EP0661081B1 - Method for optimising a fire-extinguishing apparatus in respect of the consumption of the fire-extinguishing substance and/or extinguishing time - Google Patents

Method for optimising a fire-extinguishing apparatus in respect of the consumption of the fire-extinguishing substance and/or extinguishing time Download PDF

Info

Publication number
EP0661081B1
EP0661081B1 EP94119613A EP94119613A EP0661081B1 EP 0661081 B1 EP0661081 B1 EP 0661081B1 EP 94119613 A EP94119613 A EP 94119613A EP 94119613 A EP94119613 A EP 94119613A EP 0661081 B1 EP0661081 B1 EP 0661081B1
Authority
EP
European Patent Office
Prior art keywords
extinguishing
fire
water
pressure
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94119613A
Other languages
German (de)
French (fr)
Other versions
EP0661081A1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP0661081A1 publication Critical patent/EP0661081A1/en
Application granted granted Critical
Publication of EP0661081B1 publication Critical patent/EP0661081B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0072Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using sprayed or atomised water
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/62Pipe-line systems dry, i.e. empty of extinguishing material when not in use

Definitions

  • the present invention relates to a method for optimizing an extinguishing device on the extinguishing agent consumption and / or the extinguishing time, the extinguishing device at least a pressure tank for storing the extinguishing agent, a piping system and a number of nozzles for spraying the extinguishing agent under variable pressure.
  • the object of the invention is a water to use extinguishing method and an extinguishing device, which the said Avoid disadvantages.
  • the invention aims at complete deletion with optimal Enable extinguishing water consumption.
  • the method according to the invention is based on extensive thermodynamic and fluid mechanical Calculations that allow for different types of fires in any room to determine the fire performance and fire gas development and the ones necessary for extinguishing Calculate deletion parameters.
  • the method according to the invention is characterized in that the development for any fire of the flue gas flow and the relationship for a given nozzle design between size and speed of the extinguishing agent drops as well as throughput and Extinguishing agent pressure determined using thermodynamic and fluidic methods and that one or more of the extinguishing parameters pressure, extinguishing agent throughput, drop size and drop speed can be matched to the potential fire material.
  • WO-A-92/22353 describes a method for extinguishing fires, in particular those in the Engine compartment of ships described which extinguishing liquid under such a high pressure is sprayed that initially creates a spray mist. The pressure is then reduced and Spray liquid sprayed. This procedure is based on a certain type of fire leads to a reduction in the extinguishing water consumption, but does not allow coordination the extinguishing parameter on the potential fire material. In addition, the process is static and calculates neither the development of the flue gas flow nor the relationship between size and speed of the extinguishing agent drops as well as throughput and pressure of the extinguishing agent.
  • US-A-3,648,019 describes a method for extinguishing fires, in which the Fire is fought with two streams of extinguishing agent.
  • the one extinguishing agent flow consists of very fine drops for cooling the ambient atmosphere and the other consists of relatively large ones Drops that will surely pierce the ascending warm air cone (plume).
  • This Process may like to calculate the relationship between size and speed of the extinguishing agent drops take place, however, since no calculation of the development of the flue gas flow the extinguishing parameters cannot be matched to the potential fire material.
  • the first step is the development for a given fire of the flue gas flow determined using a fire model.
  • the ascent speeds and temperature of the fire gases depending on the burn rate (fire performance), the burning quality, the fire area and the room height.
  • FIG. 1a shows the drop in the drop speed as a function of the room height from -15 m / s to -3 m / s.
  • Figure 1b shows an increase in the drop temperature from 20 ° C at a height of 8 m to 74 ° C, where there is no evaporation but an evaporation with a strong cooling effect of the gases.
  • Figure 1c shows a decrease in the temperature of the flue gas to 556 ° C at a height of 8 m.
  • FIG. 2 shows the simulated behavior of smaller drops with a mean diameter of 1.5 mm.
  • the simulation shows that the speed of drops of this size at a height drops from 3 m to zero and the drops are carried away and no deletion takes place can.
  • FIG. 3 shows the effect of a lower exit speed of -5 m / s.
  • the simulation shows that the exit velocity has a strong impact on the Has erasability.
  • the drop speed drops again at 3 m above the source of the fire to zero.
  • FIG. 4 shows the behavior of drops, that of a lower room height of 4 m. The drops move when they hit on the source of the fire at a speed of -1 m / s and cause an extinguishing.
  • Figure 5 shows experimentally determined Values of the extinguishing parameters differential pressure at the nozzle and water flow for a number various nozzle types and fires used, namely wood, petrol, ethanol, PET and Heptane fires.
  • the nozzle types used were, for example, full cone, hollow cone (swirl chamber), Multi-hole and single-hole nozzles.
  • the start-up is fire-promoting can be.
  • the air from the lines is fed into the nozzles Blown fire area, which can fuel the fire or increase the fire with liquids can.
  • the pipe can also be used to dampen the pressure surge in the supply line to the nozzles to the tank valves, a slowly opening valve between the tank valves and have the nozzles, or a pressure cushion vessel can be attached in front of the individual nozzles be, which creates a natural gas cushion.
  • the water supply is stored in one or more pressure bottles 1, which are only about 60% are filled with water. This is done with an inert gas such as nitrogen or carbon dioxide a gas cushion applied.
  • the supply pressure in the bottles is from the following Pipe system and the nozzles and is usually between 20 and 100 bar.
  • Each Bottle can be opened via a container valve 2. The opening takes place according to the state of the Technology via an electrical or pneumatic force, which is released via an extinguishing center 3 becomes.
  • the amount of extinguishing water is predetermined by the water storage in bottles. One too large amount of fire water, which damages the property to be protected more than protects it locked out.
  • the fire detector 4 releases the control force for everyone via the extinguishing center 3 Container valves 2 off.
  • the water is released from the gas cushions in the bottles through the dip tubes 5 pressed into the manifold 6.
  • the manifold is removed from the line system 8 by a valve 7 Cut.
  • the extinguishing center opens valve 7 completely within 5 to 30 seconds. With this Delayed opening prevents a dangerous air blast from the nozzles 9 into the fire zone.
  • the slowly opening valve 7 can be a commercially available engine valve, preferably however, a slowly opening ball valve is used.
  • the pipeline system 8 can be up to 100 m long from the header pipe 6 to the nozzles 9.
  • the Pipe diameters are based on the hydraulic requirements of the extinguishing system (throughput and Pressure drop), taking into account that there is a gas-liquid mixture in the pipes can flow.
  • the nozzle 9 In order to prevent possible start-up air surges in strongly asymmetrical line systems, the nozzle 9 to provide so-called pressure cushion vessels 10. These empty containers (also wind kettles called) can dampen pressure surges similar to a gas spring. This additional device complements the slowly opening valve 7 for mastering the starting air blast.
  • the nozzles 9 can be of different designs.
  • the hydraulic properties are however, to be measured for each nozzle type and to be taken into account in the design calculations. Tests have shown that so-called swirl chamber nozzles are particularly suitable because the The outlet openings of these nozzles are large and there is therefore no risk of clogging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

To optimise the extinguishing time and the consumption of the extinguishing water for a complete extinguishing of any fire, the extinguishing parameters for an extinguishing apparatus and the extinguishing method are determined using the methods of thermodynamics and fluid mechanics. Firstly, the development of the burning gas stream and the behaviour of water droplets emerging from a nozzle into this gas stream are determined. By means of the knowledge of the relationships between water droplet velocity, size and evaporation, the properties of the water droplets which are necessary for extinguishing can be calculated. The installation parameters of pressure, water throughput and pipework dimensions are then adapted in such a way that the desired water droplets are produced. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Optimierung einer Löschvorrichtung in bezug auf den Löschmittelverbrauch und/ oder die Löschzeit, wobei die Löschvorrichtung mindestens einen Druckbehälter zur Bevorratung des Löschmittels, ein Rohrleitungssystem und eine Anzahl von Düsen zum Versprühen des Löschmittels unter variablem Druck aufweist.The present invention relates to a method for optimizing an extinguishing device on the extinguishing agent consumption and / or the extinguishing time, the extinguishing device at least a pressure tank for storing the extinguishing agent, a piping system and a number of nozzles for spraying the extinguishing agent under variable pressure.

Es ist Stand der Technik, Räume und Sachwerte mit sogenannten Sprinklersystemen vor Feuer zu schützen. Diese stationär installierten Systeme arbeiten mit Wasserdrücken zwischen 2 und 10 bar und erzeugen im Einsatzfall Tropfen mit einem mittlerem Durchmesser um 1 mm. Die Sprinkler-Düsen sind im Schutzbereich so angeordnet, dass die Wasserstrahlen einander überdecken und so den unteren Teil eines Schutzbereiches vollständig benetzen können. Die Richtlinien zur Installation von herkömmlichen Sprinklersystemen, wie sie in Deutschland vom Verein der Sachversicherer (VdS) und in der Schweiz vom Brandverhütungsdienst (BVD) festgelegt sind, verlangen die Beherrschung eines Brandes, fordern eine Löschung des Feuers jedoch nicht. Durch die hydrodynamischen Randbedingungen von Sprinklersystemen kann man zeigen, dass die Sprinklertropfen bei grösseren Brandleistungen (über 1 MW) die Reaktionszone nicht mehr erreichen und nur noch die unmittelbare Umgebung des Brandherdes zu kühlen vermögen, das Feuer aber nicht löschen.It is state of the art, rooms and property with so-called sprinkler systems in front of fire too protect. These stationary installed systems work with water pressures between 2 and 10 bar and generate drops with an average diameter of around 1 mm when used. The sprinkler nozzles are arranged in the protection area so that the water jets cover each other and so can completely wet the lower part of a protected area. Installation guidelines conventional sprinkler systems such as those used in Germany by the association of property insurers (VdS) and defined in Switzerland by the fire prevention service (BVD) require control of a fire, but do not require the fire to be extinguished. Through the hydrodynamic Boundary conditions of sprinkler systems can be shown that the sprinkler drops at larger fire outputs (over 1 MW) no longer reach the reaction zone and only that are able to cool the immediate vicinity of the source of the fire, but do not extinguish the fire.

Zusammengefasst haben Sprinkler-Systeme, die nach den anerkannten Vorschriften installiert sind, folgende Nachteile:

  • In den meisten Fällen nur Brandbeherrschung und keine Brandlöschung
  • Einsatz von grossen Wassermengen und dadurch verursachter Sachschaden.
In summary, sprinkler systems installed according to the recognized regulations have the following disadvantages:
  • In most cases only fire control and no fire extinguishing
  • Use of large amounts of water and property damage caused thereby.

Von diesem Stand der Technik ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Wasser verwendendes Löschverfahren und eine Löschvorrichtung zu schaffen, welche die genannten Nachteile vermeiden. Insbesondere soll die Erfindung eine vollständige Löschung bei optimalem Löschwasserverbrauch ermöglichen.Starting from this prior art, the object of the invention is a water to use extinguishing method and an extinguishing device, which the said Avoid disadvantages. In particular, the invention aims at complete deletion with optimal Enable extinguishing water consumption.

Das erfindungsgemässe Verfahren beruht auf umfangreichen thermodynamischen und strömungsmechanischen Berechnungen, die es ermöglichen, für Brände verschiedener Art in beliebigen Räumen die Brandleistung und Brandgasentwicklung zu ermitteln und die zur Löschung notwendigen Löschparameter zu berechnen. The method according to the invention is based on extensive thermodynamic and fluid mechanical Calculations that allow for different types of fires in any room to determine the fire performance and fire gas development and the ones necessary for extinguishing Calculate deletion parameters.

Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass für beliebige Brände die Entwicklung des Brandgasstroms berechnet und für eine gegebene Düsenkonstruktion der Zusammenhang zwischen Grösse und Geschwindigkeit der Löschmitteltropfen sowie Durchsatz und Druck des Löschmittels mittels thermodynamischer und strömungstechnischer Methoden ermittelt wird, und dass einer oder mehrere der Löschparameter Druck, Löschmitteldurchsatz, Tropfengrösse und Tropfengeschwindigkeit auf das potentielle Brandgut abgestimmt werden.The method according to the invention is characterized in that the development for any fire of the flue gas flow and the relationship for a given nozzle design between size and speed of the extinguishing agent drops as well as throughput and Extinguishing agent pressure determined using thermodynamic and fluidic methods and that one or more of the extinguishing parameters pressure, extinguishing agent throughput, drop size and drop speed can be matched to the potential fire material.

In der WO-A-92/22353 ist ein Verfahren zur Löschung von Bränden, insbesondere von solchen im Motorraum von Schiffen beschrieben, bei welchem Löschflüssigkeit unter einem so hohen Druck versprüht wird, dass vorerst ein Sprühnebel entsteht. Anschliessend wird der Druck reduziert und Sprühflüssigkeit versprüht. Dieses Verfahren, das auf einen bestimmten Typus von Brand festgelegt ist, führt zwar zu einer Reduktion des Löschwasserverbrauchs, ermöglicht aber keine Abstimmung der Löschparameter auf das potentielle Brandgut. Ausserdem ist das Verfahren statisch und berechnet weder die Entwicklung des Brandgasstroms noch den Zusammenhang zwischen Grösse und Geschwindigkeit der Löschmitteltropfen sowie Durchsatz und Druck des Löschmittels.WO-A-92/22353 describes a method for extinguishing fires, in particular those in the Engine compartment of ships described which extinguishing liquid under such a high pressure is sprayed that initially creates a spray mist. The pressure is then reduced and Spray liquid sprayed. This procedure is based on a certain type of fire leads to a reduction in the extinguishing water consumption, but does not allow coordination the extinguishing parameter on the potential fire material. In addition, the process is static and calculates neither the development of the flue gas flow nor the relationship between size and speed of the extinguishing agent drops as well as throughput and pressure of the extinguishing agent.

In der US-A-3,648,019 ist ein Verfahren zur Löschung von Bränden beschrieben, bei welchem das Feuer mit zwei Löschmittelströmen bekämpft wird. Der eine Löschmittelstrom besteht aus sehr feinen Tropfen zur Kühlung der Umgebungsatmosphäre und der andere besteht aus relativ grossen Tropfen, die den aufsteigenden Warmluftkegel (plume) mit Sicherheit durchstossen. Bei diesem Verfahren mag zwar eine Berechnung des Zusammenhangs zwischen Grösse und Geschwindigkeit der Löschmitteltropfen stattfinden, da aber keine Berechnung der Entwicklung des Brandgasstroms erfolgt, ist eine Abstimmung der Löschparameter auf das potentielle Brandgut nicht möglich.US-A-3,648,019 describes a method for extinguishing fires, in which the Fire is fought with two streams of extinguishing agent. The one extinguishing agent flow consists of very fine drops for cooling the ambient atmosphere and the other consists of relatively large ones Drops that will surely pierce the ascending warm air cone (plume). With this Process may like to calculate the relationship between size and speed of the extinguishing agent drops take place, however, since no calculation of the development of the flue gas flow the extinguishing parameters cannot be matched to the potential fire material.

Beim erfindungsgemässen Verfahren wird für einen gegebenen Brand zunächst die Entwicklung des Brandgasstroms anhand eines Brandmodells ermittelt. Insbesondere werden die Aufstiegsgeschwindigkeiten und Temperatur der Brandgase in Abhängigkeit der Abbrandrate (Brandleistung), der Brennqualität, der Brandfläche und der Raumhöhe bestimmt.In the method according to the invention, the first step is the development for a given fire of the flue gas flow determined using a fire model. In particular, the ascent speeds and temperature of the fire gases depending on the burn rate (fire performance), the burning quality, the fire area and the room height.

Dann wird das Verhalten von Wassertropfen nach ihrem Austritt aus einer Düse in den entgegenströmenden Brandgasstrom sowie die resultierende Abkühlung des Brandgases beschrieben. Insbesondere werden die Geschwindigkeit und Verdunstung, d.h. die Temperatur und Massenabnahme, von Tropfen als Funktion der Raumhöhe oder Distanz zum Brandherd ermittelt. Ausschlaggebend für die Löschfähigkeit ist die Menge und Masse der Tropfen, die den Brandherd erreichen. Diese Tropfenparameter werden näher in Abhängigkeit vom Wasserdurchsatz, der Tropfengrösse und Tropfengeschwindigkeit beim Austritt aus der Düse, und der Raumhöhe beschrieben. Somit können die für eine Brandlöschung optimalen Werte von Tropfengrösse und Tropfengeschwindigkeit, Wasserdurchsatz sowie Löschdauer und somit der gesamte Menge versprühten Wassers bestimmt werden. Schliesslich können für einen gewählten Typ von Wasserdüse der Wasserdruck, die Dimensionierung eines Rohrleitungssystems und der Wasserdurchsatz pro Sekunde bestimmt werden, sodass Tropfen von der gewünschten Art entstehen.Then the behavior of water drops after they emerge from a nozzle in the counterflow Fire gas flow and the resulting cooling of the fire gas are described. In particular speed and evaporation, i.e. the temperature and mass decrease, of drops as a function of room height or distance to the source of the fire. Decisive the quantity and mass of the drops that reach the source of the fire are the extinguishing ability. These drop parameters become closer depending on the water throughput, the drop size and droplet velocity when exiting the nozzle, and the room height. Consequently the optimal drop size and drop velocity values for fire extinguishing, Water throughput and extinguishing time and thus the total amount of water sprayed be determined. Finally, for a selected type of water nozzle, the water pressure, determines the dimensioning of a piping system and the water flow rate per second so that drops of the desired type are created.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigen:

Fig. 1a-1c
Diagramme zur Erläuterung der Abhängigkeit der Geschwindigkeit und Temperatur von Wassertropfen und der Brandgastemperatur von der Raumhöhe,
Fig. 2-4
Diagramme zur Erläuterung des Verhaltens von Wassertropfen verschiedener Austrittsgeschwindigkeit in Abhängigkeit von der Raumhöhe,
Fig. 5
den Zusammenhang zwischen den Löschparametern Wirkdruck an der Düse und Wasserdurchsatz für verschiedene Düsentypen und Brände; und
Fig. 6
eine schematische Darstellung einer Löschvorrichtung.
The invention is explained in more detail below with the aid of an exemplary embodiment and the drawings; show it:
1a-1c
Diagrams to explain the dependence of the speed and temperature of water drops and the temperature of the fire gas on the room height
Fig. 2-4
Diagrams to explain the behavior of water drops of different outlet speeds depending on the room height,
Fig. 5
the relationship between the extinguishing parameters effective pressure at the nozzle and water flow for different nozzle types and fires; and
Fig. 6
a schematic representation of an extinguishing device.

Es wird von einem Referenzfall mit erfolgreicher Löschung ausgegangen, bei dem in einem 8 m hohen Raum ein Stapel von Papier und Kunststoff auf einer Fläche von 4 m2 Grösse als Brandmaterial vorliegt. An der Decke des Raumes sind Sprinkler angebracht mit folgenden Sprinklerdüsenbedingungen: 5 kg/s Wasserdurchsatz, -15 m/s Austrittsgeschwindigkeit und 2 mm Tropfengrösse. Der Abbrand des Brennstoffs mit 20 MJ/kg Heizwert wurde mit folgenden Ergebnissen simuliert: Maximale Gastemperatur von 950°C, Abbrandrate von 0.51 kg/s und maximaler Gasgeschwindigkeit von 7.7 m/s . Figur 1a zeigt für diesen Referenzfall das Absinken der Tropfengeschwindigkeit als Funktion der Raumhöhe von -15 m/s auf -3 m/s. Figur 1b zeigt ein Ansteigen der Tropfentemperatur von 20°C in 8 m Höhe auf 74°C, wo keine Verdampfung aber eine Verdunstung mit starker Abkühlwirkung der Gase stattfindet. Figur 1c zeigt ein Absinken der Brandgastemperatur auf 556°C in 8 m Höhe.A reference case with successful extinguishing is assumed, in which a stack of paper and plastic is available as fire material in an area of 4 m 2 in an 8 m high room. Sprinklers with the following sprinkler nozzle conditions are attached to the ceiling of the room: 5 kg / s water flow rate, -15 m / s outlet speed and 2 mm drop size. The burning of the fuel with 20 MJ / kg calorific value was simulated with the following results: maximum gas temperature of 950 ° C, burning rate of 0.51 kg / s and maximum gas velocity of 7.7 m / s. For this reference case, FIG. 1a shows the drop in the drop speed as a function of the room height from -15 m / s to -3 m / s. Figure 1b shows an increase in the drop temperature from 20 ° C at a height of 8 m to 74 ° C, where there is no evaporation but an evaporation with a strong cooling effect of the gases. Figure 1c shows a decrease in the temperature of the flue gas to 556 ° C at a height of 8 m.

Figur 2 zeigt das simulierte Verhalten von kleineren Tropfen von 1.5 mm mittlerem Durchmesser. Hier zeigt die Simulation, dass die Geschwindigkeit von Tropfen von dieser Grösse bei einer Höhe von 3 m auf Null absinkt und somit die Tropfen weggetragen werden und keine Löschung stattfinden kann. In Figur 3 ist die Wirkung einer tieferen Austrittsgeschwindigkeit von -5 m/s gezeigt. Hier geht aus der Simulation hervor, dass die Austrittsgeschwindigkeit eine starke Auswirkung auf die Löschfähigkeit hat. Die Tropfengeschwindigkeit fällt wiederum bereits bei 3 m oberhalb des Brandherdes auf Null. Anders ist die Situation in Figur 4, die das Verhalten von Tropfen zeigt, die von einer niedrigeren Raumhöhe von 4 m ausgeprüht werden. Die Tropfen bewegen sich beim Auftreffen auf den Brandherd noch mit einer Geschwindigkeit von -1 m/s und bewirken eine Löschung.FIG. 2 shows the simulated behavior of smaller drops with a mean diameter of 1.5 mm. Here the simulation shows that the speed of drops of this size at a height drops from 3 m to zero and the drops are carried away and no deletion takes place can. FIG. 3 shows the effect of a lower exit speed of -5 m / s. Here the simulation shows that the exit velocity has a strong impact on the Has erasability. The drop speed drops again at 3 m above the source of the fire to zero. The situation is different in FIG. 4, which shows the behavior of drops, that of a lower room height of 4 m. The drops move when they hit on the source of the fire at a speed of -1 m / s and cause an extinguishing.

Diese Berechnungen lassen erkennen, dass für eine gegebene Brandleistung durch eine optimale Kombination zwischen Tropfengrösse, Tropfengeschwindigkeit und Abstand der Sprinklerdüse vom Brandherd eine Brandlöschung innerhalb von Sekunden mit optimiertem Wasserverbrauch möglich ist. Umfangreiche Testreihen haben diesen Sachverhalt bestätigt. Figur 5 zeigt experimentell bestimmte Werte der Löschparameter Wirkdruck an der Düse und Wasserdurchsatz für eine Anzahl verschiedener eingesetzter Düsentypen und Brände, nämlich Holz-, Benzin-, Aethanol-, PET- und Heptanbrände. Die eingesetzten Düsentypen waren zum Beispiel Vollkegel-, Hohlkegel- (Drallkammer-), Mehrloch- und Einlochdüsen.These calculations show that for a given fire performance by an optimal Combination between drop size, drop speed and distance of the sprinkler nozzle from the The source of the fire can be extinguished within seconds with optimized water consumption is. Extensive series of tests have confirmed this. Figure 5 shows experimentally determined Values of the extinguishing parameters differential pressure at the nozzle and water flow for a number various nozzle types and fires used, namely wood, petrol, ethanol, PET and Heptane fires. The nozzle types used were, for example, full cone, hollow cone (swirl chamber), Multi-hole and single-hole nozzles.

Es ist bekannt, dass bei sogenannten trockenen Sprinklersystemen, bei denen die Rohrleitungen von der Wasserbevorratung bis zu den Düsen wasserfrei gehalten werden, das Anfahren brandfördernd sein kann. Während der Anfahrzeit wird die Luft aus den Leitungen über die Düsen in diesen Brandbereich geblasen, was den Brand anfachen oder bei Flüssigkeiten den Brand vergrössern kann. Zur Dämpfung des Druckstosses in der Zuleitung zu den Düsen kann die Rohrleitung zusätzlich zu den Behälterventilen ein sich langsam öffnendes Ventil zwischen den Behälterventilen und den Düsen aufweisen, oder es kann vor den einzelnen Düsen ein Druckpolstergefäss angebracht sein, wodurch ein natürliches Gaspolster entsteht.It is known that in so-called dry sprinkler systems in which the pipes from the water storage to the nozzles are kept water-free, the start-up is fire-promoting can be. During the start-up time, the air from the lines is fed into the nozzles Blown fire area, which can fuel the fire or increase the fire with liquids can. The pipe can also be used to dampen the pressure surge in the supply line to the nozzles to the tank valves, a slowly opening valve between the tank valves and have the nozzles, or a pressure cushion vessel can be attached in front of the individual nozzles be, which creates a natural gas cushion.

Figur 6 zeigt eine zur Durchführung des erfindungsgemässen Verfahrens geeignete Vorrichtung. Bei der Installation eines solchen Systems ist darauf zu achten, dass mittels der oben erwähnten thermodynamischen und strömungsmechanischen Methoden folgende Anlagegrössen auf das potentielle Brandgut abgestimmt werden:

  • Abstand zwischen Düse und Brandquelle
  • Düsenöffnungen und Sprühwinkel
  • Anzahl Düsen
  • Wasserdurchsatz
  • Rohrleitungsdurchmesser
  • Vorratsdruck
  • Vorratsmenge
  • Öffnungszeit des Ventils nach dem Sammelrohr.
FIG. 6 shows a device suitable for carrying out the method according to the invention. When installing such a system, make sure that the following system sizes are matched to the potential fire material using the thermodynamic and fluid mechanical methods mentioned above:
  • Distance between nozzle and fire source
  • Nozzle openings and spray angles
  • Number of nozzles
  • Water flow
  • Pipe diameter
  • Supply pressure
  • Stock quantity
  • Opening time of the valve after the manifold.

Der Wasservorrat wird in einer oder mehreren Druckflaschen 1 gelagert, welche nur zu etwa 60% mit Wasser gefüllt sind. Darüber wird mit einem inerten Gas wie zum Beispiel Stickstoff oder Kohlendioxid ein Gaspolster aufgebracht. Der Vorratsdruck in den Flaschen ist vom nachfolgenden Rohrleitungssystem und den Düsen abhängig und liegt in der Regel zwischen 20 und 100 bar. Jede Flasche kann über ein Behälterventil 2 geöffnet werden. Die Öffnung erfolgt gemäss dem Stand der Technik über eine elektrische oder pneumatische Kraft, die über eine Löschzentrale 3 freigegeben wird. Durch die Wasserbevorratung in Flaschen ist die Löschwassermenge vorgegeben. Eine zu grosse Löschwassermenge, die die zu schützenden Sachwerte mehr schädigt als schützt, ist daher ausgeschlossen.The water supply is stored in one or more pressure bottles 1, which are only about 60% are filled with water. This is done with an inert gas such as nitrogen or carbon dioxide a gas cushion applied. The supply pressure in the bottles is from the following Pipe system and the nozzles and is usually between 20 and 100 bar. Each Bottle can be opened via a container valve 2. The opening takes place according to the state of the Technology via an electrical or pneumatic force, which is released via an extinguishing center 3 becomes. The amount of extinguishing water is predetermined by the water storage in bottles. One too large amount of fire water, which damages the property to be protected more than protects it locked out.

Im Falle eines Brandes löst der Brandmelder 4 über die Löschzentrale 3 die Ansteuerkraft für alle Behälterventile 2 aus. Das Wasser wird von den Gaspolstern in den Flaschen durch die Tauchrohre 5 in das Sammelrohr 6 gepresst. Das Sammelrohr wird durch ein Ventil 7 vom Leitungssystem 8 getrennt. Die Löschzentrale öffnet das Ventil 7 innerhalb 5 bis 30 Sekunden vollständig. Mit diesem verzögerten Öffnen wird ein gefährlicher Luftstoss aus den Düsen 9 in die Brandzone verhindert. Das sich langsam öffnende Ventil 7 kann ein marktübliches Motorventil sein, vorzugsweise wird jedoch ein sich langsam öffnender Kugelhahn eingesetzt.In the event of a fire, the fire detector 4 releases the control force for everyone via the extinguishing center 3 Container valves 2 off. The water is released from the gas cushions in the bottles through the dip tubes 5 pressed into the manifold 6. The manifold is removed from the line system 8 by a valve 7 Cut. The extinguishing center opens valve 7 completely within 5 to 30 seconds. With this Delayed opening prevents a dangerous air blast from the nozzles 9 into the fire zone. The slowly opening valve 7 can be a commercially available engine valve, preferably however, a slowly opening ball valve is used.

Das Rohrleitungssystem 8 kann vom Sammelrohr 6 bis zu den Düsen 9 bis zu 100 m lang sein. Die Rohrdurchmesser sind auf die hydraulischen Anforderungen des Löschsystems (Durchsatz und Druckabfall) abzustimmen, wobei zu beachten ist, dass in den Rohren ein Gas-Flüssigkeitsgemisch strömen kann.The pipeline system 8 can be up to 100 m long from the header pipe 6 to the nozzles 9. The Pipe diameters are based on the hydraulic requirements of the extinguishing system (throughput and Pressure drop), taking into account that there is a gas-liquid mixture in the pipes can flow.

Um bei stark asymmetrischen Leitungssystemen mögliche Anfahrluftstösse zu verhindern, sind vor der Düse 9 sogenannte Druckpolster-Gefässe 10 vorzusehen. Diese leeren Behälter (auch Windkessel genannt) können Druckstösse ähnlich einer Gasfeder abdämpfen. Diese Zusatzvorrichtung ergänzt das sich langsam öffnende Ventil 7 zur Beherrschung des Anfahr-Luftstosses.In order to prevent possible start-up air surges in strongly asymmetrical line systems, the nozzle 9 to provide so-called pressure cushion vessels 10. These empty containers (also wind kettles called) can dampen pressure surges similar to a gas spring. This additional device complements the slowly opening valve 7 for mastering the starting air blast.

Die Düsen 9 können von unterschiedlicher Konstruktion sein. Die hydraulischen Eigenschaften sind jedoch für jeden Düsentyp auszumessen und in den Auslegungsberechnungen zu berücksichtigen. Versuche haben gezeigt, dass sogenannte Drallkammerdüsen besonders geeignet sind, da die Austrittsöffnungen dieser Düsen gross sind und dadurch keine Verstopfungsgefahr besteht.The nozzles 9 can be of different designs. The hydraulic properties are however, to be measured for each nozzle type and to be taken into account in the design calculations. Tests have shown that so-called swirl chamber nozzles are particularly suitable because the The outlet openings of these nozzles are large and there is therefore no risk of clogging.

Claims (5)

  1. Method of optimising an extinguishing device with regard to the extinguishing agent consumption and/or the extinguishing time, wherein the extinguishing device has at least one pressure vessel (1) for storing the extinguishing agent, a pipeline system (6, 8) and a number of nozzles (9) for spraying the extinguishing agent in drop form at variable pressure, characterized in that the development of the fire gas stream is calculated for a fire and, for a given nozzle design, the relationship between size and speed of the extinguishing agent drops and also the throughput and pressure of the extinguishing agent are determined by means of thermodynamic and flow-engineering methods and in that one or more of the extinguishing parameters comprising pressure, extinguishing agent throughput, drop size and drop speed are matched to the potential incendiary material.
  2. Method according to Claim 1, characterized in that the development of the fire gas stream is first determined on the basis of a fire model and then the ascent speeds and temperatures of the fire gases are determined as a function of the burning rate, the burning quality, the fire area and the room height.
  3. Method according to Claim 2, characterized in that, in determining the relationship between drop size, drop speed, water throughput and pressure, the speed and the evaporation of drops are determined as a function of room height or the distance from the seat of the fire.
  4. Method according to Claim 3, characterized in that the amount and the mass of the drops reaching the seat of the fire are described as a function of the water throughput, of the drop size and the drop speed on leaving the nozzle and of the room height, and in that, from the latter, the optimum values of drop size, drop speed, water throughput and extinguishing time for extinguishing a fire and, consequently, the total amount of water sprayed are determined.
  5. Method according to Claim 4, characterized in that the water pressure, the dimensioning of the pipeline system and the water throughput are determined for a chosen tpye of water nozzle in such a way that drops of the desired type are produced.
EP94119613A 1993-12-23 1994-12-12 Method for optimising a fire-extinguishing apparatus in respect of the consumption of the fire-extinguishing substance and/or extinguishing time Expired - Lifetime EP0661081B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH3843/93 1993-12-23
CH03843/93A CH689045A5 (en) 1993-12-23 1993-12-23 Method for optimizing the extinguishing means consumption and / or the time Loesch and apparatus for performing the method
CH384393 1993-12-23

Publications (2)

Publication Number Publication Date
EP0661081A1 EP0661081A1 (en) 1995-07-05
EP0661081B1 true EP0661081B1 (en) 2001-07-18

Family

ID=4264674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94119613A Expired - Lifetime EP0661081B1 (en) 1993-12-23 1994-12-12 Method for optimising a fire-extinguishing apparatus in respect of the consumption of the fire-extinguishing substance and/or extinguishing time

Country Status (7)

Country Link
EP (1) EP0661081B1 (en)
AT (1) ATE203176T1 (en)
CH (1) CH689045A5 (en)
DE (1) DE59409803D1 (en)
DK (1) DK0661081T3 (en)
ES (1) ES2161741T3 (en)
PT (1) PT661081E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111274684A (en) * 2020-01-15 2020-06-12 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) NOVEC1230 fire extinguishing agent pipeline pressure hydraulic calculation method and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970706869A (en) * 1994-10-20 1997-12-01 라인하르드 지르레르 Explosive flame suppression method and apparatus such as hydrocarbons
DE19627353C1 (en) * 1996-06-27 1997-10-23 Feuerschutz G Knopf Gmbh Dynamic fire extinction medium application e.g.for automatic fire extinction system
FR2770781B1 (en) * 1997-11-13 2000-01-28 Normandie Protection Internati METHOD FOR PROTECTING PEOPLE BY SPRAYING WATER AND INSTALLATION FOR CARRYING OUT SAID METHOD
EP1142611B1 (en) 2000-04-08 2004-12-22 Siemens Building Technologies AG Method for optimisation of a water spray fire extinguishing system and water spray fire extinguishing system for carrying out the method
CN106644847B (en) * 2016-12-19 2020-02-04 国网湖南省电力公司 System and method for measuring fine water mist wind resistance performance parameters
US20230414981A1 (en) * 2022-06-24 2023-12-28 The Boeing Company Systems and methods for configuring fire extinguishers within a compartment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684019A (en) * 1971-05-07 1972-08-15 Howard W Emmons Method for fighting a fire
GB2060071A (en) * 1979-10-12 1981-04-29 Sugimura N Pulsation Absorption Device for High Pressure Liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589956B3 (en) * 1991-06-19 2010-04-28 Corporation Oy Marioff Method and equipment for fire fighting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684019A (en) * 1971-05-07 1972-08-15 Howard W Emmons Method for fighting a fire
GB2060071A (en) * 1979-10-12 1981-04-29 Sugimura N Pulsation Absorption Device for High Pressure Liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111274684A (en) * 2020-01-15 2020-06-12 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) NOVEC1230 fire extinguishing agent pipeline pressure hydraulic calculation method and system
CN111274684B (en) * 2020-01-15 2022-08-09 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) NOVEC1230 fire extinguishing agent pipeline pressure hydraulic calculation method and system

Also Published As

Publication number Publication date
ES2161741T3 (en) 2001-12-16
CH689045A5 (en) 1998-08-31
EP0661081A1 (en) 1995-07-05
DK0661081T3 (en) 2001-10-29
ATE203176T1 (en) 2001-08-15
DE59409803D1 (en) 2001-08-23
PT661081E (en) 2002-01-30

Similar Documents

Publication Publication Date Title
EP0891208B1 (en) Process and device for atomising liquid extinguishing agents in stationary extinguishing installations
EP1199087B1 (en) Method for extinguishing a fire inside an enclosed space
US6637518B1 (en) Fire extinguishing apparatus
DE602005003593T2 (en) Fire fighting equipment
DE19782085C2 (en) Hanging type diffuser impact water mist nozzle
CA2174453C (en) System and method utilizing low-pressure nozzles for extinguishing fires
DE60207319T2 (en) Method and apparatus for firefighting in an aircraft compartment equipped with this device
DE69515143T3 (en) Pulse fire extinguisher
EP0661081B1 (en) Method for optimising a fire-extinguishing apparatus in respect of the consumption of the fire-extinguishing substance and/or extinguishing time
US3802512A (en) Multiple deflector discharge head for fire protection systems
DE60214442T2 (en) AUTOMATIC FOAM FIRE EXTINGUISHING DEVICE, ESPECIALLY AS A FIXED SYSTEM FOR THE FIRE EXTINGUISHING OF A FUEL TANK
DE4427326B4 (en) Stationary fire extinguishing system
US5992530A (en) Installation for fighting fire
WO1996012526A1 (en) Process and device for suppressing an explosive fire, especially in hydrocarbons
DE102004037627A1 (en) Extinguishing system and method for reducing and / or preventing the spread of smoke and / or fire
US5785126A (en) Method of extinguishing of fire in open or closed spaces and means for performing the method
DE10033395B4 (en) A method of fighting a fire and a fire-fighting device
US3644073A (en) Method of smoke reduction and apparatus therefor
EP1142611B1 (en) Method for optimisation of a water spray fire extinguishing system and water spray fire extinguishing system for carrying out the method
DE102004014780A1 (en) Grease fire extinguisher
EP1293230B1 (en) Method and device for fire fighting
EP0848967B1 (en) Apparatus for extinguishing fires
EP1757332B1 (en) Mobile fire extinguisher with fine spray nozzle
DE19718271A1 (en) Fire=extinguishing layout for buildings, air, land, and water craft
DD296209A5 (en) METHOD AND DEVICE FOR DELETING BREADS WITH WATER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB GR IE IT LU NL PT SE

17P Request for examination filed

Effective date: 19951220

17Q First examination report despatched

Effective date: 19980429

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

RTI1 Title (correction)

Free format text: METHOD FOR OPTIMISING A FIRE-EXTINGUISHING APPARATUS IN RESPECT OF THE CONSUMPTION OF THE FIRE-EXTINGUISHING SUBSTANCE AND/OR EXTINGUISHING TIME

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB GR IE IT LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010718

REF Corresponds to:

Ref document number: 203176

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010718

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59409803

Country of ref document: DE

Date of ref document: 20010823

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161741

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20080829

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20080829

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

BECA Be: change of holder's address

Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

Effective date: 20100423

BECH Be: change of holder

Owner name: SIEMENS A.G.

Effective date: 20100423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20101207

Year of fee payment: 17

Ref country code: AT

Payment date: 20101110

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101209

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20110318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20111128

Year of fee payment: 18

Ref country code: SE

Payment date: 20111213

Year of fee payment: 18

Ref country code: LU

Payment date: 20111223

Year of fee payment: 18

Ref country code: NL

Payment date: 20111220

Year of fee payment: 18

Ref country code: FR

Payment date: 20111227

Year of fee payment: 18

Ref country code: IE

Payment date: 20111228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120117

Year of fee payment: 18

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120117

Year of fee payment: 18

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20121231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 203176

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121212

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130612

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409803

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212