EP0654771A1 - Method for preventing false alarms in a fire detecting system and device for performing this method - Google Patents
Method for preventing false alarms in a fire detecting system and device for performing this method Download PDFInfo
- Publication number
- EP0654771A1 EP0654771A1 EP94113870A EP94113870A EP0654771A1 EP 0654771 A1 EP0654771 A1 EP 0654771A1 EP 94113870 A EP94113870 A EP 94113870A EP 94113870 A EP94113870 A EP 94113870A EP 0654771 A1 EP0654771 A1 EP 0654771A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- interval
- sensor signals
- threshold value
- subintervals
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/20—Calibration, including self-calibrating arrangements
- G08B29/24—Self-calibration, e.g. compensating for environmental drift or ageing of components
- G08B29/26—Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds
Definitions
- the present invention relates to a method for avoiding false alarms in a fire alarm system, with a plurality of detectors connected to a control center, which have at least one sensor for monitoring fire parameters and for emitting corresponding sensor signals, from which hazard signals are derived in a signal processing process.
- False alarms which are among the most common faults in fire protection systems, occur, among other things, because the sensors are "mistaken” in that they cannot distinguish between a fire parameter and a parameter that only pretend a fire.
- the main reason for this deception is that both sizes are physically the same but of different origin, that is to say the physical size "smoke" can be caused, for example, once by a fire, once by a cigar smoker and once by welding work in the respective room. If the detector in question responds to the smoke parameter, it will do so in each of the three cases, and it will not be possible for the cigar smoker to trigger false alarms or the welding work to be carried out by increasing the reliability of the sensor or individual components of to prevent this. However, since known systems are aimed almost exclusively at such an improvement in reliability, they cannot generally reduce the number of false alarms of the type described.
- the invention is now intended to provide a method by which false alarms are largely avoided or at least noticeably reduced through its use.
- the method according to the invention therefore takes a completely different route than before: attempts are not made to reduce the false alarms by increasing the reliability of the system or its components, but rather the system is designed in such a way that false alarms can be predicted. If the probability of a future false alarm reaches or exceeds a certain value, the user receives a message or warning and can react accordingly.
- a major difficulty with such a method or system lies in the relationship between the time it takes to decide whether or not to issue a warning and the reliability of that decision.
- the decision must be made within the shortest possible time, since a false alarm usually takes place shortly after a change in the ambient conditions.
- the statistical relevance of the data collected during this short period of time is not great and cannot be.
- One of the main uses of the method according to the invention is in the so-called application error determination, by means of which the user is to be made aware of possible application errors.
- this function can be fulfilled in that instead of calculating the probability according to step b. a threshold value is determined, that the sensor signals are compared with this threshold value and the exceedances of the threshold value are registered, and that an application error message is given if a certain number of exceedances is exceeded.
- the invention further relates to a fire detection system for carrying out the above-mentioned method, with a control center, with detectors connected to it, which have sensors for fire parameters and emit corresponding sensor signals, and with means for processing them.
- the fire alarm system according to the invention is characterized in that said means for processing the sensor signals have means for their registration during the first interval, means for comparing the sensor signals with a threshold value and means for registering the exceeding of the threshold value by the sensor signals.
- reference numeral 1 designates the or a sensor of a fire alarm, at the output of which a sensor signal S is available.
- the reference numeral 2 denotes a block 2 in which the quantization of the sensor signals S takes place, that is to say the continuous sensor signal is sampled.
- Reference number 3 denotes a stage for signal analysis, at the output of which is the probability of one False alarm indicating signal W is available.
- the signal analysis usually does not take place in the detector but in the control center to which the detectors with sensors 1 are connected. It does not matter whether the control center receives the sensor signal S in quantized form or not; in the latter case, the quantization would take place in the control center, which is indicated in the figure by the dashed line connecting sensor 1 with analysis stage 3.
- an interval is first defined over which the sensor signal is to be analyzed.
- the length of this interval can range from minutes, days, weeks or even months.
- an interval is specified, but a series of intervals with different lengths. The latter is done by dividing the intervals into subintervals, and so on, so that an interval grid is usually available, in whose individual differently rastered subintervals the sensor signal is analyzed.
- a second interval of preferably the same length as the first or an interval grid with lengths corresponding to the first interval grid is then defined and the result of the analysis of the sensor signal in the individual subintervals of the first interval is transferred to the corresponding subintervals of the second interval.
- a main prerequisite for being able to infer the behavior in a second interval from the behavior of the sensor signal S is the presence of a steady state. It is therefore assumed that steady-state conditions prevailed during the observation and registration of the signal, and that this will continue to be the case in the future during the second interval.
- intervals of different lengths are recommended because the weighting of a signal with regard to its relevance for a possible one Alarm is very dependent on the time reference. If, for example, 20 events occur on a single day, i.e. exceeding any threshold value, then these are 20 independent events in relation to an interval the length of a day. In relation to a half-year or annual interval, on the other hand, it is a cluster of events that can in no way be regarded as independent of one another.
- P ⁇ (T, L) (1 - e - ⁇ L ) m
- This value and the number m of subintervals define the condition for the system to issue a warning: Warning if: ⁇ L ⁇ - In [1 - P 1 / m (T, L)]
- the bandwidth of the intervals will be chosen such that the shortest is defined by the shortest reaction time of a user, typically 10 minutes, and the longest by the maximum expected duration of the steady state, for example 6 months. If you double the interval length based on the shortest interval, you get 15 intervals from 10 minutes to 6 months.
- the mean values for each interval are obtained by filtering the maxima of the subintervals with a digital low-pass filter. This mean value is saved together with the provisional maximum for each interval.
- the algorithm for the warning is very simple: the system calculates the mean values and checks whether they exceed a given threshold value corresponding to the probability of avoiding a false alarm P. This can be different for each interval. If, as stated above, 9 out of 10 false alarms are to be prevented, the system will, as soon as it detects that the mean value becomes one within an interval of, for example, one hour Has exceeded 22% of the threshold, give a warning and request intervention within the next hour. If the interval is 1 month, the message would look different because the intervention would not be so urgent.
- FIG. 2 shows an exemplary embodiment for a very simple function of the method according to the invention.
- This function is a so-called application error determination or message, which is intended to draw the user's attention to any application errors.
- the basic idea is that it is automatically determined whether and how often a detector exceeds a certain danger level that does not yet trigger an alarm within a certain interval. Because then there is a risk that a false alarm will be triggered at some point.
- FIG. 2 shows the diagram of a sensor signal S plotted over time t, a threshold value G1 for the aforementioned low danger level being plotted on the ordinate.
- a detector counts each time the threshold value G1 is exceeded and delivers a corresponding pulse In to a counter 4.
- the counter 4 counts the pulses In over the selected time interval T of, for example, 24 hours and reports the counter reading, which is 5 in the example shown, to a comparator 5 at the end of the time interval. This compares the counter reading received with a set value and, when this value is exceeded, issues an advisory message of the "unsuitable use" type or the like.
- the exemplary embodiment shown can be expanded further, for example by quantizing the signal S and thus determining how long it took the signal S to exceed the threshold value G1.
- the other, higher danger levels for the application error determination can also be taken into account by taking into account that these danger levels are exceeded for the notification message.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fire Alarms (AREA)
- Alarm Systems (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Vermeidung von Fehlalarmen in einem Brandmeldesystem, mit einer Mehrzahl von mit einer Zentrale verbundenen Meldern, welche mindestens einen Sensor zur Überwachung von Brandkenngrössen und zur Abgabe entsprechender Sensorsignale aufweisen, aus denen in einem Signalverarbeitungsprozess Gefahrensignale abgeleitet werden.The present invention relates to a method for avoiding false alarms in a fire alarm system, with a plurality of detectors connected to a control center, which have at least one sensor for monitoring fire parameters and for emitting corresponding sensor signals, from which hazard signals are derived in a signal processing process.
Fehlalarme, die zu den häufigsten Störungen bei Brandschutzsystemen zählen, treten unter anderem deswegen auf, weil sich die Sensoren "täuschen", indem sie nicht zwischen einer auf einen Brand hinweisenden Brandkenngrösse und einem einen Brand nur vortäuschenden Parameter unterscheiden können. Die Hauptursache für diese Täuschung liegt darin, das beide Grössen physikalisch gleich aber verschiedenen Ursprungs sind, dass also die physikalische Grösse "Rauch" beispielsweise einmal von einem Brand, einmal von einem Zigarrenraucher und einmal durch Schweissarbeiten in dem jeweiligen Raum verursacht sein kann. Wenn nun der betreffende Melder auf die Brandkenngrösse Rauch anspricht, dann wird er das in jedem der drei Fälle tun, und es wird nicht möglich sein, die Auslösung von Fehlalarmen durch den Zigarrenraucher oder die Schweissarbeiten durch eine Steigerung der Zuverlässigkeit des Sensors oder einzelner Komponenten von diesem zu verhindern. Da bekannte Systeme aber nahezu ausschliesslich auf eine solche Verbesserung der Zuverlässigkeit gerichtet sind, können sie in aller Regel die Anzahl von Fehlalarmen der beschriebenen Art nicht reduzieren.False alarms, which are among the most common faults in fire protection systems, occur, among other things, because the sensors are "mistaken" in that they cannot distinguish between a fire parameter and a parameter that only pretend a fire. The main reason for this deception is that both sizes are physically the same but of different origin, that is to say the physical size "smoke" can be caused, for example, once by a fire, once by a cigar smoker and once by welding work in the respective room. If the detector in question responds to the smoke parameter, it will do so in each of the three cases, and it will not be possible for the cigar smoker to trigger false alarms or the welding work to be carried out by increasing the reliability of the sensor or individual components of to prevent this. However, since known systems are aimed almost exclusively at such an improvement in reliability, they cannot generally reduce the number of false alarms of the type described.
Durch die Erfindung soll nun ein Verfahren angegeben werden, durch dessen Anwendung Fehlalarme weitgehend vermieden oder zumindest spürbar reduziert werden.The invention is now intended to provide a method by which false alarms are largely avoided or at least noticeably reduced through its use.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Signalverarbeitungsprozess folgende Schritte enthält:
- a. Analyse der Sensorsignale während eines bestimmten ersten Intervalls,
- b. Berechnung der Wahrscheinlichkeit eines Fehlalarms in einem folgenden zweiten Intervall; und
- c. Abgabe eines Hinweises, wenn die Wahrscheinlichkeit einen bestimmten Wert überschreitet.
- a. Analysis of the sensor signals during a certain first interval,
- b. Calculating the probability of a false alarm in a subsequent second interval; and
- c. Providing information when the probability exceeds a certain value.
Beim erfindungsgemässen Verfahren wird also zur Vermeidung von Fehlalarmen ein gänzlich anderer Weg als bisher eingeschlagen: Man versucht nicht, die Fehlalarme durch Erhöhung der Zuverlässigkeit des Systems oder von dessen Komponenten zu reduzieren, sondern man legt das System so aus, dass Fehlalarme vorausgesagt werden können. Wenn die Wahrscheinlichkeit eines künftigen Fehlalarms einen bestimmten Wert erreicht oder überschreitet, dann erhält der Benutzer einen Hinweis oder eine Warnung und kann darauf entsprechend reagieren.In order to avoid false alarms, the method according to the invention therefore takes a completely different route than before: attempts are not made to reduce the false alarms by increasing the reliability of the system or its components, but rather the system is designed in such a way that false alarms can be predicted. If the probability of a future false alarm reaches or exceeds a certain value, the user receives a message or warning and can react accordingly.
Eine wesentliche Schwierigkeit bei einem derartigen Verfahren oder System liegt im Verhältnis zwischen der Zeit für die Entscheidung, ob eine Warnung erfolgen soll oder nicht, und der Zuverlässigkeit dieser Entscheidung. Denn einerseits muss die Entscheidung innerhalb einer möglichst kurzen Zeit getroffen werden, da ein Fehlalarm üblicherweise kurz nach einer Änderung der Umgebungsbedingungen erfolgt. Und andererseits ist die statistische Relevanz der während dieser kurzen Zeit gesammelten Daten nicht gross und kann dies auch gar nicht sein.A major difficulty with such a method or system lies in the relationship between the time it takes to decide whether or not to issue a warning and the reliability of that decision. On the one hand, the decision must be made within the shortest possible time, since a false alarm usually takes place shortly after a change in the ambient conditions. On the other hand, the statistical relevance of the data collected during this short period of time is not great and cannot be.
Dieses Problem der Abschätzung der Wahrscheinlichkeit eines Fehlalarms anhand von nur wenig Informationen wird gemäss einer bevorzugten Weiterbildung des erfindungsgemässen Verfahrens dadurch gelöst, dass die Länge des zweiten Zeitabschnitts von derselben Grössenordnung gewählt wird wie diejenige des ersten, dass jeder Zeitabschnitt in Teilintervalle geteilt und für jedes Teilintervall der Mittelwert der Signalmaxima ermittelt, und dass aus diesem Mittelwert die Verteilungsfunktion der Wahrscheinlichkeit eines Fehlalarms abgeleitet wird.This problem of estimating the probability of a false alarm on the basis of only a little information is solved according to a preferred development of the method according to the invention in that the length of the second time segment is of the same order of magnitude as that of the first, that each time segment is divided into subintervals and for each subinterval the mean value of the signal maxima is determined, and that the distribution function of the probability of a false alarm is derived from this mean value.
Eine der Hauptanwendungen des erfindungsgemässen Verfahrens liegt in der sogenannten Applikationsfehlerermittlung, durch die der Benutzer auf eventuelle Anwendungsfehler aufmerksam gemacht werden soll. Diese Funktion lässt sich gemäss einer anderen bevorzugten Weiterbildung des erfindungsgemässen Verfahrens dadurch erfüllen, dass anstatt der Berechnung der Wahrscheinlichkeit gemäss Schritt b. ein Schwellwert festgelegt wird, dass die Sensorsignale mit diesem Schwellwert verglichen und die Überschreitungen des Schwellwerts registriert werden, und dass bei einer bestimmten Anzahl von Überschreitungen ein Applikationsfehlerhinweis abgegeben wird.One of the main uses of the method according to the invention is in the so-called application error determination, by means of which the user is to be made aware of possible application errors. According to another preferred development of the method according to the invention, this function can be fulfilled in that instead of calculating the probability according to step b. a threshold value is determined, that the sensor signals are compared with this threshold value and the exceedances of the threshold value are registered, and that an application error message is given if a certain number of exceedances is exceeded.
Die Erfindung betrifft weiter ein Brandmeldesystem zur Durchführung des genannten Verfahrens, mit einer Zentrale, mit an diese angeschlossenen Meldern, welche Sensoren für Brandkenngrössen aufweisen und entsprechende Sensorsignale abgeben, und mit Mitteln zu deren Verarbeitung.The invention further relates to a fire detection system for carrying out the above-mentioned method, with a control center, with detectors connected to it, which have sensors for fire parameters and emit corresponding sensor signals, and with means for processing them.
Das erfindungsgemässe Brandmeldesystem ist dadurch gekennzeichnet, dass die genannten Mittel zur Verarbeitung der Sensorsignale Mittel zu deren Registrierung während des ersten Intervalls, Mittel zum Vergleich der Sensorsignale mit einem Schwellwert und Mittel zur Registrierung der Überschreitungen des Schwellwerts durch die Sensorsignale aufweisen.The fire alarm system according to the invention is characterized in that said means for processing the sensor signals have means for their registration during the first interval, means for comparing the sensor signals with a threshold value and means for registering the exceeding of the threshold value by the sensor signals.
Nachfolgend soll nun die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert werden; dabei zeigt:
- Fig. 1 ein Blockschema der Signalverarbeitung; und
- Fig. 2 ein Diagramm zur Erläuterung einer speziellen Funktion, der sogenannten Applikationsfehlerermittlung.
- 1 shows a block diagram of the signal processing; and
- Fig. 2 is a diagram for explaining a special function, the so-called application error determination.
In Fig. 1 bezeichnet das Bezugszeichen 1 den oder einen Sensor eines Brandmelders, an dessen Ausgang ein Sensorsignal S erhältlich ist. Das Bezugszeichen 2 bezeichnet einen Block 2, in dem die Quantisierung der Sensorsignale S erfolgt, das kontinuierliche Sensorsignal also abgetastet wird. Das Bezugszeichen 3 bezeichnet eine Stufe zur Signalanalyse, an deren Ausgang ein die Wahrscheinlichkeit für einen Fehlalarm angebendes Signal W erhältlich ist. Üblicherweise erfolgt die Signalanalyse nicht im Melder sondern in der Zentrale, an die die Melder mit den Sensoren 1 angeschlossen sind. Dabei ist es nicht von Bedeutung, ob die Zentrale das Sensorsignal S in quantisierter Form erhält oder nicht; im letzteren Fall würde die Quantisierung in der Zentrale erfolgen, was in der Figur durch die den Sensor 1 mit der Analysestufe 3 direkt verbindende, gestrichelt eingezeichnete Leitung angedeutet ist.In Fig. 1,
In der Analysestufe 3 wird zuerst ein Intervall festgelegt, über welches das Sensorsignal analysiert werden soll. Die Länge dieses Intervalls kann sich im Minuten-, Tages, Wochen- oder sogar Monatsbereich bewegen. Vorzugsweise wird nicht nur ein Intervall festgelegt, sondern eine Reihe von Intervallen mit unterschiedlicher Länge. Letzteres erfolgt dadurch, dass man die Intervalle in Subintervalle unterteilt, und so weiter, so dass in der Regel ein Intervallraster zur Verfügung steht, in dessen einzelnen verschieden gerasterten Subintervallen das Sensorsignal analysiert wird.In
Anschliessend wird ein zweites Intervall von vorzugsweise der gleichen Länge wie das erste oder ein Intervallraster mit dem ersten Intervallraster entsprechenden Längen festgelegt und es wird das Ergebnis der Analyse des Sensorsignals in den einzelnen Subintervallen des ersten Intervalls auf die entsprechenden Subintervalle des zweiten Intervalls übertragen. Und zwar derart, dass man untersucht, ob aus dem Verhalten oder Verlauf des Signals in einem ersten Intervall ein Indiz ableitbar ist, dass im entsprechenden zweiten Intervall ein Fehlalarm ausgelöst werden könnte, und wie gross die Wahrscheinlichkeit dafür ist.A second interval of preferably the same length as the first or an interval grid with lengths corresponding to the first interval grid is then defined and the result of the analysis of the sensor signal in the individual subintervals of the first interval is transferred to the corresponding subintervals of the second interval. In such a way that one examines whether an indication can be derived from the behavior or course of the signal in a first interval, that a false alarm could be triggered in the corresponding second interval, and how high the probability is.
Eine Hauptvoraussetzung dafür, aus dem Verhalten des Sensorsignals S in einem ersten Intervall auf das Verhalten in einem zweiten Intervall schliessen zu können, ist das Vorliegen eines stationären Zustands. Man geht also davon aus, dass während der Beobachtung und Registrierung des Signals stationäre Zustände geherrscht haben, und dass dies auch in Zukunft, während des zweiten Intervalls der Fall sein wird.A main prerequisite for being able to infer the behavior in a second interval from the behavior of the sensor signal S is the presence of a steady state. It is therefore assumed that steady-state conditions prevailed during the observation and registration of the signal, and that this will continue to be the case in the future during the second interval.
Die Festlegung von Intervallen verschiedener Länge ist deswegen empfehlenswert, weil die Gewichtung eines Signals bezüglich seiner Relevanz für einen eventuellen Alarm sehr stark vom zeitlichen Bezug abhängig ist. Wenn also beispielsweise an einem einzigen Tag 20 Ereignisse, also Überschreitungen irgendeines Schwellwerts, auftreten, dann sind das, bezogen auf ein Intervall von der Länge eines Tages 20 voneinander unabhängige Ereignisse. Bezogen auf ein Halbjahres- oder Jahresintervall handelt es sich hingegen um eine Häufung von Ereignissen, die keinesfalls als voneinander unabhängig betrachtet werden können.The definition of intervals of different lengths is recommended because the weighting of a signal with regard to its relevance for a possible one Alarm is very dependent on the time reference. If, for example, 20 events occur on a single day, i.e. exceeding any threshold value, then these are 20 independent events in relation to an interval the length of a day. In relation to a half-year or annual interval, on the other hand, it is a cluster of events that can in no way be regarded as independent of one another.
Damit ein Ereignis nicht mehrfach gezählt wird, wird bei der Betrachtung der aus mehreren Subintervallen zusammengesetzten Intervalle in der Analysestufe 3 nur das Ereignis mit der grössten Amplitude pro Subintervall berücksichtigt. Das führt zwar dazu, dass in einem gegebenen Subintervall alle Ereignisse mit Amplituden unterhalb des Maximums nicht berücksichtigt werden, ist aber nicht weiter kritisch, weil diese Ereignisse in kürzeren Intervallen und Subintervallen detektiert werden. Aus den Maximalwerten der einzelnen Subintervalle wird dann ein für das jeweilige Intervall repräsentativer Mittelwert gebildet. Aus diesem Mittelwert wird schliesslich die Wahrscheinlichkeit für einen Fehlalarm abgeleitet.So that an event is not counted more than once, only the event with the greatest amplitude per subinterval is taken into account when considering the intervals composed of several subintervals in
Wenn man von der Annahme ausgeht, dass die Verteilungsfunktion dieser Wahrscheinlichkeit eine exponentielle Funktion ist, und wenn man ein Intervall der Länge T in Subintervalle unterteilt und aus dem Mittelwert der Signalmaxima in den Subintervallen den Parameter λ der normierten Verteilungsfunktion
If one starts from the assumption that the distribution function of this probability is an exponential function, and if one divides an interval of length T into subintervals and from the mean of the signal maxima in the subintervals the parameter λ of the standardized distribution function
Die Wahrscheinlichkeit der Vermeidung eines Fehlalarms ist während eines Subintervalls:
und während des gesamten Intervalls:
In der Praxis legt der Benutzer fest, bis zu welchem Ausmass das System Fehlalarme verhindern soll. Wenn beispielsweise 9 von 10 Fehlalarmen verhindert werden sollen, dann setzt man P gleich 0.9. Dieser Wert und die Anzahl m der Subintervalle definiert die Bedingung für die Abgabe einer Warnung durch das System:
Warnung, wenn:
Für P = 0.9 und 10 Subintervalle berechnet sich das Verhältnis Schwellwert L zu Mittelwert 1/λ zu:
Dieses Ergebnis besagt, dass der Mittelwert der in einem gegebenen Intervall gesammelten Daten 22% des Alarm-Schwellwerts nicht übersteigen soll, wenn das System innerhalb des nächsten Intervalls derselben Länge einen Fehlalarm mit der Wahrscheinlichkeit 0.9 vermeiden soll.The probability of avoiding a false alarm during a subinterval is:
and throughout the interval:
In practice, the user determines to what extent the system should prevent false alarms. For example, if 9 out of 10 false alarms are to be prevented, P is set to 0.9. This value and the number m of subintervals define the condition for the system to issue a warning:
Warning if:
For P = 0.9 and 10 subintervals, the ratio threshold L to mean 1 / λ is calculated:
This result means that the average of the data collected in a given interval should not exceed 22% of the alarm threshold if the system is to avoid a false alarm with probability 0.9 within the next interval of the same length.
Bei der praktischen Implementierung wird man die Bandbreite der Intervalle so wählen, dass das kürzeste durch die kürzeste Reaktionszeit eines Benutzers, das sind typischerweise 10 Minuten, definiert ist, und das längste durch die maximal zu erwartende Dauer der stationären Zustände, beispielsweise also 6 Monate. Wenn man ausgehend vom kürzesten Intervall die Intervallänge jeweils verdoppelt, dann ergibt das von 10 Minuten bis 6 Monaten 15 Intervalle. Die Mittelwerte für jedes Intervall erhält man durch Filterung der Maxima der Subintervalle mit einem digitalen Tiefpassfilter. Dieser Mittelwert wird zusammen mit dem vorläufigen Maximum jeweils pro Intervall gespeichert.In practical implementation, the bandwidth of the intervals will be chosen such that the shortest is defined by the shortest reaction time of a user, typically 10 minutes, and the longest by the maximum expected duration of the steady state, for example 6 months. If you double the interval length based on the shortest interval, you get 15 intervals from 10 minutes to 6 months. The mean values for each interval are obtained by filtering the maxima of the subintervals with a digital low-pass filter. This mean value is saved together with the provisional maximum for each interval.
Der Algorithmus für die Warnung ist sehr einfach: Das System berechnet die Mittelwerte und überprüft, ob diese einen gegebenen, zur Wahrscheinlichkeit der Vermeidung eines Fehlalarms P korrespondierenden Schwellwert überschreitet. Dieser kann für jedes Intervall verschieden sein. Wenn, wie weiter oben angegeben, 9 von 10 Fehlalarmen verhindert werden sollen, dann wird das System, sobald es feststellt, dass der Mittelwert innerhalb eines Intervalls von beispielsweise einer Stunde einen Wert von 22% des Schwellwerts überschritten hat, einen Hinweis abgeben und eine Intervention innerhalb der nächsten Stunde verlangen. Beträgt das Intervall 1 Monat, dann würde der Hinweis anders aussehen, weil die Intervention dann nicht so dringend wäre.The algorithm for the warning is very simple: the system calculates the mean values and checks whether they exceed a given threshold value corresponding to the probability of avoiding a false alarm P. This can be different for each interval. If, as stated above, 9 out of 10 false alarms are to be prevented, the system will, as soon as it detects that the mean value becomes one within an interval of, for example, one hour Has exceeded 22% of the threshold, give a warning and request intervention within the next hour. If the interval is 1 month, the message would look different because the intervention would not be so urgent.
In Fig. 2 ist ein Ausführungsbeispiel für eine sehr einfache Funktion des erfindungsgemässen Verfahrens dargestellt. Diese Funktion ist eine sogenannte Applikationsfehlerermittlung oder -meldung, die den Benutzer auf eventuelle Anwendungsfehler aufmerksam machen soll. Der Grundgedanke ist dabei der, dass automatisch ermittelt wird, ob und wie oft ein Melder innerhalb eines bestimmten Intervalls eine bestimmte, noch keinen Alarm auslösende Gefahrenstufe überschreitet. Denn dann besteht die Gefahr, dass irgendwann ein Fehlalarm ausgelöst wird.2 shows an exemplary embodiment for a very simple function of the method according to the invention. This function is a so-called application error determination or message, which is intended to draw the user's attention to any application errors. The basic idea is that it is automatically determined whether and how often a detector exceeds a certain danger level that does not yet trigger an alarm within a certain interval. Because then there is a risk that a false alarm will be triggered at some point.
Die obere Hälfte von Fig. 2 zeigt das Diagramm eines über der Zeit t aufgetragenen Sensorsignals S, wobei auf der Ordinate ein Schwellwert G1 für die erwähnte niedrige Gefahrenstufe eingezeichnet ist. Ein Detektor zählt jedes Überschreiten des Schwellwerts G1 und liefert an einen Zähler 4 einen entsprechenden Impuls In. Der Zähler 4 zählt die Impulse In über das gewählte Zeitintervall T von beispielsweise 24 Stunden und meldet am Ende des Zeitintervalls den Zählerstand der im dargestellten Beispiel gleich 5 ist, an einen Vergleicher 5 weiter. Dieser vergleicht den erhaltenen Zählerstand mit einem eingestellten Wert und gibt bei Überschreiten dieses Werts eine Hinweismeldung der Art "ungeeignete Anwendung" oder dergleichen ab.The upper half of FIG. 2 shows the diagram of a sensor signal S plotted over time t, a threshold value G1 for the aforementioned low danger level being plotted on the ordinate. A detector counts each time the threshold value G1 is exceeded and delivers a corresponding pulse In to a
Das dargestellte Ausführungsbeispiel kann weiter ausgebaut werden, indem beispielsweise das Signal S quantisiert und damit ermittelt wird, wie lange die Überschreitung des Schwellwerts G1 durch das Signal S jeweils gedauert hat. Selbstverständlich können auch die anderen, höheren Gefahrenstufen für die Applikationsfehlerermittlung berücksichtigt werden, indem man auch das Überschreiten dieser Gefahrenstufen für die Hinweismeldung berücksichtigt.The exemplary embodiment shown can be expanded further, for example by quantizing the signal S and thus determining how long it took the signal S to exceed the threshold value G1. Of course, the other, higher danger levels for the application error determination can also be taken into account by taking into account that these danger levels are exceeded for the notification message.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3487/93 | 1993-11-23 | ||
CH03487/93A CH686915A5 (en) | 1993-11-23 | 1993-11-23 | A method for avoiding false alarms in a fire alarm system and fire alarm system for implementing the method. |
CH348793 | 1993-11-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0654771A1 true EP0654771A1 (en) | 1995-05-24 |
EP0654771B1 EP0654771B1 (en) | 2002-01-09 |
Family
ID=4257060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94113870A Expired - Lifetime EP0654771B1 (en) | 1993-11-23 | 1994-09-05 | Method for preventing false alarms in a fire detecting system and device for performing this method |
Country Status (7)
Country | Link |
---|---|
US (1) | US5786756A (en) |
EP (1) | EP0654771B1 (en) |
JP (1) | JPH07200960A (en) |
CN (1) | CN1125422C (en) |
AT (1) | ATE211845T1 (en) |
CH (1) | CH686915A5 (en) |
DE (1) | DE59410025D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016025946A1 (en) * | 2014-08-15 | 2016-02-18 | Adt Us Holdings, Inc. | Using degree of confidence to prevent false security system alarms |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015261622A1 (en) * | 2008-01-09 | 2015-12-17 | Aristocrat Technologies Australia Pty Limited | A method of gaming, a game controller and a gaming system |
US10522031B2 (en) * | 2015-09-01 | 2019-12-31 | Honeywell International Inc. | System and method providing early prediction and forecasting of false alarms by applying statistical inference models |
KR102006436B1 (en) * | 2015-10-30 | 2019-08-01 | 삼성에스디에스 주식회사 | Method for detecting false alarm |
CN106781239B (en) * | 2015-11-20 | 2019-04-02 | 上海点艺信息技术有限公司 | A kind of monitoring method and system intelligently nursed |
US10832563B2 (en) | 2017-05-01 | 2020-11-10 | Johnson Controls Technology Company | Building security system with false alarm reduction recommendations and automated self-healing for false alarm reduction |
US10037686B1 (en) | 2017-06-20 | 2018-07-31 | Honeywell International Inc. | Systems and methods for preventing false alarms during alarm sensitivity threshold changes in fire alarm systems |
US10916121B2 (en) * | 2018-05-21 | 2021-02-09 | Johnson Controls Technology Company | Virtual maintenance manager |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2542116A1 (en) * | 1983-02-25 | 1984-09-07 | Verdon Roger | Device for eliminating false alarms |
EP0121048A1 (en) * | 1983-03-04 | 1984-10-10 | Cerberus Ag | Circuit arrangement for the interference level control of detectors, arranged in a danger detection device |
US4764755A (en) * | 1987-07-27 | 1988-08-16 | Detection Systems, Inc. | Intruder detection system with false-alarm-minimizing circuitry |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA785255B (en) * | 1978-09-15 | 1979-12-27 | Anglo Amer Corp South Africa | Alarm system |
JPS6115300A (en) * | 1984-06-29 | 1986-01-23 | ホーチキ株式会社 | Fire alarm |
JPH079680B2 (en) * | 1985-04-01 | 1995-02-01 | ホーチキ株式会社 | Analog fire alarm |
JPH0719315B2 (en) * | 1985-04-09 | 1995-03-06 | ホーチキ株式会社 | Fire alarm |
JPS61237197A (en) * | 1985-04-12 | 1986-10-22 | ホーチキ株式会社 | Fire alarm |
-
1993
- 1993-11-23 CH CH03487/93A patent/CH686915A5/en not_active IP Right Cessation
-
1994
- 1994-09-05 DE DE59410025T patent/DE59410025D1/en not_active Expired - Fee Related
- 1994-09-05 EP EP94113870A patent/EP0654771B1/en not_active Expired - Lifetime
- 1994-09-05 AT AT94113870T patent/ATE211845T1/en not_active IP Right Cessation
- 1994-09-08 JP JP6214639A patent/JPH07200960A/en active Pending
- 1994-11-23 CN CN94118419A patent/CN1125422C/en not_active Expired - Fee Related
- 1994-11-23 US US08/347,120 patent/US5786756A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2542116A1 (en) * | 1983-02-25 | 1984-09-07 | Verdon Roger | Device for eliminating false alarms |
EP0121048A1 (en) * | 1983-03-04 | 1984-10-10 | Cerberus Ag | Circuit arrangement for the interference level control of detectors, arranged in a danger detection device |
US4764755A (en) * | 1987-07-27 | 1988-08-16 | Detection Systems, Inc. | Intruder detection system with false-alarm-minimizing circuitry |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016025946A1 (en) * | 2014-08-15 | 2016-02-18 | Adt Us Holdings, Inc. | Using degree of confidence to prevent false security system alarms |
US9786158B2 (en) | 2014-08-15 | 2017-10-10 | Adt Us Holdings, Inc. | Using degree of confidence to prevent false security system alarms |
US10176706B2 (en) | 2014-08-15 | 2019-01-08 | The Adt Security Corporation | Using degree of confidence to prevent false security system alarms |
Also Published As
Publication number | Publication date |
---|---|
CN1125422C (en) | 2003-10-22 |
EP0654771B1 (en) | 2002-01-09 |
JPH07200960A (en) | 1995-08-04 |
CN1109193A (en) | 1995-09-27 |
US5786756A (en) | 1998-07-28 |
ATE211845T1 (en) | 2002-01-15 |
DE59410025D1 (en) | 2002-02-14 |
CH686915A5 (en) | 1996-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60110746T2 (en) | Fire alarm system | |
DE3338711C2 (en) | Fire monitoring and alarm system | |
DE69522712T2 (en) | ERROR MONITOR | |
EP1950639B1 (en) | Method for operating a process plant, process plant and computer program product | |
DE3612347C3 (en) | Process for the evaluation of data indicating the outbreak of a fire | |
DE3611816C2 (en) | ||
DE3418622C2 (en) | ||
EP0248298B1 (en) | Danger alarm installation | |
EP0070449A1 (en) | Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation | |
DE19622806A1 (en) | Method and device for detecting a fire with different types of fire sensors | |
DE2341087B2 (en) | Automatic fire alarm system | |
EP0067339A2 (en) | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems | |
DE2716757C3 (en) | Alarm system, especially intrusion alarm system | |
DE3120986A1 (en) | METHOD AND ARRANGEMENT FOR REVISION IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM | |
DE602005006156T2 (en) | SUPPRESSION OF FALSE ALARMS UNDER A MONITORED INFORMATION SYSTEM PRODUCED ALARMS | |
DE3128811A1 (en) | Multiplexed alarm signalling system | |
EP0654771A1 (en) | Method for preventing false alarms in a fire detecting system and device for performing this method | |
DE69610043T2 (en) | Detector terminal for a disaster prevention system | |
DE3854218T2 (en) | CONTINUOUSLY PROVIDED IMPULSE TRAIN PROCESSOR HIGH RELIABILITY. | |
DE2529589C2 (en) | Electronic security system with a signal detector circuit | |
DE69313739T2 (en) | Smoke detection device for fire alarm | |
EP0501194B1 (en) | Method of predetermining the time of maintenance of alarm detectors | |
CH697821B1 (en) | Method of determining the traffic situation on a section of a road network and traffic management center for implementing the method. | |
EP3454154A1 (en) | Automated detection of statistical dependencies between process messages | |
EP0903711A2 (en) | Method for transmitting traffic information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19951115 |
|
17Q | First examination report despatched |
Effective date: 19980424 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020109 |
|
REF | Corresponds to: |
Ref document number: 211845 Country of ref document: AT Date of ref document: 20020115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59410025 Country of ref document: DE Date of ref document: 20020214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020409 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020409 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020403 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020730 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20040810 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040831 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20040907 Year of fee payment: 11 Ref country code: GB Payment date: 20040907 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20040910 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040913 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040921 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20041118 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20041208 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050905 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050905 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060401 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060531 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G. Effective date: 20050930 |