EP0668598B1 - Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal - Google Patents

Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal Download PDF

Info

Publication number
EP0668598B1
EP0668598B1 EP94102403A EP94102403A EP0668598B1 EP 0668598 B1 EP0668598 B1 EP 0668598B1 EP 94102403 A EP94102403 A EP 94102403A EP 94102403 A EP94102403 A EP 94102403A EP 0668598 B1 EP0668598 B1 EP 0668598B1
Authority
EP
European Patent Office
Prior art keywords
metal cladding
toroidal
encapsulation
current transformer
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94102403A
Other languages
German (de)
English (en)
Other versions
EP0668598A1 (fr
Inventor
Walter Lacher
Gerardo Palmieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
GEC Alsthom T&D AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom T&D AG filed Critical GEC Alsthom T&D AG
Priority to EP94102403A priority Critical patent/EP0668598B1/fr
Priority to AT94102403T priority patent/ATE151195T1/de
Priority to DE59402299T priority patent/DE59402299D1/de
Publication of EP0668598A1 publication Critical patent/EP0668598A1/fr
Application granted granted Critical
Publication of EP0668598B1 publication Critical patent/EP0668598B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core

Definitions

  • the present invention relates to a toroidal current transformer for installation in a metal-encapsulated high-voltage switchgear assembly with at least one toroidal core provided in the encapsulation, with a primary conductor running in the opening of the toroidal core and with an inner tube arranged between the toroidal core and the primary conductor, one of which End electrically connected to the encapsulation and the other end is separated from the encapsulation by an electrically insulating gap and the remaining locations are electrically insulated from the encapsulation.
  • a toroidal current transformer of the type mentioned at the outset is known.
  • an inner tube which is guided in the opening of the toroid and electrically conductively connected to the encapsulation at one end, from forming a short-circuit winding which distorts the current transformer measurement, there is an electrically insulating gap between the other end of the inner tube and the encapsulation intended.
  • the total capacitance between the secondary winding and the encapsulation was increased in this arrangement.
  • traveling waves can also occur if a part of the system that represents a small capacitance is switched on or if a small capacitive current switches back or re-ignites.
  • a traveling wave arises that spreads on both sides from the point of origin of the switching arc and can have front times between 2 and 300 ns.
  • the traveling wave runs on the one hand in the primary conductor through the opening of the ring core and on the other hand in the encapsulation around the ring core.
  • the traveling wave in the primary conductor induces a high overvoltage in the current transformer winding.
  • the length of the inner tube is usually of the order of magnitude the front length of the traveling wave.
  • the reflected wave is capacitively coupled to the secondary winding and contributes to its potential increase.
  • both the level of the overvoltage induced in the secondary winding and the level of the potential increase in the secondary winding caused by capacitive coupling between the secondary winding and the inner tube can be limited.
  • the increase in capacitance between the secondary winding and the grounded encapsulation is achieved by a further additional winding applied to the toroidal core.
  • the additional winding is connected to the encapsulation, the other end is free.
  • the inductance of this additional winding has an adverse effect on steep traveling waves and reduces the desired effect of increasing the capacity. Due to the free end of the additional winding, high overvoltages can be injected into the secondary winding.
  • this arrangement forms an oscillatable structure that can be excited to resonate vibrations by the steep traveling waves.
  • the additional winding was composed of a plurality of open partial windings, which only included a short part of the toroid and were connected in parallel with one another. This known toroidal current transformer is associated with a high economic outlay.
  • the object of the invention is to develop a toroidal current transformer of the type mentioned in the introduction, in which the increase in the capacitance between the secondary winding and the encapsulation can be achieved with economically advantageous means.
  • each wound toroid with its outer coaxial boundary surface is in contact with the inner surface of the encapsulation and each boundary surface extending transversely to the longitudinal axis of the primary conductor and not directly adjacent to the encapsulation of each wound toroid on an annular with the inner surface of the encapsulation electrically conductive connected, electrically conductive washer.
  • each boundary surface of the secondary windings extending transversely to the longitudinal axis of the primary conductor If the toroidal cores are in contact either directly with the encapsulation or with an annular disc that is electrically conductively connected to the inner surface of the encapsulation, a further increase in the capacitance between the secondary winding and the encapsulation can be achieved with simple means.
  • Each ring disk can be provided on its outer circumference with a plurality of resilient contact pieces which are evenly distributed over the circumference and which abut the inner surface of the encapsulation. Such ring disks can simply be inserted into the encapsulation between the wound ring cores, which means that economic advantages can be achieved.
  • the boundary surface of the toroid most distant from the gap facing an annular core-free space facing away from the gap between the inner tube and the encapsulation advantageously lies against an annular disk furthest away from the gap, which is connected both to the inner surface of the encapsulation and to the inner tube is electrically connected.
  • the toroid-free space in the encapsulation can be bridged and the inductance of the path leading through the encapsulation can be reduced for steep traveling waves.
  • the overvoltages caused by steep traveling waves in the encapsulation around the toroidal cores are thus also reduced.
  • the annular disk furthest from the gap is advantageously provided both on its outer circumference and on its inner circumference with a plurality of resilient contact pieces which are evenly distributed over these circumferences and are in contact with the inner surface of the encapsulation and the inner tube.
  • the ring disk provided with contact pieces in this way allows a simple and economically advantageous assembly of the current transformer.
  • FIG. 1 shows a toroidal core current transformer with three toroidal cores 4, 5, 6 provided with secondary windings 1, 2, 3 in section.
  • Primary conductor 7 In the opening of the toroidal cores 4, 5, 6, one intended for guiding the operating current runs Primary conductor 7.
  • the toroidal current transformer is intended for installation in a metal-encapsulated high-voltage switchgear, not shown in the figures.
  • the primary conductor 7 is guided in a tightly closed compressed gas space 8 filled with an insulating gas, for example SF 6 .
  • the toroidal cores 4, 5, 6 are accommodated in an outer metal encapsulation 9, which is electrically conductively connected to the rest of the metal encapsulation, not shown, of the high-voltage switchgear.
  • the outer encapsulation 9 is connected to a second encapsulation 10, which is also electrically conductively connected to the metal encapsulation of the high-voltage switchgear.
  • the second encapsulation 10 carries an inner tube 11, which is connected to it in an electrically conductive manner and extends into the opening of the ring cores 4, 5, 6.
  • the inner tube 11 is electrically conductively connected to the second encapsulation 10 only at one end, at the remaining locations it is electrically isolated from it and from the other encapsulation parts. With its end facing away from the electrical connection point between the inner tube 11 and the second encapsulation 10, the inner tube 11 lies gas-tight on a sealing ring 12 inserted in the outer encapsulation 9.
  • a centering ring 13 made of an electrically insulating material guides the inner tube 11 in the outer encapsulation 9.
  • the interior of the outer encapsulation 9, which accommodates the ring cores 4, 5, 6, is filled with air.
  • Each wound toroidal core 4, 5, 6 lies with its outer, coaxial boundary surface against the inner surface of the outer encapsulation 9. This measure achieves an increase in capacity with simple means between the adjacent part of the secondary winding 1, 2, 3 and the outer encapsulation 9.
  • These ring disks 15, 16, 17 increase the capacitance between the boundary surfaces of the secondary windings 1, 2, 3, which are transverse to the primary conductor 7, and the outer encapsulation 9.
  • the one boundary surface of the secondary winding 3 of the toroidal core 6 closest to the gap 14 stands directly on the outer encapsulation 9.
  • Each washer 15, 16, 17 is provided on its outer circumference with a plurality of resilient contact pieces 18, 19, 20 which are evenly distributed on the circumference and which abut the inner surface of the outer encapsulation 9.
  • These ring disks 15, 16, 17 can be inserted into the outer encapsulation 9 between the wound ring cores 4, 5, 6.
  • the wound toroidal cores 4, 5, 6 and the annular disks 15, 16, 17 lying against them laterally are held in the outer encapsulation 9 by a plurality of electrically insulating tapes 21, which are evenly distributed over the circumference and fastened to the outer encapsulation 9.
  • FIG. 2 shows a further variant of the toroidal current transformer in section.
  • the parts which are identical in FIGS. 1 and 2 have the same reference numbers in the two FIGS. 1 and 2.
  • the annular core-free space 25 present in the encapsulation 9, 10 is electrically closed off by the annular disk 22.
  • the annular core-free space 25 lies between the boundary surface of the toroidal core 4 that is furthest from the gap 14 and the encapsulation 9, 10. This interspace 25 arises when the desired toroidal cores 4, 5, 6 are not all in one encapsulation that is uniform for all current transformers 9, 10 fill in the available space.
  • the part of the encapsulation 9, 10 guided around this intermediate space 25 means an additional inductance for the path of steep traveling waves, which is not caused by the desired current transformer.
  • the washer 22 electrically connects the outer encapsulation 9 to the inner tube 11 directly at the boundary surface of the wound ring core 4 that is furthest away from the gap 14.
  • the steep traveling waves use this connection through the washer 22 the inductance leads to a reduction in the overvoltages caused by steep traveling waves.
  • the annular disk 22 which is the most distant from the gap 14 is provided, according to FIG. 2, with resilient contact pieces 23 and 24 both on its outer and on its inner circumference.
  • the evenly distributed on the inner circumference of this washer 22 contact pieces 23 are on the inner tube 11.
  • the contact pieces 24, which are evenly distributed on the outer circumference of the annular disk 22, ensure the electrical connection of the annular disk 22 to the outer encapsulation 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)

Claims (4)

  1. Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension, encapsulée en métal comportant au moins un noyau annulaire (4, 5, 6) comprenant un enroulement secondaire (1, 2, 3) et disposé dans un blindage métallique (9) extérieur, comportant un conducteur primaire (7) passant par l'ouverture du tore (4, 5, 6), et comportant un tube intérieur (11) disposé entre le tore (4, 5, 6) et le conducteur primaire (7), l'une des extrémités dudit tube étant reliée de façon électriquement conductrice à un deuxième blindage métallique (10) et l'autre des extrémités dudit tube étant séparée du blindage métallique extérieur par un interstice (14) électriquement isolant, et les autres points de ce tube étant électriquement isolés du blindage métallique (9, 10), caractérisé en ce que chaque tore (4, 5, 6) bobiné affleure, par sa surface périphérique coaxiale extérieure, la surface intérieure du blindage métallique (9) extérieur, et en ce que chaque surface périphérique de chaque tore (4, 5, 6) bobiné, non directement adjacente au blindage métallique (9, 10) et s'étendant transversalement par rapport à l'axe longitudinal du conducteur primaire (7), est adjacente à un disque annulaire (15, 16, 17, 22) électriquement conducteur et relié de façon électriquement conductrice à la surface intérieure du blindage métallique (9) extérieur.
  2. Transformateur de courant toroïdal suivant la revendication 1, caractérisé en ce que le disque annulaire (15, 16, 17) est muni sur son pourtour extérieur de plusieurs éléments de contact (18, 19, 20) répartis régulièrement sur le pourtour et affleurant la surface intérieure du blindage métallique (9) extérieur.
  3. Transformateur de courant toroïdal suivant l'une des revendications 1 à 2, caractérisé en ce que la surface périphérique du tore (4) le plus éloigné de l'interstice (14), surface qui est adjacente à l'espace intermédiaire (25), sans tore, se trouvant dans le blindage métallique (9, 10) et qui est relativement éloignée de l'interstice compris entre le tube intérieur (11) et le blindage métallique (9) extérieur, affleure un disque annulaire (22), le plus éloigné de l'interstice (14), qui est relié de manière électriquement conductrice à la surface intérieure du blindage métallique (9) extérieur ainsi qu'au tube intérieur (11).
  4. Transformateur de courant toroïdal suivant la revendication 3, caractérisé en ce que le disque annulaire (22) le plus éloigné de l'interstice (14) est muni sur son pourtour extérieur, ainsi que sur son pourtour intérieur, de plusieurs éléments de contacts (23, 24) élastiques, répartis régulièrement sur ces pourtours et affleurants à l'extérieur à la surface intérieure du blindage métallique (9) extérieur, et à l'intérieur au tube intérieur (11).
EP94102403A 1994-02-17 1994-02-17 Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal Expired - Lifetime EP0668598B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94102403A EP0668598B1 (fr) 1994-02-17 1994-02-17 Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal
AT94102403T ATE151195T1 (de) 1994-02-17 1994-02-17 Ringkernstromwandler zum einbau in eine metallgekapselte hochspannungsschaltanlage
DE59402299T DE59402299D1 (de) 1994-02-17 1994-02-17 Ringkernstromwandler zum Einbau in eine metallgekapselte Hochspannungsschaltanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP94102403A EP0668598B1 (fr) 1994-02-17 1994-02-17 Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal

Publications (2)

Publication Number Publication Date
EP0668598A1 EP0668598A1 (fr) 1995-08-23
EP0668598B1 true EP0668598B1 (fr) 1997-04-02

Family

ID=8215695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94102403A Expired - Lifetime EP0668598B1 (fr) 1994-02-17 1994-02-17 Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal

Country Status (3)

Country Link
EP (1) EP0668598B1 (fr)
AT (1) ATE151195T1 (fr)
DE (1) DE59402299D1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2118038B1 (es) * 1996-06-13 1999-04-16 Abb Subestaciones S A Transformador de intensidad aislado en hexafloruro de azufre, integrado en un interruptor de alta tension.
DE19635749C2 (de) * 1996-09-03 1999-05-06 Siemens Ag Meßwandler
DE102010062605A1 (de) * 2010-12-08 2012-06-14 Siemens Aktiengesellschaft Stromwandlerbaugruppe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2720689C2 (de) * 1977-05-07 1983-05-26 Calor-Emag Elektrizitäts-Aktiengesellschaft, 4030 Ratingen Einleiter - Durchführungsstromwandler
CH660262A5 (de) * 1982-12-10 1987-03-31 Bbc Brown Boveri & Cie Stromwandler.
CH670327A5 (fr) * 1985-10-09 1989-05-31 Sprecher Energie Ag
DE4106034A1 (de) 1991-02-22 1992-08-27 Siemens Ag Stromwandler

Also Published As

Publication number Publication date
EP0668598A1 (fr) 1995-08-23
DE59402299D1 (de) 1997-05-07
ATE151195T1 (de) 1997-04-15

Similar Documents

Publication Publication Date Title
EP0063636B2 (fr) Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal
EP0176665A2 (fr) Interrupteur à vide isolé entièrement par une substance solide
EP0069693B1 (fr) Container cylindrique pour une installation haute tension blindée tripolaire à isolation gazeuse
EP0668598B1 (fr) Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal
EP0666578B1 (fr) Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal
DE2007667A1 (de) Hochspannungsleitung
EP0771421B1 (fr) Transformateur de tension pour installation de commutation electrique a blindage metallique
DE4414828C2 (de) Hochspannungswandler
DE2050727C3 (de) Überspannungsableiteranordnung
DE3247383C2 (fr)
EP0658271B1 (fr) Transformateur de courant
DE69511230T2 (de) Gasisolierte Vorrichtung, insbesondere Schaltanlage oder Sammelschienenanordnung
EP0697131B1 (fr) Installation distributrice haute tension a blindage metallique et comportant un transformateur de courant
DE8904684U1 (de) Ringkernstromwandler zum Einbau in eine metallgekapselte, gasisolierte Hochspannungsschaltanlage
EP0572427B1 (fr) Transformateur d'intensite
DE4210545A1 (de) Trennschalter für eine metallgekapselte gasisolierte Hochspannungsanlage
DE19604486A1 (de) Verbindungselement für zwei Abschnitte eines hochspannungsführenden Stromleiters
DE3427800A1 (de) Metallgekapselte, druckgasisolierte hochspannungsschaltanlage
EP0665561B1 (fr) Transformateur de courant à noyau annulaire destiné à être monté dans une installation de commutation à haute tension encapsulée en métal
DE69209325T2 (de) Anschlussklemme für Hochspannung
DE2617542A1 (de) Ankopplungseinrichtung zum ankoppeln von im phasenseil von mittelspannungsleitungen isoliert verlaufenden doppeladern zur nachrichtenuebertragung
DE102010004971A1 (de) Vorrichtung für eine Schaltanlage
WO2001041273A1 (fr) Isolateurs et transformateurs d'intensite de traversee destines a des circuits moyenne tension isoles par air a blindage metallique
DE2820927A1 (de) Schaltstation
DD241809A1 (de) Isoliergehaeuse fuer eine vakuumschaltkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE LI

17P Request for examination filed

Effective date: 19951222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960617

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REF Corresponds to:

Ref document number: 151195

Country of ref document: AT

Date of ref document: 19970415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402299

Country of ref document: DE

Date of ref document: 19970507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: GEC ALSTHOM T&D AG TRANSFER- GEC ALSTHOM AG * GEC ALSTHOM AG TRANSFER- ALSTOM AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000117

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000125

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201