B1 EP 0412587B1 EP 90201697 A EP90201697 A EP 90201697A EP 90201697 A EP90201697 A EP 90201697A EP 0412587 B1 EP0412587 B1 EP 0412587B1
Authority
EP
European Patent Office
Prior art keywords
crude gas
water
filter
gas
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90201697A
Other languages
German (de)
French (fr)
Other versions
EP0412587A1 (en
Inventor
Erhard Lath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0412587A1 publication Critical patent/EP0412587A1/en
Application granted granted Critical
Publication of EP0412587B1 publication Critical patent/EP0412587B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/06Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials combined with spraying with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a method for cleaning the raw gas from the gasification of solid fuels, in particular carbon-containing waste, with oxygen-containing gasification agent, wherein a carbon oxides, hydrogen and methane and as contaminants dust, NH3 and hydrogen halide containing raw gas with temperatures of about 500 to 1200 ° C generated becomes. Garbage can also be given to gasification.
  • the invention has for its object to remove from the raw gas NH3, HCl, HF and dust in a simple manner so that the amount of impurities to be removed is as small as possible.
  • this is achieved by cooling the raw gas to temperatures of 150 to 400 ° C, the cooled raw gas with an NH3 content of at least 0.1 vol .-% in a spray drying zone and in contact with sprayed return water brings, the return water is completely evaporated, that you pass the steam containing raw gas from the spray drying zone at temperatures of 80 to 250 ° C through a filter, in the filter at least 80 wt .-% of the solids contained in the raw gas in the filter inlet and at least 50 wt.
  • the raw gas is passed from the filter through a saturation zone in which the raw gas is brought into direct contact with sprayed water, the raw gas is saturated with water vapor and cooled to temperatures of 50 to 90 ° C.
  • the Saturation zone derives saline and solids-containing water with a pH of 7.5 to 9.5 and gives the spray drying zone as return water, and that the raw gas from the saturation zone is aftertreated to remove dust and saline liquid droplets.
  • the raw gas entering the spray drying zone has a considerable NH 3 content of at least 0.1% by volume up to about 1% by volume.
  • This NH3 content usually results in the raw gas without further notice that the fuels are not burned but gasified, the energy required for this being supplied by partial oxidation.
  • oxygen air or air enriched with oxygen, steam is also used as the gasifying agent, which can be partially replaced by CO2.
  • the calorific value of the gas produced during gasification can be in an incinerator and e.g. can also be used in a power plant. It is important that the raw fuel gas is cleaned in a cost-effective manner and yet with sufficient intensity. In the method of the invention, the cleaning of the raw gas does not lead to polluted wastewater that would have to be cleaned again.
  • the process can be carried out completely without the addition of chemicals, if only it is ensured that the NH3 content in the raw gas in the entrance to the spray drying zone is sufficiently high. In the gasification of waste and municipal waste, this is usually the case without the addition of external NH3.
  • Heavy metals or heavy metal compounds also desublimate, accumulate preferentially in the spray drying zone on the desublimated halogen particles and on the dust brought in with the raw gas and can thus also be removed from the gas to a sufficient extent.
  • the pH in the water is 7.5 to 9.5, so that cheap carbon steel can be used for the systems and pipes.
  • a cost reduction through energy savings is also given by the fact that one can manage with a relatively small amount of water both in the spray drying zone and in the saturation zone.
  • the gas from the saturation zone mainly contains dust and saline liquid droplets, so that an aftertreatment is necessary.
  • a wet electrostatic filter, a wet scrubber, a droplet separator are particularly suitable for this aftertreatment, the latter also being able to be connected downstream of a wet scrubber, or a condenser. It is important to remove the dust and the saline liquid droplets without adding chemicals.
  • the water that contains dust and salt is also fed into the spray drying zone.
  • solid fuels for example coal or biomass, or also carbon-containing wastes, which are introduced in line (2), are gasified with air from line (3).
  • the waste can be municipal waste, for example.
  • the reactor (1) can also be given water vapor coming from line (4).
  • the gasification air can be enriched with oxygen, you can only work with technically pure oxygen together with water vapor.
  • the process shown in the drawing shows that the fuel or waste is gasified in the circulating fluidized bed, but the gasification can also take place in the fluidized bed, in the entrained flow or in a fixed bed.
  • the deck furnace is also possible as a gasification reactor.
  • a mixture of raw gas and solids passes through the channel (6) to a cyclone (7), where the majority of the solids are separated from the gas. Instead of just one cyclone (7), you can also connect several cyclones in parallel or in series.
  • the solids are then partly fed back through lines (8) and (9) to the gasification reactor (1) and an excess can be drawn off in line (10). Ash is drawn off directly from the reactor (1) through line (5).
  • the dust-containing raw gas which contains combustible components and NH3, HCl and usually also in small quantities HF, leaves the cyclone (7) in line (12) at temperatures in the range of about 500 to 1200 ° C.
  • a first indirect cooling takes place in the heat exchanger (13). can be used to preheat the gasification air in line (3). For the sake of clarity, this possibility was not shown in the drawing. Further cooling can take place in the heat exchanger (14) if this is expedient.
  • the pre-cooled raw gas at temperatures of 150 to 400 ° C in the line (16) to a spray dryer (17). Care is taken to ensure that the NH3 content in the raw gas of line (16) is at least 0.1% by volume and is present in a sufficient amount for the reaction with the hydrogen halides in the raw gas. Usually the raw gas from the waste gasification contains enough NH3, but if the NH3 content is too low, foreign NH3 can be added.
  • Spray dryer (17) return water from line (18). This water carries halogen compounds, heavy metal compounds and dust with it, which have been washed out of the raw gas elsewhere. The pH value of the return water is therefore in the range from 7.5 to 9.5.
  • water is sprayed from the line (19) which contains hardly any impurities. Particular care is taken to ensure that no further chemicals are added to the spray dryer (17). Such an addition of chemicals would only lead to the need to dispose of large amounts of waste.
  • a mixture of raw gas and solids passes through the line (20) to a filter (21).
  • This filter in which the solids are separated from the gas dry, can be, for example, a bag filter, a candle filter, an electrostatic filter or one or more cyclones. It is important that at least 80% by weight of the solids introduced in the raw gas in line (20) and at least 50% by weight of the halogen compounds which are removed in line (22) are separated off in the filter (21). Usually at least 50% by weight of the heavy metals are also separated off in the filter (21).
  • the solids in the line (22), the amount of which has not been increased by avoiding the addition of foreign chemicals, must be removed and deposited.
  • the partially dedusted raw gas now flows in line (24) to a saturation zone (25), into which water is sprayed through line (23a).
  • a saturation zone 25
  • the raw gas is cooled further, saturated with water vapor and partially dedusted again.
  • Halogen and heavy metal compounds in particular are effectively removed by the sprayed water.
  • Salt and solids-containing water which has a pH in the range from 7.5 to 9.5 is drawn off from the sump (25a) of the saturation zone. This water is led through lines (18 a) and (18) back to the spray dryer (17).
  • the gas leaving the saturation zone (25) in line (26) has only a temperature in the range from 50 to 90 ° C.
  • a wet electrostatic filter (27) was provided in the drawing, which is acted upon with water from the line (28). Water containing dust and salt is drawn off in line (29) and added to the return water in line (18). Deviating from the drawing, the wet electrostatic filter (27) can be replaced by a wet scrubber and / or by a droplet separator.
  • Dust-free, water vapor-containing gas passes from the electrostatic filter (27) in line (30) to a condenser (31) in which the water vapor is partially condensed by indirect cooling and thus removed.
  • the condensate which is fairly clean water, is discharged in line (32) and distributed to lines (23) and (19), a partial stream can also be returned via line (33) and as rinsing water passed through the condenser.
  • the condenser (31) which can also be omitted behind a wet electrostatic precipitator, its calorific value can be regulated by adjusting the water vapor content in the gas.
  • purified fuel gas is available, which can be used, for example, in a Power plant can use.
  • the gas Before use, the gas can be heated by indirect heat exchange with the raw gas from line (12), for example in the heat exchanger (14).
  • the cleaning method of the invention it is readily possible to provide a fuel gas in line (35) which has maximum HCl values of 10 mg per Nm3 and dust, HF and heavy metals of at most 1 mg each.
  • This raw gas contains 10,000 mg of inert dust and 34 mg of heavy metals per Nm3.
  • the following temperatures occur in the different lines:
  • the spray dryer (17) has a height of 6 m and a diameter of 1.5 m, the downstream filter (21) is designed as a bag filter.
  • the line (22) 180 kg of filter dust accumulate per hour, which together with 1,200 kg / h of ash from the line (5) are to be disposed of from the gasification reactor (1).
  • the flowing out in the line (35), cleaned fuel gas contains less than 1 mg of dust, 5 mg of NH4Cl and 1 mg of heavy metals and 1.5 g of NH3 per Nm3.
  • the gas is heated to 500 ° C in the heat exchanger (14) and burned in a power plant boiler. In the boiler, which works on the principle of the circulating fluidized bed and is also fed with coal, the sulfur compounds are bound into the boiler ash in a known manner using limestone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Reinigen des Rohgases aus der Vergasung fester Brennstoffe, insbesondere kohlenstoffhaltiger Abfälle, mit sauerstoffhaltigem Vergasungsmittel, wobei ein Kohlenoxide, Wasserstoff und Methan sowie als Verunreinigungen Staub, NH₃ und Halogenwasserstoffe enthaltendes Rohgas mit Temperaturen von etwa 500 bis 1200°C erzeugt wird. Der Vergasung kann auch Müll aufgegeben werden.The invention relates to a method for cleaning the raw gas from the gasification of solid fuels, in particular carbon-containing waste, with oxygen-containing gasification agent, wherein a carbon oxides, hydrogen and methane and as contaminants dust, NH₃ and hydrogen halide containing raw gas with temperatures of about 500 to 1200 ° C generated becomes. Garbage can also be given to gasification.

Die Vergasung von Kohle, kohlenstoffhaltigen Abfällen und auch Müll ist bekannt und z.B. im US-Patent 4 032 305 beschrieben. Problematisch ist hierbei die Reinigung des Rohgases aus der Vergasung, für die es an sich bekannte Verfahren gibt, wobei aber zusätzliche Abfallstoffe erzeugt werden.The gasification of coal, carbon-containing waste and also waste is known and e.g. in U.S. Patent 4,032,305. The problem here is the purification of the raw gas from the gasification, for which there are known methods, but additional waste materials are generated.

Der Erfindung liegt die Aufgabe zugrunde, aus dem Rohgas NH₃, HCl, HF und Staub auf einfache Weise so zu entfernen, daß die Menge an zu beseitigenden Verunreinigungen möglichst gering ist. Beim eingangs genannten Verfahren gelingt dies dadurch, daß man das Rohgas auf Temperaturen von 150 bis 400°C kühlt, das gekühlte Rohgas mit einem NH₃-Gehalt von mindestens 0,1 Vol.-% in eine Sprühtrocknungszone leitet und mit darin versprühtem Rückführwasser in Kontakt bringt, wobei das Rückführwasser vollständig verdampft wird, daß man das wasserdampfhaltige Rohgas aus der Sprühtrocknungszone mit Temperaturen von 80 bis 250°C durch ein Filter leitet, im Filter mindestens 80 Gew.-% der im Rohgas im Filtereingang enthaltenen Feststoffe und mindestens 50 Gew.-% der Halogenverbindungen trocken abtrennt, daß man das Rohgas aus dem Filter durch eine Sättigungszone leitet, in welcher man das Rohgas mit versprühtem Wasser in direkten Kontakt bringt, das Rohgas dabei mit Wasserdampf sättigt und auf Temperaturen von 50 bis 90°C abkühlt, aus der Sättigungszone salz- und feststoffhaltiges Wasser mit einem pH-Wert von 7,5 bis 9,5 ableitet und der Sprühtrocknungszone als Rückführwasser aufgibt, und daß man das Rohgas aus der Sättigungszone zur Entfernung von Staub und salzhaltigen Flüssigkeitströpfchen nachbehandelt.The invention has for its object to remove from the raw gas NH₃, HCl, HF and dust in a simple manner so that the amount of impurities to be removed is as small as possible. In the process mentioned above, this is achieved by cooling the raw gas to temperatures of 150 to 400 ° C, the cooled raw gas with an NH₃ content of at least 0.1 vol .-% in a spray drying zone and in contact with sprayed return water brings, the return water is completely evaporated, that you pass the steam containing raw gas from the spray drying zone at temperatures of 80 to 250 ° C through a filter, in the filter at least 80 wt .-% of the solids contained in the raw gas in the filter inlet and at least 50 wt. -% of the halogen compounds are separated dry, that the raw gas is passed from the filter through a saturation zone in which the raw gas is brought into direct contact with sprayed water, the raw gas is saturated with water vapor and cooled to temperatures of 50 to 90 ° C. the Saturation zone derives saline and solids-containing water with a pH of 7.5 to 9.5 and gives the spray drying zone as return water, and that the raw gas from the saturation zone is aftertreated to remove dust and saline liquid droplets.

Beim erfindungsgemäßen Verfahren weist das in die Sprühtrocknungszone eintretende Rohgas einen erheblichen Gehalt an NH₃ von mindestens 0,1 Vol.-% bis zu etwa 1 Vol.-% auf. Dieser NH₃-Gehalt ergibt sich im Rohgas zumeist ohne weiteres bereits dadurch, daß man die Brennstoffe nicht verbrennt, sondern vergast, wobei die dafür nötige Energie durch partielle Oxidation geliefert wird. Als Vergasungsmittel dient neben Sauerstoff, Luft oder mit Sauerstoff angereicherter Luft zumeist auch Wasserdampf, der teilweise durch CO₂ ersetzt sein kann.In the process according to the invention, the raw gas entering the spray drying zone has a considerable NH 3 content of at least 0.1% by volume up to about 1% by volume. This NH₃ content usually results in the raw gas without further notice that the fuels are not burned but gasified, the energy required for this being supplied by partial oxidation. In addition to oxygen, air or air enriched with oxygen, steam is also used as the gasifying agent, which can be partially replaced by CO₂.

Der Heizwert des bei der Vergasung entstehenden Gases kann in einer Verbrennungsanlage und z.B. auch in einem Kraftwerk genutzt werden. Hierbei ist es wichtig, daß man das rohe Brenngas auf kostengünstige Weise und doch genügend intensiv reinigt. Beim Verfahren der Erfindung führt die Reinigung des Rohgases nicht zu einem verschmutzten Abwasser, das selbst wieder gereinigt werden müßte. Das Verfahren kann vollständig ohne Zugabe von Chemikalien durchgeführt werden, wenn nur dafür gesorgt ist, daß der NH₃-Gehalt im Rohgas im Eingang zur Sprühtrocknungszone ausreichend hoch ist. Bei der Vergasung von Abfällen und kommunalem Müll ist das in aller Regel bereits ohne Zugabe von Fremd-NH₃ der Fall.The calorific value of the gas produced during gasification can be in an incinerator and e.g. can also be used in a power plant. It is important that the raw fuel gas is cleaned in a cost-effective manner and yet with sufficient intensity. In the method of the invention, the cleaning of the raw gas does not lead to polluted wastewater that would have to be cleaned again. The process can be carried out completely without the addition of chemicals, if only it is ensured that the NH₃ content in the raw gas in the entrance to the spray drying zone is sufficiently high. In the gasification of waste and municipal waste, this is usually the case without the addition of external NH₃.

Für das Verfahren ist es sehr wichtig, daß man in der Sprühtrocknungszone Temperaturen von 80 bis 250°C einhält. Unter diesen Bedingungen entstehen aus NH₃, HCl und HF Ammoniumhalogenide direkt aus der Gasphase und werden durch Desublimation und Anlagerung an vorhandene Feststoffpartikel in fester und trockener Form abgeschieden. Die so gebildeten Agglomerate lassen sich dann leicht ausfiltern.It is very important for the process that temperatures of 80 to 250 ° C are maintained in the spray drying zone. Under these conditions, NH₃, HCl and HF form ammonium halides directly from the gas phase and are deposited in solid and dry form by desublimation and attachment to existing solid particles. The agglomerates thus formed can then be easily filtered out.

Schwermetalle oder Schwermetallverbindungen desublimieren ebenfalls, lagern sich in der Sprühtrocknungszone bevorzugt an den desublimierten Halogenpartikeln und an dem mit dem Rohgas herangeführten Staub an und können so in ausreichendem Maß ebenfalls aus dem Gas entfernt werden.Heavy metals or heavy metal compounds also desublimate, accumulate preferentially in the spray drying zone on the desublimated halogen particles and on the dust brought in with the raw gas and can thus also be removed from the gas to a sufficient extent.

Durch den ausreichend hohen NH₃-Gehalt im Rohgas und durch das in das Rückführwasser eingebrachte Ammoniak liegt der pH-Wert im Wasser bei 7,5 bis 9,5, so daß man für die Anlagen und Rohrleitungen billigen C-Stahl verwenden kann. Eine Kostensenkung durch Energieersparnis ist auch dadurch gegeben, daß man insgesamt mit einer relativ geringen Wassermenge sowohl in der Sprühtrocknungszone als auch in der Sättigungszone auskommt.Due to the sufficiently high NH₃ content in the raw gas and the ammonia introduced into the return water, the pH in the water is 7.5 to 9.5, so that cheap carbon steel can be used for the systems and pipes. A cost reduction through energy savings is also given by the fact that one can manage with a relatively small amount of water both in the spray drying zone and in the saturation zone.

Das Gas aus der Sättigungszone enthält vor allem noch Staub und salzhaltige Flüssigkeitströpfchen, so daß eine Nachbehandlung nötig wird. Für diese Nachbehandlung eignen sich vor allem ein Naßelektrofilter, ein Naßwäscher, ein Tropfenabscheider, wobei letzterer auch einem Naßwäscher nachgeschaltet sein kann, oder ein Kondensator. Wichtig ist hierbei die Entfernung des Staubes und der salzhaltigen Flüssigkeitströpfchen ohne Zugabe von Chemikalien. Das dabei anfallende, staub- und salzhaltige Wasser wird ebenfalls in die Sprühtrocknungszone geleitet.The gas from the saturation zone mainly contains dust and saline liquid droplets, so that an aftertreatment is necessary. A wet electrostatic filter, a wet scrubber, a droplet separator are particularly suitable for this aftertreatment, the latter also being able to be connected downstream of a wet scrubber, or a condenser. It is important to remove the dust and the saline liquid droplets without adding chemicals. The water that contains dust and salt is also fed into the spray drying zone.

Weitere Einzelheiten und Ausgestaltungen des Verfahrens werden mit Hilfe der Zeichnung erläutert.Further details and refinements of the method are explained with the aid of the drawing.

Im Vergasungsreaktor (1) werden feste Brennstoffe, z.B. Kohle oder Biomasse, oder auch kohlenstoffhaltige Abfälle, die in der Leitung (2) herangeführt werden, mit Luft aus der Leitung (3) vergast. Bei den Abfällen kann es sich z.B. um kommunalen Müll handeln. Als Vergasungsmittel kann man dem Reaktor (1) auch noch Wasserdampf aufgeben, der aus der Leitung (4) kommt. Die Vergasungsluft kann mit Sauerstoff angereichert sein, man kann auch nur mit technisch reinem Sauerstoff zusammen mit Wasserdampf arbeiten. Im in der Zeichnung dargestellten Verfahren werden die Brennstoffe oder der Müll in der zirkulierenden Wirbelschicht vergast, die Vergasung kann aber auch in der Wirbelschicht, im Flugstrom oder im Festbett erfolgen. Als Vergasungsreaktor ist auch der Etagenofen möglich.In the gasification reactor (1), solid fuels, for example coal or biomass, or also carbon-containing wastes, which are introduced in line (2), are gasified with air from line (3). The waste can be municipal waste, for example. As gasifying agent, the reactor (1) can also be given water vapor coming from line (4). The gasification air can be enriched with oxygen, you can only work with technically pure oxygen together with water vapor. Im in the The process shown in the drawing shows that the fuel or waste is gasified in the circulating fluidized bed, but the gasification can also take place in the fluidized bed, in the entrained flow or in a fixed bed. The deck furnace is also possible as a gasification reactor.

Ein Gemisch aus Rohgas und Feststoffen gelangt durch den Kanal (6) zu einem Zyklon (7), wo der Hauptteil der Feststoffe aus dem Gas abgeschieden wird. Anstelle von nur einem Zyklon (7) kann man auch mehrere Zyklone parallel- oder hintereinanderschalten. Die Feststoffe führt man dann durch die Leitungen (8) und (9) zum Teil zum Vergasungsreaktor (1) zurück und kann einen Überschuß in der Leitung (10) abziehen. Durch die Leitung (5) erfolgt der Abzug von Asche direkt aus dem Reaktor (1).A mixture of raw gas and solids passes through the channel (6) to a cyclone (7), where the majority of the solids are separated from the gas. Instead of just one cyclone (7), you can also connect several cyclones in parallel or in series. The solids are then partly fed back through lines (8) and (9) to the gasification reactor (1) and an excess can be drawn off in line (10). Ash is drawn off directly from the reactor (1) through line (5).

Das staubhaltige Rohgas, das brennbare Komponenten sowie NH₃, HCl und üblicherweise in geringer Menge auch HF enthält, verläßt den Zyklon (7) in der Leitung (12) mit Temperaturen im Bereich von etwa 500 bis 1200°C. Im Wärmeaustauscher (13) erfolgt eine erste indirekte Kühlung, wobei man die abgeführte Wärme z.B. zum Vorwärmen der Vergasungsluft in der Leitung (3) verwenden kann. Der besseren Übersichtlichkeit wegen wurde diese Möglichkeit in der Zeichnung nicht dargestellt. Eine weitere Kühlung kann im Wärmeaustauscher (14) erfolgen, falls dies zweckmäßig ist.The dust-containing raw gas, which contains combustible components and NH₃, HCl and usually also in small quantities HF, leaves the cyclone (7) in line (12) at temperatures in the range of about 500 to 1200 ° C. A first indirect cooling takes place in the heat exchanger (13). can be used to preheat the gasification air in line (3). For the sake of clarity, this possibility was not shown in the drawing. Further cooling can take place in the heat exchanger (14) if this is expedient.

Vom Wärmeaustauscher (14) gelangt das vorgekühlte Rohgas mit Temperaturen von 150 bis 400°C in der Leitung (16) zu einem Sprühtrockner (17). Hierbei wird darauf geachtet, daß der NH₃-Gehalt im Rohgas der Leitung (16) mindestens 0,1 Vol.-% beträgt und für die Umsetzung mit den im Rohgas befindlichen Halogenwasserstoffen in mehr als ausreichender Menge vorhanden ist. Üblicherweise enthält das Rohgas aus der Abfallvergasung genügend NH₃, doch wenn der NH₃-Gehalt zu niedrig ist, kann man Fremd-NH₃ zudosieren. In das aus der Leitung (16) kommende heiße Rohgas sprüht man im Sprühtrockner (17) Rückführwasser aus der Leitung (18) ein. Dieses Wasser führt Halogenverbindungen, Schwermetallverbindungen und Staub mit sich, die an anderer Stelle aus dem Rohgas ausgewaschen wurden. Der pH-Wert des Rückführwassers liegt deshalb im Bereich von 7,5 bis 9,5. Ebenfalls im Sprühtrockner (17) versprüht man Wasser aus der Leitung (19), das kaum Verunreinigungen enthält. Es wird besonders darauf geachtet, daß man dem Sprühtrockner (17) keine weiteren Chemikalien zuführt. Eine solche Chemikalienzugabe würde nur dazu führen, größere Mengen an Abfallstoffen entsorgen zu müssen.From the heat exchanger (14), the pre-cooled raw gas at temperatures of 150 to 400 ° C in the line (16) to a spray dryer (17). Care is taken to ensure that the NH₃ content in the raw gas of line (16) is at least 0.1% by volume and is present in a sufficient amount for the reaction with the hydrogen halides in the raw gas. Usually the raw gas from the waste gasification contains enough NH₃, but if the NH₃ content is too low, foreign NH₃ can be added. In the hot raw gas coming from line (16) is sprayed in Spray dryer (17) return water from line (18). This water carries halogen compounds, heavy metal compounds and dust with it, which have been washed out of the raw gas elsewhere. The pH value of the return water is therefore in the range from 7.5 to 9.5. Also in the spray dryer (17), water is sprayed from the line (19) which contains hardly any impurities. Particular care is taken to ensure that no further chemicals are added to the spray dryer (17). Such an addition of chemicals would only lead to the need to dispose of large amounts of waste.

Im Sprühtrockner (17) wird das gesamte eingebrachte Wasser verdampft, wobei in Gegenwart der zurückgeführten Feststoffe und Salze NH₃, HCl und HF miteinander zur Bildung Ammoniumhalogenide enthaltender Agglomerate reagieren. Gleichzeitig führen die Bedingungen im Sprühtrockner dazu, daß Aerosole vermieden werden, was besonders durch die Zufuhr von Kondensationskeimen mit dem Rückführwasser der Leitung (18) bewirkt wird.In the spray dryer (17), all the water introduced is evaporated, with NH 3, HCl and HF reacting in the presence of the recycled solids and salts to form agglomerates containing ammonium halides. At the same time, the conditions in the spray dryer mean that aerosols are avoided, which is caused in particular by the supply of condensation nuclei with the return water from line (18).

Mit einer Temperatur im Bereich von 80 bis 250°C gelangt ein Gemisch aus Rohgas und Feststoffen durch die Leitung (20) zu einem Filter (21). Bei diesem Filter, in welchem die Feststoffe aus dem Gas trocken abgeschieden werden, kann es sich z.B. um ein Schlauchfilter, ein Kerzenfilter, ein Elektrofilter oder aber um einen oder mehrere Zyklone handeln. Wichtig ist, daß man im Filter (21) mindestens 80 Gew.-% der im Rohgas in der Leitung (20) herangeführten Feststoffe und mindestens 50 Gew.-% der Halogenverbindungen abtrennt, die man in der Leitung (22) abführt. Üblicherweise werden im Filter (21) auch mindestens 50 Gew.-% der Schwermetalle abgetrennt. Die Feststoffe in der Leitung (22), deren Menge durch Vermeiden einer Zugabe von Fremdchemikalien nicht vergrößert wurde, müssen entfernt und deponiert werden.At a temperature in the range of 80 to 250 ° C, a mixture of raw gas and solids passes through the line (20) to a filter (21). This filter, in which the solids are separated from the gas dry, can be, for example, a bag filter, a candle filter, an electrostatic filter or one or more cyclones. It is important that at least 80% by weight of the solids introduced in the raw gas in line (20) and at least 50% by weight of the halogen compounds which are removed in line (22) are separated off in the filter (21). Usually at least 50% by weight of the heavy metals are also separated off in the filter (21). The solids in the line (22), the amount of which has not been increased by avoiding the addition of foreign chemicals, must be removed and deposited.

Das teilentstaubte Rohgas strömt nun in der Leitung (24) zu einer Sättigungszone (25), in welche man durch die Leitung (23a) Wasser einsprüht. Hierdurch wird das Rohgas weiter gekühlt, mit Wasserdampf gesättigt und erneut teilweise entstaubt. Insbesondere Halogen- und Schwermetallverbindungen werden durch das eingesprühte Wasser wirkungsvoll entfernt. Aus dem Sumpf (25a) der Sättigungszone zieht man salz- und feststoffhaltiges Wasser ab, das einen pH-Wert im Bereich von 7,5 bis 9,5 aufweist. Dieses Wasser führt man durch die Leitungen (18 a) und (18) zurück zum Sprühtrockner (17). Das Gas, das die Sättigungszone (25) in der Leitung (26) verläßt, hat nur noch eine Temperatur im Bereich von 50 bis 90°C.The partially dedusted raw gas now flows in line (24) to a saturation zone (25), into which water is sprayed through line (23a). As a result, the raw gas is cooled further, saturated with water vapor and partially dedusted again. Halogen and heavy metal compounds in particular are effectively removed by the sprayed water. Salt and solids-containing water which has a pH in the range from 7.5 to 9.5 is drawn off from the sump (25a) of the saturation zone. This water is led through lines (18 a) and (18) back to the spray dryer (17). The gas leaving the saturation zone (25) in line (26) has only a temperature in the range from 50 to 90 ° C.

Für die nun noch notwendige Nachbehandlung wurde in der Zeichnung ein Naßelektrofilter (27) vorgesehen, das mit Wasser aus der Leitung (28) beaufschlagt wird. Staub- und salzhaltiges Wasser zieht man in der Leitung (29) ab und gibt es dem Rückführwasser der Leitung (18) zu. Abweichend von der Zeichnung kann man das Naßelektrofilter (27) durch einen Naßwäscher und/oder durch einen Tropfenabscheider ersetzen.For the now necessary aftertreatment, a wet electrostatic filter (27) was provided in the drawing, which is acted upon with water from the line (28). Water containing dust and salt is drawn off in line (29) and added to the return water in line (18). Deviating from the drawing, the wet electrostatic filter (27) can be replaced by a wet scrubber and / or by a droplet separator.

Entstaubtes, wasserdampfhaltiges Gas gelangt vom Elektrofilter (27) in der Leitung (30) zu einem Kondensator (31), in welchem der Wasserdampf durch indirekte Kühlung teilweise kondensiert und damit entfernt wird. Das Kondensat, bei dem es sich um ziemlich sauberes Wasser handelt, führt man in der Leitung (32) ab und verteilt es auf die Leitungen (23) und (19), ein Teilstrom kann auch über die Leitung (33) zurückgeführt und als Spülwasser durch den Kondensator geleitet werden. Im Kondensator (31), der hinter einem Naßelektrofilter auch weggelassen werden kann, läßt sich durch Einstellen des Wasserdampfgehalts im Gas dessen Brennwert regulieren. In der Leitung (35) steht gereinigtes Brenngas zur Verfügung, das man z.B. in einem Kraftwerk nutzen kann. Vor der Nutzung kann man das Gas durch indirekten Wärmeaustausch mit dem Rohgas der Leitung (12), z.B. im Wärmeaustauscher (14), erwärmen. Durch das Reinigungsverfahren der Erfindung ist es ohne weiteres möglich, in der Leitung (35) ein Brenngas zur Verfügung zu stellen, das pro Nm³ Höchstwerte an HCl von 10 mg sowie von Staub, HF und Schwermetallen von höchstens jeweils 1 mg aufweist.Dust-free, water vapor-containing gas passes from the electrostatic filter (27) in line (30) to a condenser (31) in which the water vapor is partially condensed by indirect cooling and thus removed. The condensate, which is fairly clean water, is discharged in line (32) and distributed to lines (23) and (19), a partial stream can also be returned via line (33) and as rinsing water passed through the condenser. In the condenser (31), which can also be omitted behind a wet electrostatic precipitator, its calorific value can be regulated by adjusting the water vapor content in the gas. In the line (35), purified fuel gas is available, which can be used, for example, in a Power plant can use. Before use, the gas can be heated by indirect heat exchange with the raw gas from line (12), for example in the heat exchanger (14). By means of the cleaning method of the invention, it is readily possible to provide a fuel gas in line (35) which has maximum HCl values of 10 mg per Nm³ and dust, HF and heavy metals of at most 1 mg each.

Beispielexample

In einer der Zeichnung entsprechenden Anlage wird Abfall, bestehend aus einem Gemisch aus kommunalem Müll, Gewerbemüll und Klärschlamm, vergast. In der Anlage fehlen die in der Zeichnung dargestellten Leitungen (4), (10) und (33). Pro Stunde vergast man 6 500 kg Abfall mit 8 000 Nm³ in der Leitung (3) zugeführter Luft, die im Wärmeaustauscher (13) auf 600°C vorgewärmt wurde. Die Elementaranalyse des Abfalles ist folgende:

C
31,1 Gew.-%
H
4,6 Gew.-%
O
19,0 Gew.-%
N
0,6 Gew.-%
S
0,2 Gew.-%
Cl
0,4 Gew.-%
H₂O
28,0 Gew.-%
Asche
16,05 Gew.-%
Schwermetalle
0,05 Gew.-%
In a plant corresponding to the drawing, waste consisting of a mixture of municipal waste, commercial waste and sewage sludge is gasified. The lines (4), (10) and (33) shown in the drawing are missing in the system. 6,500 kg of waste are gasified per hour with 8,000 Nm 3 of air supplied to line (3), which has been preheated to 600 ° C. in heat exchanger (13). The basic analysis of waste is as follows:
C.
31.1% by weight
H
4.6% by weight
O
19.0% by weight
N
0.6% by weight
S
0.2% by weight
Cl
0.4% by weight
H₂O
28.0% by weight
ash
16.05% by weight
Heavy metals
0.05% by weight

Der Abfall hat einen Heizwert von 12 600 kJ/kg. Die Vergasung erfolgt in der zirkulierenden Wirbelschicht bei einem Druck von 1,35 bar, wobei der Vergasungsreaktor (1) eine innere Höhe von 14 m und einen inneren Durchmesser von 2 m aufweist. An den Kanal (6) sind zwei Zyklone (7) angeschlossen. Das in der Leitung (12) dem ersten Wärmeaustauscher (13) mit einer Temperatur von 950°C und in einer Menge von 15 000 Nm³/h zuströmende Rohgas setzt sich aus folgenden Hauptkomponenten zusammen:

CO
13,6 Vol.-%
H₂
10,4 Vol.-%
CO₂
7,1 Vol.-%
CH₄
1,6 Vol.-%
CnHm
0,7 Vol.-%
N₂
42,8 Vol.-%
H₂S + COS
0,05 Vol.-%
NH₃ + HCN
0,3 Vol.-%
HCl + HF
0,1 Vol.-%
H₂O
23,35 Vol.-%
The waste has a calorific value of 12,600 kJ / kg. The gasification takes place in the circulating fluidized bed at a pressure of 1.35 bar, the gasification reactor (1) having an inner height of 14 m and an inner diameter of 2 m. Two cyclones (7) are connected to the channel (6). The first in line (12) Heat exchanger (13) with a temperature of 950 ° C and raw gas flowing in at 15,000 Nm³ / h is made up of the following main components:
CO
13.6 vol .-%
H₂
10.4 vol .-%
CO₂
7.1 vol%
CH₄
1.6 vol%
CnHm
0.7 vol%
N₂
42.8 vol%
H₂S + COS
0.05 vol .-%
NH₃ + HCN
0.3 vol%
HCl + HF
0.1 vol .-%
H₂O
23.35 vol .-%

Dieses Rohgas enthält pro Nm³ 10 000 mg inerten Staub und 34 mg Schwermetalle. Bei der Reinigung dieses Rohgases treten in den verschiedenen Leitungen folgende Temperaturen auf:

Figure imgb0001
This raw gas contains 10,000 mg of inert dust and 34 mg of heavy metals per Nm³. When cleaning this raw gas, the following temperatures occur in the different lines:
Figure imgb0001

Folgende Wassermengen strömen durch die Leitungen:

Figure imgb0002
The following amounts of water flow through the pipes:
Figure imgb0002

Der Sprühtrockner (17) hat eine Höhe von 6 m und einen Durchmesser von 1,5 m, das nachgeschaltete Filter (21) ist als Schlauchfilter ausgebildet. In der Leitung (22) fallen pro Stunde 180 kg Filterstaub an, die zusammen mit 1 200 kg/h Asche der Leitung (5) aus dem Vergasungsreaktor (1) zu entsorgen sind. Das in der Leitung (35) abströmende, gereinigte Brenngas enthält pro Nm³ weniger als 1 mg Staub, 5 mg NH₄Cl und 1 mg Schwermetalle sowie 1,5 g NH₃. Das Gas wird im Wärmeaustauscher (14) auf 500°C erwärmt und in einem Kraftwerkskessel verbrannt. Im Kessel, der nach dem Prinzip der zirkulierenden Wirbelschicht arbeitet und auch noch mit Kohle gespeist wird, werden die Schwefelverbindungen in bekannter Weise mittels Kalkstein in die Kesselasche eingebunden.The spray dryer (17) has a height of 6 m and a diameter of 1.5 m, the downstream filter (21) is designed as a bag filter. In the line (22) 180 kg of filter dust accumulate per hour, which together with 1,200 kg / h of ash from the line (5) are to be disposed of from the gasification reactor (1). The flowing out in the line (35), cleaned fuel gas contains less than 1 mg of dust, 5 mg of NH₄Cl and 1 mg of heavy metals and 1.5 g of NH₃ per Nm³. The gas is heated to 500 ° C in the heat exchanger (14) and burned in a power plant boiler. In the boiler, which works on the principle of the circulating fluidized bed and is also fed with coal, the sulfur compounds are bound into the boiler ash in a known manner using limestone.

Claims (3)

  1. A method for purifying the crude gas from the gasification of solid fuels, in particular carbon-containing waste, with oxygen-containing gasification agent, in which a crude gas containing carbon oxides, hydrogen and methane, and also dust, NH₃ and hydrogen halides as impurities, is produced at temperatures of about 500 to 1200°C, characterised in that the crude gas is cooled to temperatures of 150 to 400°C, the cooled crude gas having an NH₃-content of at least 0.1% by volume is passed into a spray-drying zone and is brought into contact with recycled water sprayed therein, the recycled water being completely evaporated, that the crude gas containing water vapour is passed out of the spray-drying zone through a filter at temperatures of 80 to 250°C, at least 80% by weight of the solids contained in the crude gas at the entrance to the filter and at least 50% by weight of the halogen compounds is separated off in the dry state in the filter, that the crude gas is passed out of the filter through a saturation zone in which the crude gas is brought into direct contact with sprayed water, the crude gas in so doing is saturated with water vapour and is cooled to temperatures of 50 to 90°C, water containing salts and solids and having a pH value of 7.5 to 9.5 is withdrawn from the saturation zone and is fed to the spray-drying zone as recycled water, and that the crude gas from the saturation zone is subsequently treated to remove dust and salt-containing droplets of liquid.
  2. A method according to Claim 1, characterised in that the subsequent treatment of the crude gas from the saturation zone is performed in a wet electrostatic precipitator, a wet scrubber, a mist eliminator and/or in a condenser, and water produced thereby is fed to the spray-drying zone as recycled water.
  3. A method according to Claim 1 or 2, characterised in that the subsequently-treated gas is cooled, water vapour is condensed out and at least a portion of the condensate is passed into the saturation zone.
EP90201697A 1989-08-11 1990-06-27 Process for purifying raw combustible gas from solid-fuel gasification Expired - Lifetime EP0412587B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926575A DE3926575A1 (en) 1989-08-11 1989-08-11 PROCESS FOR CLEANING RAW FUEL GAS FROM THE GASIFICATION OF SOLID FUELS
DE3926575 1989-08-11

Publications (2)

Publication Number Publication Date
EP0412587A1 EP0412587A1 (en) 1991-02-13
EP0412587B1 true EP0412587B1 (en) 1993-09-22

Family

ID=6386946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90201697A Expired - Lifetime EP0412587B1 (en) 1989-08-11 1990-06-27 Process for purifying raw combustible gas from solid-fuel gasification

Country Status (3)

Country Link
US (1) US5041144A (en)
EP (1) EP0412587B1 (en)
DE (2) DE3926575A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929926A1 (en) * 1989-09-08 1991-03-21 Metallgesellschaft Ag METHOD FOR THE TREATMENT OF GASES FROM THE GASIFICATION OF SOLID, FINE-COMBINED FUELS
DE4206943A1 (en) * 1992-03-05 1993-09-09 Krupp Koppers Gmbh METHOD FOR PURIFYING A GAS GIVEN BY CARBURATING CARBONATED MATERIAL
US6033448A (en) * 1996-02-13 2000-03-07 Mitsubishi Heavy Industries, Ltd. Method for the manufacture of a low water content gasified fuel from raw fuels
US5906806A (en) * 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
WO1999025792A1 (en) * 1997-11-14 1999-05-27 Aeci Limited Gasification of coal
US6086840A (en) * 1998-11-25 2000-07-11 Whitney; John P. Process for making ammonia from heterogeneous feedstock
DE10004138C2 (en) * 2000-01-31 2002-05-16 Thermoselect Ag Vaduz Process and device for the disposal and recycling of waste goods
US6964696B2 (en) * 2002-12-04 2005-11-15 Texaco, Inc. Method and apparatus for treating synthesis gas and recovering a clean liquid condensate
WO2006039475A2 (en) * 2004-09-30 2006-04-13 Aker Kvaerner, Inc. Recovery of organic compounds using a saturator
BRPI0711330A2 (en) * 2006-05-05 2013-01-08 Plascoenergy Group Inc Gas reformulation system using plasma torch heating
CN101484861B (en) 2006-05-05 2013-11-06 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 A gas homogenization system
EP2015859A4 (en) * 2006-05-05 2010-09-29 Plascoenergy Ip Holdings Slb A gas conditioning system
US7833296B2 (en) * 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
US8038744B2 (en) * 2006-10-02 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
JP5547659B2 (en) 2007-02-27 2014-07-16 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ、シャフハウゼン ブランチ Gasification system with processing raw material / char conversion and gas reforming
US8038746B2 (en) * 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
AR066535A1 (en) * 2007-05-11 2009-08-26 Plasco Energy Group Inc AN INITIAL GAS REFORMULATION SYSTEM IN A REFORMULATED GAS AND PROCEDURE FOR SUCH REFORMULATION.
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
US10378970B2 (en) 2015-02-24 2019-08-13 Prasidiux, Llc Thermochromic liquid crystal temperature indicator
CN110105988A (en) * 2019-04-22 2019-08-09 宝钢工程技术集团有限公司 Raw coke oven gas dedusting device and raw coke oven gas dedusting method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032305A (en) * 1974-10-07 1977-06-28 Squires Arthur M Treating carbonaceous matter with hot steam
DE2543532C3 (en) * 1975-09-30 1980-10-30 Metallgesellschaft Ag, 6000 Frankfurt Process for the gravity separation of an aqueous tar-containing condensate
DE2646865A1 (en) * 1976-10-16 1978-04-20 Krupp Koppers Gmbh METHOD FOR CLEANING AND COOLING PARTIAL OXYDATION GASES CONTAINING DUST-BASED IMPURITIES
GB1544002A (en) * 1976-10-21 1979-04-11 Shell Int Research Process for the separation of dry particulate matter from a hot gas
DE2735090C2 (en) * 1977-08-04 1986-11-06 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Process for cleaning and cooling process gases containing hydrogen and carbon oxide
DE2739562A1 (en) * 1977-09-02 1979-03-08 Krupp Koppers Gmbh METHOD FOR CLEANING AND COOLING PARTIAL OXYDATION GASES CONTAINING DUST-BASED IMPURITIES
US4233275A (en) * 1977-12-02 1980-11-11 Hitachi, Ltd. Process and apparatus for purifying raw coal gas
US4150953A (en) * 1978-05-22 1979-04-24 General Electric Company Coal gasification power plant and process
US4252543A (en) * 1979-07-25 1981-02-24 General Electric Company Process for quenching and cleaning a fuel gas mixture
US4274839A (en) * 1979-12-28 1981-06-23 Leas Arnold M Process for gasification of coal and organic solid wastes
DE3043329C2 (en) * 1980-11-17 1986-12-18 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Process and system for cooling and separating chlorides and fluorides from gas mixtures
FR2562084B1 (en) * 1984-04-03 1986-08-08 Elf France PROCESS FOR PURIFYING GASES OF GAS
DE3423798A1 (en) * 1984-06-28 1986-01-09 Bergwerksverband Gmbh, 4300 Essen METHOD FOR SEPARATING THE WATER RESULTING FROM THE COCING PROCESS INTO A SMALL SALT-HIGH AND A LARGE SALT-LOW FRACTION
US4563195A (en) * 1984-11-13 1986-01-07 Dravo Corporation Method for treatment of tar-bearing fuel gas
EP0220342A1 (en) * 1985-11-01 1987-05-06 Metallgesellschaft Ag Process for treating an aqueous condensate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier

Also Published As

Publication number Publication date
DE3926575A1 (en) 1991-02-14
US5041144A (en) 1991-08-20
DE59002819D1 (en) 1993-10-28
EP0412587A1 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
EP0412587B1 (en) Process for purifying raw combustible gas from solid-fuel gasification
DE3121206C2 (en) Solid waste gasification method
DE3922612C2 (en) Process for the production of methanol synthesis gas
DE3629817C2 (en)
EP0819233B1 (en) Process and plant for the thermal treatment of waste material
DE2746975C2 (en)
DE102006017680A1 (en) Process for the purification of gases from gasification units
DE202005021662U1 (en) Apparatus for producing synthesis gases by partial oxidation of slurries produced from ash-containing fuels with partial quenching and waste heat recovery
EP0594231A1 (en) Process for gasifying waste products containing combustible substances
DE3102819A1 (en) METHOD FOR RECOVERY OF HEAT IN COAL GASIFICATION AND DEVICE THEREFOR
EP0828549A1 (en) Process for the dry desulphurisation of a combustion gas
DE2852143A1 (en) METHOD AND DEVICE FOR PURIFYING RAW COOKING GAS
EP2030671A1 (en) Method and assembly for cleaning gas
DE19652770A1 (en) Process for gasifying solid fuels in the circulating fluidized bed
EP0435848A1 (en) Method of hindering the production of dioxins and furans
EP0676465B1 (en) Process for gasification of wastes in a circulating fluidized bed
DE4012887C2 (en)
DE2735090C2 (en) Process for cleaning and cooling process gases containing hydrogen and carbon oxide
EP0208156B1 (en) Process and apparatus for the final elimination of harmful substances contained in waste gases of incinerators
DE3130031A1 (en) METHOD FOR GASIFYING COAL
DE102012013139B4 (en) Process and device for the gasification of solids
DE3242651A1 (en) Process for the separation of dry fly ash from a gas
DE102013203276B4 (en) Washing water and circulating water in a gasification plant with cooling of the expansion waters
EP0515950B1 (en) Synthesis gas production from ash-containing hydrocarbons
DE102014203593A1 (en) Device for the treatment of raw synthesis gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19910925

17Q First examination report despatched

Effective date: 19920511

17Q First examination report despatched

Effective date: 19921209

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 59002819

Country of ref document: DE

Date of ref document: 19931028

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940714

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050627