EP0652709B1 - Improvements in or relating to germicidal compositions - Google Patents
Improvements in or relating to germicidal compositions Download PDFInfo
- Publication number
- EP0652709B1 EP0652709B1 EP93916071A EP93916071A EP0652709B1 EP 0652709 B1 EP0652709 B1 EP 0652709B1 EP 93916071 A EP93916071 A EP 93916071A EP 93916071 A EP93916071 A EP 93916071A EP 0652709 B1 EP0652709 B1 EP 0652709B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- organisms
- rose bengal
- results
- composition
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 44
- 230000002070 germicidal effect Effects 0.000 title abstract description 8
- 239000000975 dye Substances 0.000 claims abstract description 47
- 244000005700 microbiome Species 0.000 claims abstract description 38
- 239000004094 surface-active agent Substances 0.000 claims abstract description 22
- 239000002904 solvent Substances 0.000 claims abstract description 21
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000002779 inactivation Effects 0.000 claims abstract description 10
- 238000004140 cleaning Methods 0.000 claims abstract description 7
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 35
- 241000894006 Bacteria Species 0.000 claims description 25
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 abstract description 3
- 239000000725 suspension Substances 0.000 description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- 239000000243 solution Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 241000588724 Escherichia coli Species 0.000 description 22
- 230000012010 growth Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 19
- 230000009467 reduction Effects 0.000 description 19
- 229920001817 Agar Polymers 0.000 description 13
- 239000008272 agar Substances 0.000 description 12
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 230000003115 biocidal effect Effects 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 235000014469 Bacillus subtilis Nutrition 0.000 description 6
- 210000002421 cell wall Anatomy 0.000 description 6
- 241000194107 Bacillus megaterium Species 0.000 description 5
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical compound CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000012085 test solution Substances 0.000 description 5
- 241000222122 Candida albicans Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000001332 colony forming effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005283 ground state Effects 0.000 description 4
- 230000001665 lethal effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 229930187593 rose bengal Natural products 0.000 description 4
- 229940081623 rose bengal Drugs 0.000 description 4
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000147019 Enterobacter sp. Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000007539 photo-oxidation reaction Methods 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 238000006862 quantum yield reaction Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- IDQBJILTOGBZCR-UHFFFAOYSA-N 1-butoxypropan-1-ol Chemical compound CCCCOC(O)CC IDQBJILTOGBZCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 2
- -1 alkyl sulphates Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 2
- 238000001317 epifluorescence microscopy Methods 0.000 description 2
- 235000002864 food coloring agent Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 2
- 239000006916 nutrient agar Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 229920000818 Catalin Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000588754 Klebsiella sp. Species 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- OKPNYGAWTYOBFZ-UHFFFAOYSA-N Pirenoxine Chemical compound C12=NC3=CC=CC=C3OC2=CC(=O)C2=C1C(=O)C=C(C(=O)O)N2 OKPNYGAWTYOBFZ-UHFFFAOYSA-N 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- XFQYJNINHLZMIU-UHFFFAOYSA-N cataline Natural products CN1CC(O)C2=CC(OC)=C(OC)C3=C2C1CC1=C3C=C(OC)C(OC)=C1 XFQYJNINHLZMIU-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960003138 rose bengal sodium Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 231100000489 sensitizer Toxicity 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000006150 trypticase soy agar Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/40—Dyes ; Pigments
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/48—Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
Definitions
- This invention relates to germicidal compositions, particularly for use on surfaces, ie compositions capable of destroying or inactivating micro-organisms, particularly surface-bound micro-organisms.
- the present invention provides a method of killing bacteria in biofilms on a surface, comprising applying to the surface a composition comprising a dyestuff which is capable of photo-dynamic inactivation of micro-organisms.
- a dyestuff that generates singlet oxygen on exposure to light.
- S 1 * On absorption of light energy a dye molecule is converted to a more energetic or exited state (S 1 *) from its electronic ground state (S 0 ).
- S 1 * Electronic ground state
- S 0 Electronic ground state
- the excited state is short lived and can lose energy and return to the ground state in a number of ways: by emission of a quantum of light as fluorescence; by internal conversion as the energy is degraded to heat, by collision with a molecule of a different substance (fluorescence quenching).
- the short lived singlet state may also undergo a process called intersystem crossing to a longer-lived excited state, the triplet state.
- the state is termed "triplet" because the electron in the higher energy level is no longer spin-paired with the electron in the lower level and the excited state has three energy levels in a magnetic field.
- Type II photo-oxidation Singlet oxygen is highly reactive and photosensitised oxidation proceeding via this route is known as Type II photo-oxidation.
- Type II photo-oxidation is independent of the photosensitiser used to generate the singlet oxygen.
- An important feature of the sensitiser is that it should have a high quantum yield of triplet formation (that is, ideally, a triplet state should be produced for each photon absorbed). Intersystem crossing to the triplet state is facilitated by the presence of heavy atoms in the molecule.
- Photo-oxidation of any vital component of an organism may result in cell death (protein, polypeptide, amino-acids, lipids with allylic hydrogens, tocopherols, sugars and cellulose).
- Dysen include Rose Bengal (Acid Red 94, Colour Index No. 45440), Erythrosin B (Acid Red 51, Colour Index No. 45430), and phthalocyanin sulphonates such as aluminium phthalocyanin sulphonate (APS) and zinc phthalocyanin sulphonate (ZPS).
- Rose Bengal and Erythrosin B are known food colourants (Rose Bengal is Food Colour Red No 105 and Erythrosin B is Food Colour Red No 14), and Erythrosin B is on an EEC list of colouring agents allowed for use in cosmetic products, so these two dyes are well suited for use in compositions intended for domestic use. Mixtures of dyes can be used, and in some cases it may be desirable to include in a mixture a dye that will remain visible at the end of the photodynamic process.
- the concentration of dyestuff in the composition is not critical and will typically be up to 100ppm, with good results having been obtained with concentrations in the range 10ppm to 20ppm. Lower concentrations, down to 1ppm should also give reasonable results.
- Singlet oxygen has a short lifetime and therefore a short pathlength for diffusion, so to be effective a photosensitising dye generating singlet oxygen must be close to the target substrate.
- Preferred dyestuffs are therefore substantive to (ie capable of binding to) micro-organisms, typically by binding to cellular protein on the organism surface or other cellular components eg cellular fats.
- the preferred dyes mentioned above generate singlet oxygen on exposure to light and are substantive to protein and so capable of binding to micro-organisms via cellular protein. In this way, targetted killing of organisms and hence germicidal action is possible.
- a dyestuff that is bleached by exposure to light.
- a photo-bleaching dyestuff that is substantive to micro-organisms it can be possible for a visible indication of the presence of micro-organisms to be provided.
- the photo-dynamic action proceeds causing the death of, or otherwise inactivating, micro-organisms.
- both bleaching and the photo-dynamic activity are believed to proceed more slowly, whereas at higher light intensities both processes occur more quickly.
- the presence of visible dyestuff indicates to the user that the photo-dynamic inactivation of any micro-organisms present is incomplete.
- micro-organisms are much more susceptible to biocides in their planktonic or suspended state: they are much more difficult to inactivate when attached to surfaces, which is their usual or preferred state.
- Micro-organisms will normally be on surfaces in the form of "biofilms", that is, embedded in a matrix of extracellular material. This extracellular material may sometimes be referred to as "adhesin" in the literature. It is therefore not obvious that a process which acts on micro-organisms in their planktonic state would act on surface-bound organisms without modification being required.
- Surface-bound micro-organisms represent an important and substantial source of contamination in domestic, institutional and industrial environments, and the present invention can enable targetted germicidal action on such micro-organisms.
- the method of the invention is particularly suitable for use in killing micro-organisms on hard domestic and industrial surfaces such as glass, plastics, ceramic and metal surfaces.
- the method is effective on surfaces which may harbour soils having the potential for bacteriological contamination in surface imperfections, joints and other relatively confined regions.
- the composition is preferably acidic, eg having a pH in the range of 3 to 5, eg a pH of about 4, as acidic compositions are found to have substantially enhanced effectiveness against Gram-negative (G-) micro-organisms as compared with neutral compositions.
- G- Gram-negative
- G+ Gram-positive
- the compositions are conveniently made acidic by use of relatively mild organic acid, such as acetic acid.
- composition may optionally include other ingredients such as one or more surfactants (for cleaning purposes) and/or one or more solvents.
- the surfactant is preferably alkoxylated, more preferably ethoxylated, eg being in the form of ethoxylated alcohols.
- the alcohol preferably has between 4 and 15 carbon atoms, is of straight or branched chain configuration, and has an HLB value (hydrophilic lipophilic balance) in the range 10 to 14, eg 12.
- surfactants are commercially available, one such material being the surfactant available under the trade name Imbentin 91-35, from Kolb, which is a nonionic C9-11 alcohol ethoxylate, having an average of 5 moles of ethylene oxide per mole of alcohol.
- Primary ethoxy sulphates may also be used.
- Mixtures of surfactants may be used if desired.
- the surfactant is preferably non-ionic or anionic, or a mixture of both types.
- Preferred anionic surfactants for this purpose include primary alkyl sulphates (PAS), preferably sodium dodecyl sulphate (SDS).
- PAS primary alkyl sulphates
- SDS sodium dodecyl sulphate
- Commercial mixtures containing a substantial proportion of dodecyl sulphate eg Empicol LX are espcially preferred.
- Dodecyl sulphate is a known protein denaturant, is good for cleaning protein off surfaces, and is biocidal.
- composition is preferably substantially free of cationic surfactant, but may include a minor amount of cationic germicide.
- Surfactant preferably constitutes an amount in the range 0.05 to 2.5% by weight of the total weight of the composition, typically 0.5% to 1.5% by weight, eg 0.7% by weight nonionic surfactant with an optional amount of up to 0.2% by weight of anionic surfactant.
- the solvent is preferably polar and is preferably a straight or branched chain C2 to C5 alcohol such as ethanol, butanol, isopropanol (propan-2-ol) (IPA), N-butoxy propan-2-ol (propylene glycol n-butyl ether), 2-butoxy ethanol (ethylene glycol monobutyl ether).
- IPA is the currently preferred solvent.
- Dihydric alcohol such as ethylene glycol
- water miscible ethers such as dimethoxyethane may also be used.
- Mixtures of solvents can be used if appropriate, eg mixtures of ethanol and N-butoxy propan-2-ol.
- Solvent is preferably present in an amount in the range 2 to 20% by weight of the total weight of the composition.
- the present invention thus provides a method of cleaning a surface and killing bacteria in biofilms on the surface, comprising applying to the surface a composition a dyestuff which is capable of photo-dynamic inactivation of micro-organisms, a surfactant and a solvent.
- composition may include a number of optional ingredients including the following:
- the composition is in the form of an isotropic, single phase composition and is of particular use as a germicide (possibly also with a cleaning effect) on hard surfaces, finding application in a wide range of contexts, including domestic applications, eg kitchen and bathroom surfaces including toilet bowls, in institutions such as schools, hospitals etc, and in commercial premises such as factories, offices, hotels etc.
- the composition is preferably formulated as a product intendfed for application by spraying and is conveniently packaged in a suitable container, eg having a hand operated trigger spray or an aerosol propellant dispenser.
- a suitable container eg having a hand operated trigger spray or an aerosol propellant dispenser.
- the container is preferably light-opaque.
- the methods of the invention involve applying to a surface to be treated in any convenient manner, eg by spraying from a suitable dispenser, wiping on with a carrier such as a cloth or sponge, or pouring from a container etc.
- a light source eg a white light source such as a quartz halogen lamp of fluorescent "daylight” source.
- the process would be an alternative to using dangerous germicidal radiation, for example from a low pressure mercury discharge lamp emitting resonance radiation at 254 nm. Such radiation is harmful to the unprotected eye.
- This would generally be followed by a rinsing step, if required, eg by wiping with a carrier, application of a stream of running water etc.
- Organisms were grown up by overnight incubation in nutrient broth at 37°C for bacteria (28°C for Ps. aeruginosa ) or SABS broth (SABS is Sabourand Dextrose Agar, with liquid medium in the case of SABS broth, from Oxoid Ltd) at 28°C for yeast. Cultures were isolated by vacuum filtration using a 0.45um Millipore filter and washed with quarter-strength Ringers solution before resuspension in Ringers solution (10ml).
- the organisms in suspension were enumerated by serial dilution and plating with nutrient agar (bacteria) or SABS agar (yeast) and the total viable count (TVC) expressed as the decadic logarithm of the number of colony-forming units (cfu) per ml.
- Aqueous solutions containing 100 ppm of dye were prepared. Aliquots (10ml) of each dye solution were sterilized in glass universal screw cap vials. Antibiotic assay discs (13mm from BDH) were also sterilized. All organisms were grown overnight in nutrient or SABS broth (10ml).
- SABS agar for the yeast For each micro-organism, two nutrient agar plates (SABS agar for the yeast) were seeded with the overnight culture (10ul) to give confluent growth over the whole plate. Using aseptic techniques, an antibiotic disc was dipped into the first dye solution and placed on the surface of a seeded agar plate. This was repeated with two other dye solutions to give three discs on duplicate plates.
- Results on agar for aqueous dye solutions of Rose Bengal, Erythrosin B and aluminium phthalocyanin sulphonate (APS) (100 ppm) at pH 7 after exposure to light for 180 minutes as described above are summarised in Table 1.
- the results are expressed as the difference (in millimetres) between the radius of the clear zone of inhibition (the area of no bacterial growth on the spread agar plate) and the radius of the disc.
- the higher the value the greater the baterial kill.
- the agar diffusion disc method ranked Rose Bengal as more effective than the structurally similar Erythrosin B. It is plausible to ascribe this ranking to a difference in the quantum yield for singlet oxygen formation. In methanol, the quantum yield for singlet oxygen formation is 0.76 for Rose Bengal compared to 0.6 for Erythrosin B. However, a number of other factors might also be expected to contribute to the observed differences such as the rate of dye diffusion or differences in dye binding to the agar gel or disc material.
- Sodium hypochlorite solution (0.125 %) was used as a positive control.
- Micro-organism, eg S. aureus , suspension (0.5ml) was added to aliquots (100 ml) of quarter-strength Ringers solution and the average cfu per ml determined (TVC). Aliquots (20ml) of these solutions were pipetted into sterile petri dishes and left at room temperature for 5 hours. The inoculum was then removed by pipette into a sterile bottle and the average cfu per ml remaining in suspension estimated. The number of organisms (as cfu) per square cm adherent to the Petri dish was calculated from the difference in the solution concentrations.
- one of the duplicate plates was overlaid with Tryptone Soya agar containing 1% glucose and 0.015% Neutral Red cooled to about 50°C.
- the other duplicate plate was stained with 0.01% Acridine Orange for 30 seconds, rinsed and examined microscopically (Nikon "Optiphot" microscope equipped with a 100x apochromat oil-immersion objective, 10x eyepiece and epifluorescence attachment with a B2-A combined filter/dichroic mirror block and super high pressure mercury lamp).
- the overlaid agar plates were incubated at 37°C for 48 hours, by which time colonies had grown out of the adherent bacteria which had not been killed.
- Nonionic surfactant (Imbentin C91-35, 14 percent) (sometimes referred to by the abbreviation AE, for alcohol ethoxylate)
- Anionic surfactant (Empicol LX, 14 percent) (sometimes referred to as PAS) pH 4 buffer (citric acid (0.1 M,307 ml) + dibasic sodium phosphate (0.2 M, 193 ml) pH 7 buffer (sodium dihydrogen orthophosphate (0.4M,468 ml) + disodium hydrogen orthophosphate dodecahydrate, (0.4M,732ml) Buffers pH 5, 6, 8, 9 were prepared as indicated in the CRC Handbook of Chemistry and Physics, 8 -36, 73rd Ed., CRC Press (1992-1993)
- Test solutions were made up in sterile plastic petri dishes to a depth of 5mm (30mls). A suspension of micro-organism (0.3ml) was added to each solution and gently mixed in. If Rose Bengal was to be included in the test solution it was added last to minimise light exposure. Solutions were either exposed on a light box, placed in the dark (conditions of reduced light exposure) or left on the bench. The average intensity at the surface of the light box diffuser was 4000 lux measured with a Megatron DA 10 light meter (from Megatron Ltd). After specified exposure times, surviving bacteria were enumerated as colony-forming units (cfu/ml) following incubation after serial dilution and plating onto agar. The decadic logarithm of the number of bacteria remaining (as colony-forming units per ml) was determined and compared to the number before exposure as log (start count) - log (final count). The higher the value, the greater the bacterial kill.
- Results obtained in similar manner for E. coli at pH 7 are shown graphically in the bar charts of Figure 4.
- PAS is used as an abbreviation for Empicol LX
- IPA is used as an abbreviation for isopropanol
- AE is an abbreviation for Imbentin C91-35. This figure represents averaged data for AE 0.7%, PAS 0.7%, IPA 10%.
- Examples 9, 10, 11 and 12 used the Gram positive organism S. aureus
- Examples 13 and 14 the Gram negative organism E. coli .
- Other reagents used are indicated in the examples. In all these Examples, samples were exposed for 20 minutes on a light box. The average intensity at the surface of the diffuser was 4000 lux measured with a Megatron DA10 light meter (from Megatron Ltd).
- Lialet 111 is the trade name of an ether sulphate formulation commercially available from Enichem, having an average chain length 11 with an average degree of ethoxylation of 3.
- the log (start) was 6.7. Results are given in Table 10.
- Rose Bengal adsorption was determined from the depletion in solution concentration. Concentrations were obtained spectroscopically from absorbances measured at the wavelength of maximum absorbance (ca. 549 nm) using a WPA Linton S110 spectrophotometer on supernatant liquors freed from microbes by centifugation.
- Example 2 The Lethal Effect of Rose Bengal and Light on Staphylococcus Aureus Attached to a Plastic Surface Solution Log (Ratio) Rose Bengal 4.7 Rose Bengal + Imbentin C91-35 + Ethanol 6.0 (Example 3) Organism Experiment Number Results from Agar Overlay Technique Control After Exposure S. aureus 1 Confluent growth No growth 2 Confluent growth No growth E. coli 1 Much growth 45 cfu 2 Confluent growth No growth K. pneumoniae 1 Confluent growth No growth 2 Confluent growth No growth P. aeruginosa 1 Much growth 5 cfu 2 Confluent growth No growth C.
- albicans 1 Confluent growth 5 cfu 2 Confluent growth 4 cfu (Example 4) Organism Gram Type Conditions of Exposure No Solvent With Ethanol pH 7 pH4 pH 7 pH4 S. aureus + 7.0 7.1 7.1 6.9 B. subtilis + 0.6 2.1 3.1 0.8 B. megaterium + 1.3 0.3 1.1 0.3 E. coli - 0.2 5.3 0.1 6.9 K. pneumoniae - 0.9 5.6 0 7.0 Ps. aeruginosa - 0 7.0 0 6.9 Enterobacter sp. - 1.1 7.3 0 7.4 C. albicans 0 5.7 0 5.7 Controls (No Rose Bengal) E.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Detergent Compositions (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB929215555A GB9215555D0 (en) | 1992-07-22 | 1992-07-22 | Improvements relating to cleaning compositions |
GB9215555 | 1992-07-22 | ||
GB9222813 | 1992-10-30 | ||
GB929222813A GB9222813D0 (en) | 1992-10-30 | 1992-10-30 | Cleaning compositions |
GB9304732 | 1993-03-09 | ||
GB939304732A GB9304732D0 (en) | 1993-03-09 | 1993-03-09 | Improvements in or relating to germicidal compositions |
PCT/GB1993/001478 WO1994002022A1 (en) | 1992-07-22 | 1993-07-14 | Improvements in or relating to germicidal compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0652709A1 EP0652709A1 (en) | 1995-05-17 |
EP0652709B1 true EP0652709B1 (en) | 1999-03-17 |
Family
ID=27266295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93916071A Expired - Lifetime EP0652709B1 (en) | 1992-07-22 | 1993-07-14 | Improvements in or relating to germicidal compositions |
Country Status (15)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8557298B2 (en) | 1998-08-06 | 2013-10-15 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
US8974363B2 (en) | 1997-12-11 | 2015-03-10 | Provectus Pharmatech, Inc. | Topical medicaments and methods for photodynamic treatment of disease |
WO2024200682A1 (en) * | 2023-03-31 | 2024-10-03 | Ondine International Ag | Photosensitizer compositions, devices, and methods of use for surface sanitization of processed food products |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679661A (en) * | 1995-07-25 | 1997-10-21 | The Procter & Gamble Company | Low hue photodisinfectants |
US6420455B1 (en) * | 1999-06-18 | 2002-07-16 | 3M Innovative Properties Company | Antimicrobial composition containing photosensitizers articles, and methods of use |
US6905672B2 (en) * | 1999-12-08 | 2005-06-14 | The Procter & Gamble Company | Compositions and methods to inhibit tartar and microbes using denture adhesive compositions with colorants |
FR2830189B1 (fr) | 2001-09-28 | 2004-10-01 | Oreal | Composition de teinture a effet eclaircissant pour fibres keratiniques humaines |
US7261744B2 (en) | 2002-12-24 | 2007-08-28 | L'oreal S.A. | Method for dyeing or coloring human keratin materials with lightening effect using a composition comprising at least one fluorescent compound and at least one optical brightener |
US7186278B2 (en) | 2003-04-01 | 2007-03-06 | L'oreal S.A. | Composition for dyeing human keratin materials, comprising at least one fluorescent dye and at least one compound comprising an acid functional group and processes therefor |
US7208018B2 (en) | 2003-04-01 | 2007-04-24 | L'oreal | Composition for dyeing human keratin materials, comprising at least one fluorescent dye and at least one associative polymer, process therefor and use thereof |
FR2853239B1 (fr) | 2003-04-01 | 2010-01-29 | Oreal | Utilisation de compositions comprenant un colorant fluorescent et un tensioactif amphotere ou non ionique particuliers pour colorer avec un effet eclaircissant des matieres keratiniques humaines |
US7250064B2 (en) | 2003-04-01 | 2007-07-31 | L'oreal S.A. | Dye composition comprising at least one fluorescent dye and a non-associative thickening polymer for human keratin materials, process therefor, and method thereof |
US7198650B2 (en) | 2003-04-01 | 2007-04-03 | L'oreal S.A. | Method of dyeing human keratin materials with a lightening effect with compositions comprising at least one fluorescent dye and at least one amphoteric or nonionic surfactant, composition thereof, process thereof, and device therefor |
US7204860B2 (en) | 2003-04-01 | 2007-04-17 | L'oreal | Composition for dyeing human keratin materials, comprising at least one fluorescent dye and at least one polyol, process therefor and use thereof |
US7147673B2 (en) | 2003-04-01 | 2006-12-12 | L'oreal S.A. | Composition for dyeing human keratin materials, comprising at least one fluorescent dye and at least one insoluble polyorganosiloxane conditioning polymer, process therefor and use thereof |
US7195650B2 (en) | 2003-04-01 | 2007-03-27 | L'oreal S.A. | Process for dyeing, with a lightening effect, human keratin fibers that have been permanently reshaped, using at least one composition comprising at least one fluorescent dye |
US7192454B2 (en) | 2003-04-01 | 2007-03-20 | L'oreal S.A. | Composition for dyeing human keratin materials, comprising a fluorescent dye and a particular sequestering agent, process therefor and use thereof |
US7150764B2 (en) | 2003-04-01 | 2006-12-19 | L'oreal S.A. | Composition for dyeing a human keratin material, comprising at least one fluorescent dye and at least one insoluble conditioning agent, process thereof, use thereof, and devices thereof |
US7303589B2 (en) | 2003-04-01 | 2007-12-04 | L'oreal S.A. | Process for dyeing human keratin fibers, having a lightening effect, comprising at least one fluorescent compound and compositions of the same |
US7195651B2 (en) | 2003-04-01 | 2007-03-27 | L'oreal S.A. | Cosmetic composition for dyeing human keratin materials, comprising at least one fluorescent dye and at least one cationic polymer, and a dyeing process therefor |
US20050059731A1 (en) * | 2003-09-16 | 2005-03-17 | Ceramoptec Industries, Inc. | Erythrosin-based antimicrobial photodynamic therapy compound and its use |
GB0525504D0 (en) | 2005-12-14 | 2006-01-25 | Bristol Myers Squibb Co | Antimicrobial composition |
US8673836B2 (en) * | 2007-03-20 | 2014-03-18 | The Procter & Gamble Company | Laundry detergent composition with a reactive dye |
US20100266716A1 (en) * | 2007-10-25 | 2010-10-21 | Olson Merle E | Natural Photodynamic Agents and their use |
DE102008020755A1 (de) * | 2008-04-18 | 2009-10-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Luft-, Wasser- und Oberflächenreinigung unter Nutzung des photodynamischen Effektes |
KR20110041507A (ko) | 2008-07-10 | 2011-04-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 점탄성 도광체 |
KR20110043732A (ko) | 2008-08-08 | 2011-04-27 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 광을 처리하기 위한 점탄성층을 갖는 도광체 |
GB0823265D0 (en) * | 2008-12-20 | 2009-01-28 | Convatec Technologies Inc | Antimicrobial Composition |
GB0901434D0 (en) * | 2009-01-29 | 2009-03-11 | Univ Strathclyde | Ballast water treatment system |
WO2010151563A1 (en) | 2009-06-25 | 2010-12-29 | 3M Innovative Properties Company | Light-activated antimicrobial article and method of use |
CN102481385B (zh) | 2009-06-30 | 2016-01-27 | 3M创新有限公司 | 光活化抗微生物制品及其使用方法 |
GB201020236D0 (en) | 2010-11-30 | 2011-01-12 | Convatec Technologies Inc | A composition for detecting biofilms on viable tissues |
JP2016507663A (ja) | 2012-12-20 | 2016-03-10 | コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc | 化学修飾セルロース系繊維の加工 |
CN111328952B (zh) * | 2020-03-03 | 2023-04-25 | 四川大学 | 一种酸性食品的光动力杀菌方法 |
KR20240150191A (ko) * | 2023-04-07 | 2024-10-15 | 삼성전자주식회사 | 조성물 및 이의 제조 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2387658A1 (fr) * | 1977-03-25 | 1978-11-17 | Ciba Geigy Ag | Procede pour combattre les microorganismes |
US4497741A (en) * | 1981-12-09 | 1985-02-05 | Ciba-Geigy Corporation | Water-soluble zinc and aluminium phthalocyanines |
FR2613626B1 (fr) * | 1987-04-07 | 1990-12-14 | Bbc Brown Boveri & Cie | Procede et dispositif de desinfection d'ustensiles |
-
1993
- 1993-07-14 DE DE69324015T patent/DE69324015T2/de not_active Expired - Fee Related
- 1993-07-14 HU HU9500176A patent/HUT70688A/hu unknown
- 1993-07-14 JP JP06504251A patent/JP3133336B2/ja not_active Expired - Fee Related
- 1993-07-14 EP EP93916071A patent/EP0652709B1/en not_active Expired - Lifetime
- 1993-07-14 AU AU45774/93A patent/AU4577493A/en not_active Abandoned
- 1993-07-14 KR KR1019950700238A patent/KR100252797B1/ko not_active Expired - Fee Related
- 1993-07-14 CZ CZ95145A patent/CZ14595A3/cs unknown
- 1993-07-14 ES ES93916071T patent/ES2130276T3/es not_active Expired - Lifetime
- 1993-07-14 SK SK64-95A patent/SK6495A3/sk unknown
- 1993-07-14 WO PCT/GB1993/001478 patent/WO1994002022A1/en active IP Right Grant
- 1993-07-14 PL PL93307168A patent/PL173758B1/pl unknown
- 1993-07-14 BR BR9306767A patent/BR9306767A/pt not_active IP Right Cessation
- 1993-07-14 CA CA002140896A patent/CA2140896A1/en not_active Abandoned
- 1993-07-15 TW TW082105640A patent/TW272114B/zh active
- 1993-07-22 CN CN93116562A patent/CN1086255A/zh active Pending
Non-Patent Citations (6)
Title |
---|
D. S. Dhaliwal et al., Lett. Appl. Microbiol., Vol. 15, 217 - 221 (1992). * |
J. T. Holah et al., Lett. Appl. Microbiol., Vol. 11, 255 - 259 (1990). * |
J. T. Patterson, J. Food Technol., Vol. 6, 63 - 72 (1971). * |
M. R. W. Brown & P. Gilbert, J. Appl. Bacteriol. Symp. Suppl., Vol. 74, 87S - 97S (1993). * |
P. Maris, Sci. Aliments., Vol. 12 (4), 721 - 728 (1992). * |
S. P. Gorman in: Soc. for Appl. Bacteriol. Techn. Ser., (S. P. Denyer & W. B. Hugo (eds.)), p. 271-295, Oxford, 1991. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8974363B2 (en) | 1997-12-11 | 2015-03-10 | Provectus Pharmatech, Inc. | Topical medicaments and methods for photodynamic treatment of disease |
US8557298B2 (en) | 1998-08-06 | 2013-10-15 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
WO2024200682A1 (en) * | 2023-03-31 | 2024-10-03 | Ondine International Ag | Photosensitizer compositions, devices, and methods of use for surface sanitization of processed food products |
Also Published As
Publication number | Publication date |
---|---|
EP0652709A1 (en) | 1995-05-17 |
CN1086255A (zh) | 1994-05-04 |
SK6495A3 (en) | 1995-07-11 |
ES2130276T3 (es) | 1999-07-01 |
DE69324015T2 (de) | 1999-08-05 |
KR950702386A (ko) | 1995-07-29 |
CZ14595A3 (en) | 1995-10-18 |
WO1994002022A1 (en) | 1994-02-03 |
PL173758B1 (pl) | 1998-04-30 |
PL307168A1 (en) | 1995-05-15 |
JPH07509236A (ja) | 1995-10-12 |
AU4577493A (en) | 1994-02-14 |
TW272114B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1996-03-11 |
HUT70688A (en) | 1995-10-30 |
HU9500176D0 (en) | 1995-03-28 |
CA2140896A1 (en) | 1994-01-23 |
JP3133336B2 (ja) | 2001-02-05 |
BR9306767A (pt) | 1998-12-08 |
DE69324015D1 (de) | 1999-04-22 |
KR100252797B1 (ko) | 2000-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0652709B1 (en) | Improvements in or relating to germicidal compositions | |
EP0631610B1 (en) | Improvements in or relating to cleaning compositions | |
US5863882A (en) | Cleaner and sanitizer formulation | |
US20170275572A1 (en) | Compositions for photodynamic control of infection | |
Rice et al. | Bacterial imaging and photodynamic inactivation using zinc (II)-dipicolylamine BODIPY conjugates | |
HU221137B1 (en) | Synergistic antimicrobial cleaning composition and method of treating surfaces using it | |
WO2012008499A1 (ja) | 抗菌剤 | |
EP0651048A2 (en) | Foaming antibacterial liquid formulation for cleaning kitchen surfaces | |
US20020040723A1 (en) | Photocatalytic compositions and methods | |
AU769623B2 (en) | Botanical oils as blooming agents in germicidal hard surface cleaning compositions | |
GB2336312A (en) | Aqueous concentrated liquid disinfectant | |
US6075002A (en) | Biphenyl based solvents in blooming type germicidal hard surface cleaners | |
GB2336375A (en) | Liquid disinfectant composition | |
BR102023025234A2 (pt) | Composição desinfetante para roupas de profissionais da saúde e estética | |
Marques Passos | An investigation of photodynamic inactivation of gram-positive and gram-negative bacteria for water disinfection using a cationic porphyrin | |
JPH06145008A (ja) | 工業用洗浄殺菌剤 | |
Pompermayer et al. | EFFECT OF HYPOCHLORITE ON MIXED CULTURES OF STAPHYLOCOCCUS AUREUS AND ESCHERICHIA COLI ADHERING TO POLYPROPYLENE SURFACES | |
CS238946B1 (cs) | Kapalný dezinfekční detergent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19960307 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990317 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990317 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990317 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69324015 Country of ref document: DE Date of ref document: 19990422 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2130276 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000621 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000627 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000629 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000713 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000721 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020329 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20020810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050714 |