EP0652297B1 - Iron-aluminium alloy and application of this alloy - Google Patents

Iron-aluminium alloy and application of this alloy Download PDF

Info

Publication number
EP0652297B1
EP0652297B1 EP93118045A EP93118045A EP0652297B1 EP 0652297 B1 EP0652297 B1 EP 0652297B1 EP 93118045 A EP93118045 A EP 93118045A EP 93118045 A EP93118045 A EP 93118045A EP 0652297 B1 EP0652297 B1 EP 0652297B1
Authority
EP
European Patent Office
Prior art keywords
alloy
iron
ppm
aluminum
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93118045A
Other languages
German (de)
French (fr)
Other versions
EP0652297A1 (en
Inventor
Mohamed Dr. Nazmy
Corrado Noseda
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP93118045A priority Critical patent/EP0652297B1/en
Priority to DE59309611T priority patent/DE59309611D1/en
Priority to AT93118045T priority patent/ATE180517T1/en
Priority to US08/174,352 priority patent/US5411702A/en
Priority to PL94305673A priority patent/PL305673A1/en
Priority to RU94040155A priority patent/RU2122044C1/en
Priority to KR1019940029070A priority patent/KR950014344A/en
Priority to JP27240494A priority patent/JP3517462B2/en
Priority to CN94118112A priority patent/CN1038051C/en
Publication of EP0652297A1 publication Critical patent/EP0652297A1/en
Application granted granted Critical
Publication of EP0652297B1 publication Critical patent/EP0652297B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • Iron-aluminum alloys can be subjected to high thermal loads exposed to oxidizing and / or corrosive effects Parts of thermal machines can be used. You are supposed to be there increasingly special steels and nickel-based superalloys replace.
  • the invention as set out in claim 1 lies based on the task of an iron-aluminum alloy develop, which develop at temperatures of more than 700 ° C characterized by good mechanical properties. Task of Invention is also a suitable use of this alloy.
  • the alloy according to the invention exhibits even at temperatures between 700 and 800 ° C still mechanical properties that their use in mechanically slightly stressed components enable.
  • the invention is distinguished Alloy due to excellent thermal shock resistance and can therefore be used to particular advantage in thermal cycling Share thermal systems, such as in particular Housing or housing part of a gas turbine or one Turbocharger or as a nozzle ring, especially for one Turbocharger.
  • the Alloy very inexpensive by casting or by casting and make rollers.
  • Another advantage of Alloy according to the invention is that its Components have only metals, which comparatively inexpensive and independent of strategic-political Influencing are available.
  • Alloy I (alloy according to a preferred embodiment of the invention): component At.% aluminum 16.00 chrome 5.00 niobium 1.00 Silicon 1.00 boron 3.53 titanium 1.51 carbon 300ppm zirconium 100ppm iron rest
  • Alloy II (state of the art alloy) component At%. Silicon 4.00 carbon 3.35 molybdenum 1.00 manganese 0.30 phosphorus 0.01 sulfur 0.05 iron rest
  • Alloy I was tested in an arc furnace under argon Shielding gas melted. The served as starting materials individual elements with a degree of purity of more than 99%. The melt became a cast body approximately 100 mm in diameter and cast about 100 mm high. The cast body was remelted under vacuum and also under vacuum in the form of round bars with a diameter of approx. 12 mm and approx. 70 mm Length, in the form of carrots with a minimum diameter of approx. 10 mm, a maximum diameter of approx. 16 mm and one Length of about 65 mm or in the form of disc-shaped discs with a disk diameter of 80 mm, a disk thickness up to 14 mm and a radius at the edge of the disc of approx. 1 mm shed.
  • the discus-shaped Discs along the disc axis each with a hole introduced a diameter of 19.5 mm.
  • From the round bars and carrots were made specimens for tensile tests.
  • the disks were used to determine the thermal shock resistance.
  • Appropriately sized test specimens for determining the mechanical strength and thermal shock resistance have been commercially available on a large scale Alloy II used as material for gas turbine housings and a related alloy with a 25% lower alloy Share of silicon and a 40% lower share Made of molybdenum.
  • the thermal shock resistance according to Glenny was determined with the help of the disc-shaped discs. Two disks per alloy were cyclically heated to 650 ° C in a fluid bed and then cooled to 200 C with compressed air. After a certain number of such heating and cooling cycles, the number of cracks possibly forming at the edge of the panes with a crack length greater than 2 mm was then counted. The total number of cracks occurring on both disks as a function of the number of cycles is given below for alloy I according to the invention and for the two alloys according to the prior art.
  • Alloy I invention
  • Alloy II further alloy (State of the art) 140 0 0 0 240 0 2nd 1 340 0 2nd 4th 540 0 4th 4th 740 0 4th 8th
  • the alloy according to the invention comparably outperforms usable alloys according to the prior art not only in terms of mechanical strength at temperatures higher 700 ° C, but also in terms of thermal shock resistance.
  • the alloy according to the invention can therefore with particular Advantage as a material for components of thermal systems are used, which at temperatures between 700 ° C and 800 ° C still have a relatively high mechanical strength, and which, like gas turbine housings, have strong temperature changes subject to.
  • niobium By adding 0.1 to 2 at% of niobium, the hardness and the Strength of the alloy according to the invention increased. Beside or Instead of niobium, tungsten and / or tantalum can also be used Proportion of 0.1 to 2 at% can be added.
  • a proportion of 0.1 to 2 at% silicon improves the Castability of the alloy according to the invention and acts favorable for their resistance to oxidation and corrosion. Silicon also increases hardness.
  • the thermal shock, oxidation and corrosion resistance of the alloy according to the invention is considerably improved. This is primarily due to the fact that finely divided titanium diboride TiB 2 then forms in the alloy.
  • a protective layer predominantly containing aluminum oxides forms on the surface of the alloy according to the invention.
  • the titanium diboride phase contributes to a substantial stabilization of this protective layer by the titanium diboride phase engaging in the protective layer, for example in the form of acicular crystallites from the alloy, and thereby causing the protective layer to adhere particularly well to the underlying alloy.
  • the proportion of boron should not be more than 5 at% and that of titanium should not be more than 2 at%, since otherwise too much titanium diboride will form and the alloy will become brittle. If the proportion of boron is below 0.1 at% and that of titanium below 0.01 at%, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention deteriorate considerably.

Abstract

The iron-aluminum alloy comprises the following constituents in atom percent: -12-18 aluminum -0.1-10 chromium -0.1-2 niobium -0.1-2 silicon -0.1-5 boron -0.01-2 titanium -100-500 ppm carbon -50-200 ppm zirconium - remainder iron. - This alloy is distinguished by high thermal-shock resistance and, at temperatures of 800 DEG C., still has comparatively good mechanical properties. The alloy can be used advantageously in components such as, for example, casings of gas turbines, which, with comparatively low mechanical loading, are subject to frequent thermal cycling.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Eisen-Aluminium-Legierungen können in thermisch hoch belasteten und oxidierenden und/oder korrodierenden Wirkungen ausgesetzten Teilen thermischer Maschinen verwendet werden. Sie sollen dort in zunehmendem Masse Spezialstähle sowie Nickelbasis-Superlegierungen ersetzen.Iron-aluminum alloys can be subjected to high thermal loads exposed to oxidizing and / or corrosive effects Parts of thermal machines can be used. You are supposed to be there increasingly special steels and nickel-based superalloys replace.

STAND DER TECHNIKSTATE OF THE ART

Im Literaturaufsatz "Acceptable Aluminium Additions for Minimal Environmental Effect in Iron-Aluminium Alloys", Mat. Res. Soc. Symp. Proc. Vol. 288, S.971-976, beschreiben V.K.Sikka et al. eine Eisen-Aluminium-Legierung mit einem Anteil von ca. 16 At% Aluminium und ca. 5 At% Chrom, welche gegebenenfalls ca. 0,1 At% Kohlenstoff und/oder Zirkonium und/oder 1 at% Molybdän enthält. Die bekannte Legierung weist bei Raumtemperatur gegenüber Eisen-Aluminium-Legierungen mit einem Aluminiumanteil von 22 bis 28 At% eine wesentlich höhere Duktilität auf. Bei einer Temperatur von 700°C ist die Zugfestigkeit dieser Legierung mit ca. 100 MPa relativ klein. Aus der Legierung hergestellte Bauteile sollten daher nicht bei Temperaturen oberhalb 700°C verwendet werden. In the article "Acceptable Aluminum Additions for Minimal Environmental Effect in Iron-Aluminum Alloys ", Mat. Res. Soc. Symp. Proc. Vol. 288, pp. 971-976, describe V.K. Sikka et al. an iron-aluminum alloy with a share of approx. 16 at% Aluminum and approx. 5 at% chromium, which may approx. 0.1 At% carbon and / or zirconium and / or 1 at% molybdenum contains. The known alloy exhibits at room temperature compared to iron-aluminum alloys with an aluminum content from 22 to 28 at% a much higher ductility. At a temperature of 700 ° C is the tensile strength of this Alloy relatively small with approx. 100 MPa. Made of the alloy Manufactured components should therefore not at temperatures above 700 ° C.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, eine Eisen-Aluminium-Legierung zu entwickeln, welche sich bei Temperaturen von mehr als 700°C durch gute mechanische Eigenschaften auszeichnet. Aufgabe der Erfindung ist auch eine geeignete Verwendung dieser Legierung.The invention as set out in claim 1 lies based on the task of an iron-aluminum alloy develop, which develop at temperatures of more than 700 ° C characterized by good mechanical properties. Task of Invention is also a suitable use of this alloy.

Die erfindungsgemässe Legierung weist selbst bei Temperaturen zwischen 700 und 800°C noch mechanische Eigenschaften auf, die deren Einsatz in mechanisch geringfügig belasten Bauteilen ermöglichen. Zugleich zeichnet sich die erfindungsgemässe Legierung durch eine ausgezeichnete Thermoschockbeständigkeit aus und kann daher mit besonderem Vorteil in temperaturwechselbelasteten Teilen thermischer Anlagen, wie inbesondere als Gehäuse oder Gehäuseteil einer Gasturbine oder eines Turboladers oder als Düsenring, insbesondere für einen Turbolader, eingesetzt werden. Darüber hinaus lässt sich die Legierung sehr kostengünstig durch Giessen oder durch Giessen und Walzen herstellen. Ein weiterer Vorteil der erfindungsgemässen Legierung besteht darin, dass ihre Bestandteile ausschliesslich Metalle aufweisen, welche vergleichsweise preiswert und unabhängig von strategischpolitischer Beeinflussung verfügbar sind.The alloy according to the invention exhibits even at temperatures between 700 and 800 ° C still mechanical properties that their use in mechanically slightly stressed components enable. At the same time, the invention is distinguished Alloy due to excellent thermal shock resistance and can therefore be used to particular advantage in thermal cycling Share thermal systems, such as in particular Housing or housing part of a gas turbine or one Turbocharger or as a nozzle ring, especially for one Turbocharger. In addition, the Alloy very inexpensive by casting or by casting and make rollers. Another advantage of Alloy according to the invention is that its Components have only metals, which comparatively inexpensive and independent of strategic-political Influencing are available.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Die Erfindung wird nachfolgend anhand eines in einer Figur näher erläuterten Ausführungsbeispiele beschrieben.The invention is described below with reference to a figure described exemplary embodiments.

Hierbei zeigt die einzige Figur ein Diagramm, in dem die Zugfestigkeit UTS [MPa] einer Legierung I nach der Erfindung und einer Legierungen II nach dem Stand der Technik in Abhängigkeit von der Temperatur T [°C ] dargestellt ist. Here, the only figure shows a diagram in which the Tensile strength UTS [MPa] of an alloy I according to the invention and an alloy II according to the prior art in Dependence on the temperature T [° C] is shown.

Die in der Figur angegebenen Legierungen I und II weisen die folgenden Zusammensetzungen auf:Alloys I and II shown in the figure have the following compositions:

Legierung I (Legierung gemäss einem bevorzugten Ausführungsbeispiel der Erfindung): Bestandteil At.% Aluminium 16,00 Chrom 5,00 Niob 1,00 Silicium 1,00 Bor 3,53 Titan 1,51 Kohlenstoff 300ppm Zirkonium 100ppm Eisen Rest Alloy I (alloy according to a preferred embodiment of the invention): component At.% aluminum 16.00 chrome 5.00 niobium 1.00 Silicon 1.00 boron 3.53 titanium 1.51 carbon 300ppm zirconium 100ppm iron rest

Legierung II (Legierung nach dem Stand der Technik) Bestandteil At%. Silicium 4,00 Kohlenstoff 3,35 Molybdän 1,00 Mangan 0,30 Phosphor 0,01 Schwefel 0,05 Eisen Rest Alloy II (state of the art alloy) component At%. Silicon 4.00 carbon 3.35 molybdenum 1.00 manganese 0.30 phosphorus 0.01 sulfur 0.05 iron rest

Die Legierung I wurde in einem Lichtbogenofen unter Argon als Schutzgas erschmolzen. Als Ausgangsmaterialien dienten die einzelnen Elemente mit einem Reinheitsgrad von mehr als 99 %. Die Schmelze wurde zu einem Gusskörper von ca. 100 mm Durchmesser und ca. 100 mm Höhe abgegossen. Der Gusskörper wurde unter Vakuum wieder aufgeschmolzen und ebenfalls unter Vakuum in Form von Rundstäben mit ca. 12 mm Durchmesser und ca. 70 mm Länge, in Form von Karotten mit einem minimalen Durchmesser von ca. 10 mm, einem maximalen Durchmesser von ca. 16 mm und einer Länge von ca. 65 mm oder in Form von diskusförmigen Scheiben mit einem Scheibendurchmesser von 80 mm, einer Scheibendicke bis zu 14 mm und einem Radius am Scheibenrand von ca.1 mm vergossen. In einem weiteren Schritt wurde in die diskusförmigen Scheiben entlang der Scheibenachse jeweils eine Bohrung mit einem Durchmesser von 19,5 mm eingebracht. Aus den Rundstäben und Karotten wurden Probekörper für Zugversuche hergestellt. Die Scheiben dienten der Bestimmung der Thermoschockbeständigkeit. Entsprechend bemessene Probekörper zur Bestimmung der mechanischen Festigkeit und der Thermoschockbeständigkeit wurden aus der kommerziell erhältlichen und in grossem Umfang als Werkstoff für Gasturbinengehäuse eingesetzten Legierung II und einer verwandten Legierung mit einem um ca. 25% geringeren Anteil an Silicium und einem um ca. 40% geringeren Anteil an Molybdän hergestellt.Alloy I was tested in an arc furnace under argon Shielding gas melted. The served as starting materials individual elements with a degree of purity of more than 99%. The melt became a cast body approximately 100 mm in diameter and cast about 100 mm high. The cast body was remelted under vacuum and also under vacuum in the form of round bars with a diameter of approx. 12 mm and approx. 70 mm Length, in the form of carrots with a minimum diameter of approx. 10 mm, a maximum diameter of approx. 16 mm and one Length of about 65 mm or in the form of disc-shaped discs with a disk diameter of 80 mm, a disk thickness up to 14 mm and a radius at the edge of the disc of approx. 1 mm shed. In a further step, the discus-shaped Discs along the disc axis each with a hole introduced a diameter of 19.5 mm. From the round bars and carrots were made specimens for tensile tests. The disks were used to determine the thermal shock resistance. Appropriately sized test specimens for determining the mechanical strength and thermal shock resistance have been commercially available on a large scale Alloy II used as material for gas turbine housings and a related alloy with a 25% lower alloy Share of silicon and a 40% lower share Made of molybdenum.

Die Zugversuche wurden in Abhängigkeit von der Temperatur durchgeführt. Hieraus ergab sich für die erfindungsgemässe Legierung I eine Zugfestigkeit, welche bei einer Temperatur von 800°C mit ca. 100 MPa erheblich höher ist als diejenige der Legierung II nach dem Stand der Technik. Entsprechendes gilt auch für die in der Figur nicht dargestellte Legierung nach dem Stand der Technik mit reduzierten Silicium- und Molybdänanteilen.The tensile tests were made depending on the temperature carried out. This resulted in the inventive Alloy I has a tensile strength, which at a temperature of 800 ° C with approx. 100 MPa is considerably higher than that of Alloy II according to the prior art. The same applies also for the alloy not shown in the figure after the State of the art with reduced silicon and molybdenum contents.

Mit Hilfe der diskusförmigen Scheiben wurde die Thermoschockbeständigkeit nach Glenny ermittelt. Je zwei Scheiben pro Legierung wurden zyklisch jeweils in einem Fliessbett auf 650°C aufgeheizt und danach mit Pressluft auf 200 C abgekühlt. Nach einer bestimmten Anzahl solcher Aufheiz- und Abkühlzyklen wurde sodann die Anzahl von sich möglicherweise am Rand der Scheiben bildenden Rissen mit einer Risslänge grösser 2 mm gezählt. Die aufsummierte Anzahl der an beiden Scheiben auftretenden Risse in Abhängigkeit von der Zyklenzahl ist nachfolgend für die erfindungsgemässe Legierung I sowie die beiden Legierungen nach dem Stand der Technik angegeben. Zyklenzahl Anzahl Risse grösser 2 mm Legierung I (Erfindung) Legierung II weitere Legierung (Stand der Technik) 140 0 0 0 240 0 2 1 340 0 2 4 540 0 4 4 740 0 4 8 The thermal shock resistance according to Glenny was determined with the help of the disc-shaped discs. Two disks per alloy were cyclically heated to 650 ° C in a fluid bed and then cooled to 200 C with compressed air. After a certain number of such heating and cooling cycles, the number of cracks possibly forming at the edge of the panes with a crack length greater than 2 mm was then counted. The total number of cracks occurring on both disks as a function of the number of cycles is given below for alloy I according to the invention and for the two alloys according to the prior art. Number of cycles Number of cracks larger than 2 mm Alloy I (invention) Alloy II further alloy (State of the art) 140 0 0 0 240 0 2nd 1 340 0 2nd 4th 540 0 4th 4th 740 0 4th 8th

Hieraus ist ersichtlich, dass bei den üblicherweise als Werkstoff für Gasturbinengehäuse verwendeten Legierungen nach dem Stand der Technik bereits nach 240 Zyklen unerwünschte Risse auftraten, wohingegen die Legierung nach der Erfindung selbst nach 740 Zyklen noch rissfrei blieb.From this it can be seen that in the case of the usually as Alloys used for gas turbine casings the state of the art undesirable after only 240 cycles Cracks occurred, whereas the alloy according to the invention remained crack-free even after 740 cycles.

Die Legierung nach der Erfindung übertrifft vergleichbar verwendbare Legierungen nach dem Stand der Technik nicht nur hinsichtlich der mechanischen Festigkeit bei Temperaturen höher 700°C, sondern auch hinsichtlich der Thermoschockbeständigkeit. Die erfindungsgemässe Legierung kann daher mit besonderem Vorteil als Werkstoff für Bauteile von thermischen Anlagen verwendet werden, welche bei Temperaturen zwischen 700°C und 800°C noch eine relativ hohe mechanische Festigkeit aufweisen, und welche wie Gasturbinengehäuse starken Temperaturwechselbelastungen unterliegen.The alloy according to the invention comparably outperforms usable alloys according to the prior art not only in terms of mechanical strength at temperatures higher 700 ° C, but also in terms of thermal shock resistance. The alloy according to the invention can therefore with particular Advantage as a material for components of thermal systems are used, which at temperatures between 700 ° C and 800 ° C still have a relatively high mechanical strength, and which, like gas turbine housings, have strong temperature changes subject to.

Gute Festigkeitseigenschaften bei Temperaturen zwischen 700 und 800°C und eine hohe Thermoschockbeständigkeit weisen erfindungsgemäss ausgeführte Legierung dann auf, wenn der Aluminiumgehalt mindestens 12 und höchstens 18 At% beträgt. Sinkt der Aluminiumgehalt unter 12 At%, so verschlechtern sich die Oxidations-, die Korrosions- und die Thermoschockbeständigkeit der erfindungsgemässen Legierung. Ist der Aluminiumgehalt grösser 18 At%, so versprödet die Legierung zunehmend. Good strength properties at temperatures between 700 and 800 ° C and high thermal shock resistance Alloy designed according to the invention when the Aluminum content is at least 12 and at most 18 at%. If the aluminum content drops below 12 at%, it deteriorates resistance to oxidation, corrosion and thermal shock the alloy according to the invention. Is the Aluminum content greater than 18 at%, the alloy becomes brittle increasingly.

Durch Zulegieren von 0,1 bis 10 At% Chrom wird die Thermoschock-, die Oxidations- und die Korrosionsbeständigkeit weiter erhöht. Zudem wird durch Chrom die Duktilität verbessert. Zugaben von mehr als 10 At.-% Cr verschlechtern jedoch im allgemeinen die mechanischen Eigenschaften wieder.By adding 0.1 to 10 at% chromium, the Resistance to thermal shock, oxidation and corrosion further increased. Chromium also improves ductility improved. Additions of more than 10 at.% Cr deteriorate however, generally the mechanical properties again.

Durch Zulegieren von 0,1 bis 2 At% Niob wird die Härte und die Festigkeit der erfindungsgemässen Legierung erhöht. Neben oder anstelle von Niob können auch Wolfram und/oder Tantal mit einem Anteil von 0,1 bis 2 At% zulegiert werden.By adding 0.1 to 2 at% of niobium, the hardness and the Strength of the alloy according to the invention increased. Beside or Instead of niobium, tungsten and / or tantalum can also be used Proportion of 0.1 to 2 at% can be added.

Ein Anteil an 0,1 bis 2 At% Silicium verbessert die Giessbarkeit der erfindungsgemässen Legierung und wirkt sich günstig auf deren Oxidations- und Korrosionsbeständigkeit aus. Zudem wirkt Silicium härtesteigernd.A proportion of 0.1 to 2 at% silicon improves the Castability of the alloy according to the invention and acts favorable for their resistance to oxidation and corrosion. Silicon also increases hardness.

Durch Zulegieren von 0,1 bis 5 At% Bor und 0,01 bis 2 At% Titan wird die Thermoschock-, die Oxidations- und Korrosionsbeständigkeit der erfindungsgemässen Legierung ganz erheblich verbessert. Dies ist vor allem dadurch bedingt, dass sich dann in der Legierung fein verteiltes Titandiborid TiB2 bildet. Bei hohen Temperaturen und unter oxidierenden und/oder korrodierenden Bedingungen bildet sich auf der Oberfläche der erfindungsgemässen Legierung eine überwiegend Aluminiumoxide enthaltende Schutzschicht aus. Die Titandiborid-Phase trägt zu einer wesentlichen Stabilisierung dieser Schutzschicht bei, indem die Titandiborid-Phase etwa in Form nadelförmiger Kristallite aus der Legierung in die Schutzschicht eingreift und dadurch eine besonders gute Haftung der Schutzschicht auf der darunterliegenden Legierung bewirkt. Der Anteil an Bor sollte nicht mehr als 5 At% und derjenige von Titan nicht mehr als 2 At% betragen, da sich andernfalls zuviel Titandiborid bildet und die Legierung versprödet. Liegt der Boranteil unter 0,1 At% und derjenige von Titan unter 0,01 At%, so verschlechtern sich die Thermoschock-, die Oxidations- und die Korrosionsbeständigkeit der erfindungsgemässen Legierung ganz erheblich. By alloying 0.1 to 5 at% boron and 0.01 to 2 at% titanium, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention is considerably improved. This is primarily due to the fact that finely divided titanium diboride TiB 2 then forms in the alloy. At high temperatures and under oxidizing and / or corrosive conditions, a protective layer predominantly containing aluminum oxides forms on the surface of the alloy according to the invention. The titanium diboride phase contributes to a substantial stabilization of this protective layer by the titanium diboride phase engaging in the protective layer, for example in the form of acicular crystallites from the alloy, and thereby causing the protective layer to adhere particularly well to the underlying alloy. The proportion of boron should not be more than 5 at% and that of titanium should not be more than 2 at%, since otherwise too much titanium diboride will form and the alloy will become brittle. If the proportion of boron is below 0.1 at% and that of titanium below 0.01 at%, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention deteriorate considerably.

Eine geringfügige Erhöhung der mechanischen Festigkeit und zugleich eine erhebliche Verbesserung der Schweissbarkeit wird durch Zulegieren von 100 bis 500 ppm Kohlenstoff und 50 bis 200 ppm Zirkonium erreicht.A slight increase in mechanical strength and at the same time a significant improvement in weldability by alloying 100 to 500 ppm carbon and 50 to 200 ppm zirconium reached.

Besonders gute Werte der mechanischen Festigkeit und der Thermoschockbeständigkeit weisen Legierungen der folgenden Zusammensetzung auf:

  • 14 - 16 Aluminium
  • 0,5 - 1,5 Niob
  • 4 - 6 Chrom
  • 0,5 - 1,5 Silicium
  • 3 - 4 Bor
  • 1 - 2 Titan
  • ca. 300 ppm Kohlenstoff
  • ca. 100 ppm Zirkonium
       Rest Eisen.
  • Alloys with the following composition have particularly good values of mechanical strength and thermal shock resistance:
  • 14 - 16 aluminum
  • 0.5 - 1.5 niobium
  • 4 - 6 chrome
  • 0.5-1.5 silicon
  • 3 - 4 boron
  • 1 - 2 titanium
  • approx. 300 ppm carbon
  • approx. 100 ppm zirconium
    Rest of iron.
  • Claims (4)

    1. Alloy on the basis of iron and aluminium, characterized in that it comprises the following constituents in atom per cent:
      12 - 18 aluminium
      0.1 - 10 chromium
      0.1 - 2 niobium
      0.1 - 2 silicon
      0.1 - 5 boron
      0.01 - 2 titanium
      100 - 500 ppm carbon
      50 - 200 ppm zirconium
         remainder iron.
    2. Alloy according to Claim 1, characterized in that it comprises the following constituents:
      14 - 16 aluminium
      0.5 - 1.5 niobium
      4 - 6 chromium
      0.5 - 1.5 silicon
      3 - 4 boron
      1 - 2 titanium
      approximately 300 ppm carbon
      approximately 100 ppm zirconium
         remainder iron.
    3. Use of the alloy according to Claim 1 as a thermal-shock resistant material.
    4. Use according to Claim 3, characterized in that the material serves to form a component carrying hot gas, in particular the casing of a gas turbine.
    EP93118045A 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy Expired - Lifetime EP0652297B1 (en)

    Priority Applications (9)

    Application Number Priority Date Filing Date Title
    EP93118045A EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy
    DE59309611T DE59309611D1 (en) 1993-11-08 1993-11-08 Iron-aluminum alloy and use of this alloy
    AT93118045T ATE180517T1 (en) 1993-11-08 1993-11-08 IRON-ALUMINUM ALLOY AND USE OF THIS ALLOY
    US08/174,352 US5411702A (en) 1993-11-08 1993-12-28 Iron-aluminum alloy for use as thermal-shock resistance material
    PL94305673A PL305673A1 (en) 1993-11-08 1994-11-02 Fe-al alloy
    RU94040155A RU2122044C1 (en) 1993-11-08 1994-11-04 Alloy containing iron and aluminium
    KR1019940029070A KR950014344A (en) 1993-11-08 1994-11-07 Iron-Aluminum Alloys and Their Uses
    JP27240494A JP3517462B2 (en) 1993-11-08 1994-11-07 Iron-aluminum alloys and their uses
    CN94118112A CN1038051C (en) 1993-11-08 1994-11-08 Iron-aluminum alloy and use of said alloy

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP93118045A EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy

    Publications (2)

    Publication Number Publication Date
    EP0652297A1 EP0652297A1 (en) 1995-05-10
    EP0652297B1 true EP0652297B1 (en) 1999-05-26

    Family

    ID=8213403

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93118045A Expired - Lifetime EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy

    Country Status (9)

    Country Link
    US (1) US5411702A (en)
    EP (1) EP0652297B1 (en)
    JP (1) JP3517462B2 (en)
    KR (1) KR950014344A (en)
    CN (1) CN1038051C (en)
    AT (1) ATE180517T1 (en)
    DE (1) DE59309611D1 (en)
    PL (1) PL305673A1 (en)
    RU (1) RU2122044C1 (en)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6436163B1 (en) * 1994-05-23 2002-08-20 Pall Corporation Metal filter for high temperature applications
    DE19603515C1 (en) * 1996-02-01 1996-12-12 Castolin Sa Spraying material used to form corrosive-resistant coating
    DE19753876A1 (en) * 1997-12-05 1999-06-10 Asea Brown Boveri Iron aluminide coating and method of applying an iron aluminide coating
    US6114058A (en) * 1998-05-26 2000-09-05 Siemens Westinghouse Power Corporation Iron aluminide alloy container for solid oxide fuel cells
    US7754342B2 (en) * 2005-12-19 2010-07-13 General Electric Company Strain tolerant corrosion protecting coating and spray method of application
    DE102009020922A1 (en) 2009-05-12 2010-11-18 Christoph Henrik Sterzel Use of liquid sulfur containing hydrogen sulfide and polysulfane or chlorine, as heat transfer- and heat storage liquid for transporting and storing of thermal energy, preferably in solar thermal power plants
    EP2239349A1 (en) * 2009-04-10 2010-10-13 Schüttenhelm, Martin Exhaust manifold or turbocahrger housing made of a FeAl steel alloy
    MX2012007394A (en) * 2010-01-05 2012-07-23 Basf Se Heat transfer and heat storage fluids for extremely high temperatures, based on polysulfides.
    CN103534458A (en) * 2011-06-07 2014-01-22 博格华纳公司 Turbocharger and component therefor
    CN105624535A (en) * 2015-12-09 2016-06-01 上海大学 Preparation method for Fe-Al-Mn-Si alloy

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA648141A (en) * 1962-09-04 H. Schramm Jacob Aluminum-chromium-iron resistance alloys
    CA648140A (en) * 1962-09-04 Westinghouse Electric Corporation Grain-refined aluminum-iron alloys
    US2387980A (en) * 1945-02-17 1945-10-30 Hugh S Cooper Electrical resistance alloys
    US3026197A (en) * 1959-02-20 1962-03-20 Westinghouse Electric Corp Grain-refined aluminum-iron alloys
    JPS4841918A (en) * 1971-10-04 1973-06-19
    CA1298492C (en) * 1986-04-30 1992-04-07 Haruo Shimada Seawater-corrosion-resistant non-magnetic steel materials
    US4844865A (en) * 1986-12-02 1989-07-04 Nippon Steel Corporation Seawater-corrosion-resistant non-magnetic steel materials

    Also Published As

    Publication number Publication date
    ATE180517T1 (en) 1999-06-15
    CN1038051C (en) 1998-04-15
    PL305673A1 (en) 1995-05-15
    CN1106467A (en) 1995-08-09
    EP0652297A1 (en) 1995-05-10
    DE59309611D1 (en) 1999-07-01
    JP3517462B2 (en) 2004-04-12
    US5411702A (en) 1995-05-02
    KR950014344A (en) 1995-06-15
    JPH07238353A (en) 1995-09-12
    RU2122044C1 (en) 1998-11-20
    RU94040155A (en) 1997-02-27

    Similar Documents

    Publication Publication Date Title
    EP0486489B1 (en) High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
    AU603537B2 (en) High modulus al alloys
    DE1238672B (en) Use of a nickel-cobalt-chromium alloy for castings that are resistant to creep at high temperatures
    EP0652297B1 (en) Iron-aluminium alloy and application of this alloy
    DE102012011162A1 (en) Nickel-chromium alloy with good processability, creep resistance and corrosion resistance
    DE102018107248A1 (en) USE OF NICKEL CHROME IRON ALUMINUM ALLOY
    EP1029100B1 (en) Product with a layer system for protecting against a hot aggressive gas
    EP0581204A1 (en) Heat-resistant material
    DE3306824A1 (en) OXIDATION RESISTANT NICKEL ALLOY
    DE3013076C2 (en) Blade for an adjustable turbine inlet guide grille
    EP1589122B1 (en) Coating containing NiAl beta Phases
    EP0570072B1 (en) Method of producing a chromium-base alloy
    DE2161954A1 (en) FERRITIC HEAT RESISTANT STEEL
    DE2456857B2 (en) Use of a nickel-based alloy for uncoated components in the hot gas part of turbines
    EP0709478B1 (en) Alloy based of silicides and further containing chromium and molybdenum
    EP0609682B1 (en) Oxidation- and corrosion-resistant alloy based on doped iron aluminide and application of this alloy
    EP0018818A1 (en) Precipitation hardening copper alloys
    CA1101699A (en) High-strength, high-expansion manganese alloy
    DE3630321C2 (en)
    EP0172852A1 (en) High temperature resistant molybdenum alloy.
    DE1239857B (en) Use of an austenitic steel alloy for forgeable components
    DE19941228B4 (en) Iron aluminide coating and its use
    DE2712692A1 (en) NICKEL-CHROME ALLOY
    DE1928508C (en) Use of an alloy that is resistant to oxidation at high temperatures as a protective coating
    DE3428316A1 (en) Powder-metallurgical product made from a nickel-based superalloy

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

    17P Request for examination filed

    Effective date: 19951006

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ASEA BROWN BOVERI AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980717

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990526

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990526

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19990526

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990526

    REF Corresponds to:

    Ref document number: 180517

    Country of ref document: AT

    Date of ref document: 19990615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59309611

    Country of ref document: DE

    Date of ref document: 19990701

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990826

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990826

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990811

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: ASEA BROWN BOVERI A.G.

    Effective date: 19991130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20081121

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081113

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081117

    Year of fee payment: 16

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091108

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100730

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091108