EP0652297A1 - Iron-aluminium alloy and application of this alloy - Google Patents

Iron-aluminium alloy and application of this alloy Download PDF

Info

Publication number
EP0652297A1
EP0652297A1 EP93118045A EP93118045A EP0652297A1 EP 0652297 A1 EP0652297 A1 EP 0652297A1 EP 93118045 A EP93118045 A EP 93118045A EP 93118045 A EP93118045 A EP 93118045A EP 0652297 A1 EP0652297 A1 EP 0652297A1
Authority
EP
European Patent Office
Prior art keywords
alloy
iron
aluminum
approx
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93118045A
Other languages
German (de)
French (fr)
Other versions
EP0652297B1 (en
Inventor
Mohamed Dr. Nazmy
Corrado Noseda
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Priority to DE59309611T priority Critical patent/DE59309611D1/en
Priority to AT93118045T priority patent/ATE180517T1/en
Priority to EP93118045A priority patent/EP0652297B1/en
Priority to US08/174,352 priority patent/US5411702A/en
Priority to PL94305673A priority patent/PL305673A1/en
Priority to RU94040155A priority patent/RU2122044C1/en
Priority to KR1019940029070A priority patent/KR950014344A/en
Priority to JP27240494A priority patent/JP3517462B2/en
Priority to CN94118112A priority patent/CN1038051C/en
Publication of EP0652297A1 publication Critical patent/EP0652297A1/en
Application granted granted Critical
Publication of EP0652297B1 publication Critical patent/EP0652297B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • Iron-aluminum alloys can be used in parts of thermal machines that are subjected to high thermal loads and are subject to oxidizing and / or corrosive effects. There, they are expected to increasingly replace special steels and nickel-based superalloys.
  • the invention is based on the object of developing an iron-aluminum alloy which is distinguished by good mechanical properties at temperatures of more than 700 ° C.
  • the object of the invention is also a suitable use of this alloy.
  • the alloy according to the invention still has mechanical properties which enable it to be used in components which are subject to slight mechanical loads.
  • the alloy according to the invention is characterized by excellent thermal shock resistance and can therefore be used with particular advantage in parts of thermal systems subject to thermal shock, such as in particular as a housing or housing part of a gas turbine or a turbocharger or as a nozzle ring, in particular for a turbocharger.
  • the alloy can be produced very cheaply by casting or by casting and rolling.
  • Another advantage of the alloy according to the invention is that its constituents exclusively contain metals, which are comparatively inexpensive and are available regardless of strategic-political influence.
  • the sole figure shows a diagram in which the tensile strength UTS [MPa] of an alloy I according to the invention and an alloy II according to the prior art is shown as a function of the temperature T [° C.].
  • Alloys I and II shown in the figure have the following compositions: Alloy I (alloy according to a preferred embodiment of the invention): component At.% aluminum 16.00 chrome 5.00 niobium 1.00 Silicon 1.00 boron 3.53 titanium 1.51 carbon 300ppm zirconium 100ppm iron rest Alloy II (state of the art alloy) component At%. Silicon 4.00 carbon 3.35 molybdenum 1.00 manganese 0.30 phosphorus 0.01 sulfur 0.05 iron rest
  • Alloy I was melted in an arc furnace under argon as a protective gas.
  • the individual elements with a degree of purity of more than 99% served as starting materials.
  • the melt was poured into a cast body approximately 100 mm in diameter and approximately 100 mm high.
  • the cast body was melted again under vacuum and also under vacuum in the form of round bars with a diameter of approx. 12 mm and a length of approx. 70 mm, in the form of carrots with a minimum diameter of approx. 10 mm and a maximum diameter of approx. 16 mm and a length of approx. 65 mm or in the form of disc-shaped discs with a disc diameter of 80 mm, a disc thickness of up to 14 mm and a radius at the edge of the disc of approx.
  • test specimens for tensile tests were made from the round bars and carrots. The disks were used to determine the thermal shock resistance.
  • Correspondingly sized test specimens for determining the mechanical strength and the thermal shock resistance were made from the commercially available alloy II, which is used to a large extent as a material for gas turbine casings, and a related alloy with an approximately 25% lower silicon content and an approximately 40% lower content Made of molybdenum.
  • the thermal shock resistance according to Glenny was determined with the help of the disc-shaped discs. Two disks per alloy were cyclically heated to 650 ° C in a fluid bed and then cooled to 200 C with compressed air. After a certain number of such heating and cooling cycles, the number of cracks possibly forming at the edge of the panes with a crack length greater than 2 mm was then counted. The total number of cracks occurring on both disks as a function of the number of cycles is given below for alloy I according to the invention and the two alloys according to the prior art.
  • the alloy according to the invention outperforms comparable usable alloys according to the prior art not only in terms of mechanical strength at temperatures higher than 700 ° C., but also in terms of thermal shock resistance.
  • the alloy according to the invention can therefore be used with particular advantage as a material for components of thermal systems which still have a relatively high mechanical strength at temperatures between 700.degree. C. and 800.degree. C. and which, like gas turbine housings, are subject to severe temperature changes.
  • Alloying 0.1 to 10 at% chromium further increases the thermal shock, oxidation and corrosion resistance. Chromium also improves ductility. However, additions of more than 10 at.% Cr generally deteriorate the mechanical properties again.
  • Alloying 0.1 to 2 at% of niobium increases the hardness and strength of the alloy according to the invention.
  • tungsten and / or tantalum can also be added in a proportion of 0.1 to 2 at%.
  • a proportion of 0.1 to 2 at% silicon improves the castability of the alloy according to the invention and has a favorable effect on its resistance to oxidation and corrosion. Silicon also increases hardness.
  • the thermal shock, oxidation and corrosion resistance of the alloy according to the invention is considerably improved. This is primarily due to the fact that finely divided titanium diboride TiB2 then forms in the alloy.
  • a protective layer predominantly containing aluminum oxides forms on the surface of the alloy according to the invention.
  • the titanium diboride phase contributes to a substantial stabilization of this protective layer by the titanium diboride phase engaging in the protective layer, for example in the form of acicular crystallites from the alloy, and thereby causing the protective layer to adhere particularly well to the underlying alloy.
  • the proportion of boron should not be more than 5 at% and that of titanium should not be more than 2 at%, since otherwise too much titanium diboride will form and the alloy will become brittle. If the proportion of boron is below 0.1 at% and that of titanium below 0.01 at%, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention deteriorate considerably.
  • Alloys with the following composition have particularly good values of mechanical strength and thermal shock resistance: 14 - 16 aluminum 0.5 - 1.5 niobium 4 - 6 chrome 0.5-1.5 silicon 3 - 4 boron 1 - 2 titanium approx. 300 ppm carbon approx. 100 ppm zirconium Rest of iron.

Abstract

The iron-aluminum alloy comprises the following constituents in atom percent: -12-18 aluminum -0.1-10 chromium -0.1-2 niobium -0.1-2 silicon -0.1-5 boron -0.01-2 titanium -100-500 ppm carbon -50-200 ppm zirconium - remainder iron. - This alloy is distinguished by high thermal-shock resistance and, at temperatures of 800 DEG C., still has comparatively good mechanical properties. The alloy can be used advantageously in components such as, for example, casings of gas turbines, which, with comparatively low mechanical loading, are subject to frequent thermal cycling.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Eisen-Aluminium-Legierungen können in thermisch hoch belasteten und oxidierenden und/oder korrodierenden Wirkungen ausgesetzten Teilen thermischer Maschinen verwendet werden. Sie sollen dort in zunehmendem Masse Spezialstähle sowie Nickelbasis-Superlegierungen ersetzen.Iron-aluminum alloys can be used in parts of thermal machines that are subjected to high thermal loads and are subject to oxidizing and / or corrosive effects. There, they are expected to increasingly replace special steels and nickel-based superalloys.

STAND DER TECHNIKSTATE OF THE ART

Im Literaturaufsatz "Acceptable Aluminium Additions for Minimal Environmental Effect in Iron-Aluminium Alloys", Mat. Res. Soc. Symp. Proc. Vol. 288, S.971-976, beschreiben V.K.Sikka et al. eine Eisen-Aluminium-Legierung mit einem Anteil von ca. 16 At% Aluminium und ca. 5 At% Chrom, welche gegebenenfalls ca. 0,1 At% Kohlenstoff und/oder Zirkonium und/oder 1 at% Molybdän enthält. Die bekannte Legierung weist bei Raumtemperatur gegenüber Eisen-Aluminium-Legierungen mit einem Aluminiumanteil von 22 bis 28 At% eine wesentlich höhere Duktilität auf. Bei einer Temperatur von 700°C ist die Zugfestigkeit dieser Legierung mit ca. 100 MPa relativ klein. Aus der Legierung hergestellte Bauteile sollten daher nicht bei Temperaturen oberhalb 700°C verwendet werden.In the article "Acceptable Aluminum Additions for Minimal Environmental Effect in Iron-Aluminum Alloys", Mat. Res. Soc. Symp. Proc. Vol. 288, pp.971-976, describe VKSikka et al. an iron-aluminum alloy with a proportion of approx. 16 at% aluminum and approx. 5 at% chromium, which optionally contains approx. 0.1 at% carbon and / or zirconium and / or 1 at% molybdenum. The known alloy has a significantly higher ductility at room temperature than iron-aluminum alloys with an aluminum content of 22 to 28 at%. At a temperature of 700 ° C the tensile strength of this alloy is relatively low at around 100 MPa. Components made from the alloy should therefore not be used at temperatures above 700 ° C.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, eine Eisen-Aluminium-Legierung zu entwickeln, welche sich bei Temperaturen von mehr als 700°C durch gute mechanische Eigenschaften auszeichnet. Aufgabe der Erfindung ist auch eine geeignete Verwendung dieser Legierung.The invention, as specified in claim 1, is based on the object of developing an iron-aluminum alloy which is distinguished by good mechanical properties at temperatures of more than 700 ° C. The object of the invention is also a suitable use of this alloy.

Die erfindungsgemässe Legierung weist selbst bei Temperaturen zwischen 700 und 800°C noch mechanische Eigenschaften auf, die deren Einsatz in mechanisch geringfügig belasten Bauteilen ermöglichen. Zugleich zeichnet sich die erfindungsgemässe Legierung durch eine ausgezeichnete Thermoschockbeständigkeit aus und kann daher mit besonderem Vorteil in temperaturwechselbelasteten Teilen thermischer Anlagen, wie inbesondere als Gehäuse oder Gehäuseteil einer Gasturbine oder eines Turboladers oder als Düsenring, insbesondere für einen Turbolader, eingesetzt werden. Darüber hinaus lässt sich die Legierung sehr kostengünstig durch Giessen oder durch Giessen und Walzen herstellen. Ein weiterer Vorteil der erfindungsgemässen Legierung besteht darin, dass ihre Bestandteile ausschliesslich Metalle aufweisen, welche vergleichsweise preiswert und unabhängig von strategischpolitischer Beeinflussung verfügbar sind.Even at temperatures between 700 and 800 ° C., the alloy according to the invention still has mechanical properties which enable it to be used in components which are subject to slight mechanical loads. At the same time, the alloy according to the invention is characterized by excellent thermal shock resistance and can therefore be used with particular advantage in parts of thermal systems subject to thermal shock, such as in particular as a housing or housing part of a gas turbine or a turbocharger or as a nozzle ring, in particular for a turbocharger. In addition, the alloy can be produced very cheaply by casting or by casting and rolling. Another advantage of the alloy according to the invention is that its constituents exclusively contain metals, which are comparatively inexpensive and are available regardless of strategic-political influence.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Die Erfindung wird nachfolgend anhand eines in einer Figur näher erläuterten Ausführungsbeispiele beschrieben.The invention is described below with reference to an exemplary embodiment explained in more detail in a figure.

Hierbei zeigt die einzige Figur ein Diagramm, in dem die Zugfestigkeit UTS [MPa] einer Legierung I nach der Erfindung und einer Legierungen II nach dem Stand der Technik in Abhängigkeit von der Temperatur T [°C ] dargestellt ist.The sole figure shows a diagram in which the tensile strength UTS [MPa] of an alloy I according to the invention and an alloy II according to the prior art is shown as a function of the temperature T [° C.].

Die in der Figur angegebenen Legierungen I und II weisen die folgenden Zusammensetzungen auf:
Legierung I (Legierung gemäss einem bevorzugten Ausführungsbeispiel der Erfindung): Bestandteil At.% Aluminium 16,00 Chrom 5,00 Niob 1,00 Silicium 1,00 Bor 3,53 Titan 1,51 Kohlenstoff 300ppm Zirkonium 100ppm Eisen Rest
Legierung II (Legierung nach dem Stand der Technik) Bestandteil At%. Silicium 4,00 Kohlenstoff 3,35 Molybdän 1,00 Mangan 0,30 Phosphor 0,01 Schwefel 0,05 Eisen Rest
Alloys I and II shown in the figure have the following compositions:
Alloy I (alloy according to a preferred embodiment of the invention): component At.% aluminum 16.00 chrome 5.00 niobium 1.00 Silicon 1.00 boron 3.53 titanium 1.51 carbon 300ppm zirconium 100ppm iron rest
Alloy II (state of the art alloy) component At%. Silicon 4.00 carbon 3.35 molybdenum 1.00 manganese 0.30 phosphorus 0.01 sulfur 0.05 iron rest

Die Legierung I wurde in einem Lichtbogenofen unter Argon als Schutzgas erschmolzen. Als Ausgangsmaterialien dienten die einzelnen Elemente mit einem Reinheitsgrad von mehr als 99 %. Die Schmelze wurde zu einem Gusskörper von ca. 100 mm Durchmesser und ca. 100 mm Höhe abgegossen. Der Gusskörper wurde unter Vakuum wieder aufgeschmolzen und ebenfalls unter Vakuum in Form von Rundstäben mit ca. 12 mm Durchmesser und ca. 70 mm Länge, in Form von Karotten mit einem minimalen Durchmesser von ca. 10 mm, einem maximalen Durchmesser von ca. 16 mm und einer Länge von ca. 65 mm oder in Form von diskusförmigen Scheiben mit einem Scheibendurchmesser von 80 mm, einer Scheibendicke bis zu 14 mm und einem Radius am Scheibenrand von ca.1 mm vergossen. In einem weiteren Schritt wurde in die diskusförmigen Scheiben entlang der Scheibenachse jeweils eine Bohrung mit einem Durchmesser von 19,5 mm eingebracht. Aus den Rundstäben und Karotten wurden Probekörper für Zugversuche hergestellt. Die Scheiben dienten der Bestimmung der Thermoschockbeständigkeit. Entsprechend bemessene Probekörper zur Bestimmung der mechanischen Festigkeit und der Thermoschockbeständigkeit wurden aus der kommerziell erhältlichen und in grossem Umfang als Werkstoff für Gasturbinengehäuse eingesetzten Legierung II und einer verwandten Legierung mit einem um ca. 25% geringeren Anteil an Silicium und einem um ca. 40% geringeren Anteil an Molybdän hergestellt.Alloy I was melted in an arc furnace under argon as a protective gas. The individual elements with a degree of purity of more than 99% served as starting materials. The melt was poured into a cast body approximately 100 mm in diameter and approximately 100 mm high. The cast body was melted again under vacuum and also under vacuum in the form of round bars with a diameter of approx. 12 mm and a length of approx. 70 mm, in the form of carrots with a minimum diameter of approx. 10 mm and a maximum diameter of approx. 16 mm and a length of approx. 65 mm or in the form of disc-shaped discs with a disc diameter of 80 mm, a disc thickness of up to 14 mm and a radius at the edge of the disc of approx. 1 mm. In a further step, a hole was drilled into the disc-shaped disks along the disk axis introduced a diameter of 19.5 mm. Test specimens for tensile tests were made from the round bars and carrots. The disks were used to determine the thermal shock resistance. Correspondingly sized test specimens for determining the mechanical strength and the thermal shock resistance were made from the commercially available alloy II, which is used to a large extent as a material for gas turbine casings, and a related alloy with an approximately 25% lower silicon content and an approximately 40% lower content Made of molybdenum.

Die Zugversuche wurden in Abhängigkeit von der Temperatur durchgeführt. Hieraus ergab sich für die erfindungsgemässe Legierung I eine Zugfestigkeit, welche bei einer Temperatur von 800°C mit ca. 100 MPa erheblich höher ist als diejenige der Legierung II nach dem Stand der Technik. Entsprechendes gilt auch für die in der Figur nicht dargestellte Legierung nach dem Stand der Technik mit reduzierten Silicium- und Molybdänanteilen.The tensile tests were carried out depending on the temperature. This gave the alloy I according to the invention a tensile strength which, at a temperature of 800 ° C. and approximately 100 MPa, is considerably higher than that of the alloy II according to the prior art. The same applies correspondingly to the alloy according to the prior art, which is not shown in the figure and has reduced silicon and molybdenum contents.

Mit Hilfe der diskusförmigen Scheiben wurde die Thermoschockbeständigkeit nach Glenny ermittelt. Je zwei Scheiben pro Legierung wurden zyklisch jeweils in einem Fliessbett auf 650°C aufgeheizt und danach mit Pressluft auf 200 C abgekühlt. Nach einer bestimmten Anzahl solcher Aufheiz- und Abkühlzyklen wurde sodann die Anzahl von sich möglicherweise am Rand der Scheiben bildenden Rissen mit einer Risslänge grösser 2 mm gezählt. Die aufsummierte Anzahl der an beiden Scheiben auftretenden Risse in Abhängigkeit von der Zyklenzahl ist nachfolgend für die erfindungsgemässe Legierung I sowie die beiden Legierungen nach dem Stand der Technik angegeben.

Figure imgb0001
The thermal shock resistance according to Glenny was determined with the help of the disc-shaped discs. Two disks per alloy were cyclically heated to 650 ° C in a fluid bed and then cooled to 200 C with compressed air. After a certain number of such heating and cooling cycles, the number of cracks possibly forming at the edge of the panes with a crack length greater than 2 mm was then counted. The total number of cracks occurring on both disks as a function of the number of cycles is given below for alloy I according to the invention and the two alloys according to the prior art.
Figure imgb0001

Hieraus ist ersichtlich, dass bei den üblicherweise als Werkstoff für Gasturbinengehäuse verwendeten Legierungen nach dem Stand der Technik bereits nach 240 Zyklen unerwünschte Risse auftraten, wohingegen die Legierung nach der Erfindung selbst nach 740 Zyklen noch rissfrei blieb.From this it can be seen that in the alloys of the prior art which are usually used as a material for gas turbine housings, undesirable cracks occurred after only 240 cycles, whereas the alloy according to the invention remained crack-free even after 740 cycles.

Die Legierung nach der Erfindung übertrifft vergleichbar verwendbare Legierungen nach dem Stand der Technik nicht nur hinsichtlich der mechanischen Festigkeit bei Temperaturen höher 700°C, sondern auch hinsichtlich der Thermoschockbeständigkeit. Die erfindungsgemässe Legierung kann daher mit besonderem Vorteil als Werkstoff für Bauteile von thermischen Anlagen verwendet werden, welche bei Temperaturen zwischen 700°C und 800°C noch eine relativ hohe mechanische Festigkeit aufweisen, und welche wie Gasturbinengehäuse starken Temperaturwechselbelastungen unterliegen.The alloy according to the invention outperforms comparable usable alloys according to the prior art not only in terms of mechanical strength at temperatures higher than 700 ° C., but also in terms of thermal shock resistance. The alloy according to the invention can therefore be used with particular advantage as a material for components of thermal systems which still have a relatively high mechanical strength at temperatures between 700.degree. C. and 800.degree. C. and which, like gas turbine housings, are subject to severe temperature changes.

Gute Festigkeitseigenschaften bei Temperaturen zwischen 700 und 800°C und eine hohe Thermoschockbeständigkeit weisen erfindungsgemäss ausgeführte Legierung dann auf, wenn der Aluminiumgehalt mindestens 12 und höchstens 18 At% beträgt. Sinkt der Aluminiumgehalt unter 12 At%, so verschlechtern sich die Oxidations-, die Korrosions- und die Thermoschockbeständigkeit der erfindungsgemässen Legierung. Ist der Aluminiumgehalt grösser 18 At%, so versprödet die Legierung zunehmend.Good strength properties at temperatures between 700 and 800 ° C and high thermal shock resistance have alloy according to the invention when the aluminum content is at least 12 and at most 18 at%. If the aluminum content drops below 12 at%, the oxidation, corrosion and thermal shock resistance of the alloy according to the invention deteriorate. If the aluminum content is greater than 18 at%, the alloy becomes increasingly brittle.

Durch Zulegieren von 0,1 bis 10 At% Chrom wird die Thermoschock-, die Oxidations- und die Korrosionsbeständigkeit weiter erhöht. Zudem wird durch Chrom die Duktilität verbessert. Zugaben von mehr als 10 At.-% Cr verschlechtern jedoch im allgemeinen die mechanischen Eigenschaften wieder.Alloying 0.1 to 10 at% chromium further increases the thermal shock, oxidation and corrosion resistance. Chromium also improves ductility. However, additions of more than 10 at.% Cr generally deteriorate the mechanical properties again.

Durch Zulegieren von 0,1 bis 2 At% Niob wird die Härte und die Festigkeit der erfindungsgemässen Legierung erhöht. Neben oder anstelle von Niob können auch Wolfram und/oder Tantal mit einem Anteil von 0,1 bis 2 At% zulegiert werden.Alloying 0.1 to 2 at% of niobium increases the hardness and strength of the alloy according to the invention. In addition to or instead of niobium, tungsten and / or tantalum can also be added in a proportion of 0.1 to 2 at%.

Ein Anteil an 0,1 bis 2 At% Silicium verbessert die Giessbarkeit der erfindungsgemässen Legierung und wirkt sich günstig auf deren Oxidations- und Korrosionsbeständigkeit aus. Zudem wirkt Silicium härtesteigernd.A proportion of 0.1 to 2 at% silicon improves the castability of the alloy according to the invention and has a favorable effect on its resistance to oxidation and corrosion. Silicon also increases hardness.

Durch Zulegieren von 0,1 bis 5 At% Bor und 0,01 bis 2 At% Titan wird die Thermoschock-, die Oxidations- und Korrosionsbeständigkeit der erfindungsgemässen Legierung ganz erheblich verbessert. Dies ist vor allem dadurch bedingt, dass sich dann in der Legierung fein verteiltes Titandiborid TiB₂ bildet. Bei hohen Temperaturen und unter oxidierenden und/oder korrodierenden Bedingungen bildet sich auf der Oberfläche der erfindungsgemässen Legierung eine überwiegend Aluminiumoxide enthaltende Schutzschicht aus. Die Titandiborid-Phase trägt zu einer wesentlichen Stabilisierung dieser Schutzschicht bei, indem die Titandiborid-Phase etwa in Form nadelförmiger Kristallite aus der Legierung in die Schutzschicht eingreift und dadurch eine besonders gute Haftung der Schutzschicht auf der darunterliegenden Legierung bewirkt. Der Anteil an Bor sollte nicht mehr als 5 At% und derjenige von Titan nicht mehr als 2 At% betragen, da sich andernfalls zuviel Titandiborid bildet und die Legierung versprödet. Liegt der Boranteil unter 0,1 At% und derjenige von Titan unter 0,01 At%, so verschlechtern sich die Thermoschock-, die Oxidations- und die Korrosionsbeständigkeit der erfindungsgemässen Legierung ganz erheblich.By alloying 0.1 to 5 at% boron and 0.01 to 2 at% titanium, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention is considerably improved. This is primarily due to the fact that finely divided titanium diboride TiB₂ then forms in the alloy. At high temperatures and under oxidizing and / or corrosive conditions, a protective layer predominantly containing aluminum oxides forms on the surface of the alloy according to the invention. The titanium diboride phase contributes to a substantial stabilization of this protective layer by the titanium diboride phase engaging in the protective layer, for example in the form of acicular crystallites from the alloy, and thereby causing the protective layer to adhere particularly well to the underlying alloy. The proportion of boron should not be more than 5 at% and that of titanium should not be more than 2 at%, since otherwise too much titanium diboride will form and the alloy will become brittle. If the proportion of boron is below 0.1 at% and that of titanium below 0.01 at%, the thermal shock, oxidation and corrosion resistance of the alloy according to the invention deteriorate considerably.

Eine geringfügige Erhöhung der mechanischen Festigkeit und zugleich eine erhebliche Verbesserung der Schweissbarkeit wird durch Zulegieren von 100 bis 500 ppm Kohlenstoff und 50 bis 200 ppm Zirkonium erreicht.A slight increase in mechanical strength and at the same time a considerable improvement in weldability is achieved by alloying 100 to 500 ppm carbon and 50 to 200 ppm zirconium.

Besonders gute Werte der mechanischen Festigkeit und der Thermoschockbeständigkeit weisen Legierungen der folgenden Zusammensetzung auf:
14 - 16 Aluminium
0,5 - 1,5 Niob
4 - 6 Chrom
0,5 - 1,5 Silicium
3 - 4 Bor
1 - 2 Titan
ca. 300 ppm Kohlenstoff
ca. 100 ppm Zirkonium
Rest Eisen.
Alloys with the following composition have particularly good values of mechanical strength and thermal shock resistance:
14 - 16 aluminum
0.5 - 1.5 niobium
4 - 6 chrome
0.5-1.5 silicon
3 - 4 boron
1 - 2 titanium
approx. 300 ppm carbon
approx. 100 ppm zirconium
Rest of iron.

Claims (4)

Legierung auf der Basis von Eisen und Aluminium, dadurch gekennzeichnet, dass sie folgende Bestandteile in Atomprozent enthält:
12 - 18 Aluminium
0,1 - 10 Chrom
0,1 - 2 Niob
0,1 - 2 Silicium
0,1 - 5 Bor
0,01 - 2 Titan
100 - 500 ppm Kohlenstoff
50 - 200 ppm Zirkonium
Rest Eisen.
Alloy based on iron and aluminum, characterized in that it contains the following components in atomic percent:
12 - 18 aluminum
0.1-10 chromium
0.1 - 2 niobium
0.1-2 silicon
0.1 - 5 boron
0.01 - 2 titanium
100-500 ppm carbon
50-200 ppm zirconium
Rest of iron.
Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie folgende Bestandteile enthält:
14 - 16 Aluminium
0,5 - 1,5 Niob
4 - 6 Chrom
0,5 - 1,5 Silicium
3 - 4 Bor
1 - 2 Titan
ca. 300 ppm Kohlenstoff
ca. 100 ppm Zirkonium
Rest Eisen.
Alloy according to claim 1, characterized in that it contains the following components:
14 - 16 aluminum
0.5 - 1.5 niobium
4 - 6 chrome
0.5-1.5 silicon
3 - 4 boron
1 - 2 titanium
approx. 300 ppm carbon
approx. 100 ppm zirconium
Rest of iron.
Verwendung der Legierung nach Anspruch 1 als thermoschockbeständiger Werkstoff.Use of the alloy according to claim 1 as a thermal shock resistant material. Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass der Werkstoff der Bildung eines heissgasführenden Bauteils, insbesondere des Gehäuses einer Gasturbine dient.Use according to claim 3, characterized in that the material is used to form a hot gas-carrying component, in particular the housing of a gas turbine.
EP93118045A 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy Expired - Lifetime EP0652297B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE59309611T DE59309611D1 (en) 1993-11-08 1993-11-08 Iron-aluminum alloy and use of this alloy
AT93118045T ATE180517T1 (en) 1993-11-08 1993-11-08 IRON-ALUMINUM ALLOY AND USE OF THIS ALLOY
EP93118045A EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy
US08/174,352 US5411702A (en) 1993-11-08 1993-12-28 Iron-aluminum alloy for use as thermal-shock resistance material
PL94305673A PL305673A1 (en) 1993-11-08 1994-11-02 Fe-al alloy
RU94040155A RU2122044C1 (en) 1993-11-08 1994-11-04 Alloy containing iron and aluminium
KR1019940029070A KR950014344A (en) 1993-11-08 1994-11-07 Iron-Aluminum Alloys and Their Uses
JP27240494A JP3517462B2 (en) 1993-11-08 1994-11-07 Iron-aluminum alloys and their uses
CN94118112A CN1038051C (en) 1993-11-08 1994-11-08 Iron-aluminum alloy and use of said alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93118045A EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy

Publications (2)

Publication Number Publication Date
EP0652297A1 true EP0652297A1 (en) 1995-05-10
EP0652297B1 EP0652297B1 (en) 1999-05-26

Family

ID=8213403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93118045A Expired - Lifetime EP0652297B1 (en) 1993-11-08 1993-11-08 Iron-aluminium alloy and application of this alloy

Country Status (9)

Country Link
US (1) US5411702A (en)
EP (1) EP0652297B1 (en)
JP (1) JP3517462B2 (en)
KR (1) KR950014344A (en)
CN (1) CN1038051C (en)
AT (1) ATE180517T1 (en)
DE (1) DE59309611D1 (en)
PL (1) PL305673A1 (en)
RU (1) RU2122044C1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603515C1 (en) * 1996-02-01 1996-12-12 Castolin Sa Spraying material used to form corrosive-resistant coating
EP2239349A1 (en) * 2009-04-10 2010-10-13 Schüttenhelm, Martin Exhaust manifold or turbocahrger housing made of a FeAl steel alloy
DE102009020922A1 (en) 2009-05-12 2010-11-18 Christoph Henrik Sterzel Use of liquid sulfur containing hydrogen sulfide and polysulfane or chlorine, as heat transfer- and heat storage liquid for transporting and storing of thermal energy, preferably in solar thermal power plants
WO2011083053A1 (en) 2010-01-05 2011-07-14 Basf Se Heat transfer and heat storage fluids for extremely high temperatures, based on polysulfides

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436163B1 (en) * 1994-05-23 2002-08-20 Pall Corporation Metal filter for high temperature applications
DE19753876A1 (en) * 1997-12-05 1999-06-10 Asea Brown Boveri Iron aluminide coating and method of applying an iron aluminide coating
US6114058A (en) * 1998-05-26 2000-09-05 Siemens Westinghouse Power Corporation Iron aluminide alloy container for solid oxide fuel cells
US7754342B2 (en) * 2005-12-19 2010-07-13 General Electric Company Strain tolerant corrosion protecting coating and spray method of application
CN103534458A (en) * 2011-06-07 2014-01-22 博格华纳公司 Turbocharger and component therefor
CN105624535A (en) * 2015-12-09 2016-06-01 上海大学 Preparation method for Fe-Al-Mn-Si alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387980A (en) * 1945-02-17 1945-10-30 Hugh S Cooper Electrical resistance alloys
US3026197A (en) * 1959-02-20 1962-03-20 Westinghouse Electric Corp Grain-refined aluminum-iron alloys

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA648140A (en) * 1962-09-04 Westinghouse Electric Corporation Grain-refined aluminum-iron alloys
CA648141A (en) * 1962-09-04 H. Schramm Jacob Aluminum-chromium-iron resistance alloys
JPS4841918A (en) * 1971-10-04 1973-06-19
CA1298492C (en) * 1986-04-30 1992-04-07 Haruo Shimada Seawater-corrosion-resistant non-magnetic steel materials
US4844865A (en) * 1986-12-02 1989-07-04 Nippon Steel Corporation Seawater-corrosion-resistant non-magnetic steel materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387980A (en) * 1945-02-17 1945-10-30 Hugh S Cooper Electrical resistance alloys
US3026197A (en) * 1959-02-20 1962-03-20 Westinghouse Electric Corp Grain-refined aluminum-iron alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603515C1 (en) * 1996-02-01 1996-12-12 Castolin Sa Spraying material used to form corrosive-resistant coating
WO1997028289A1 (en) * 1996-02-01 1997-08-07 Castolin S.A. Iron-based spray material for producing a corrosion-resistant coating, process for producing the coating and use of the coat
EP2239349A1 (en) * 2009-04-10 2010-10-13 Schüttenhelm, Martin Exhaust manifold or turbocahrger housing made of a FeAl steel alloy
DE102009020922A1 (en) 2009-05-12 2010-11-18 Christoph Henrik Sterzel Use of liquid sulfur containing hydrogen sulfide and polysulfane or chlorine, as heat transfer- and heat storage liquid for transporting and storing of thermal energy, preferably in solar thermal power plants
WO2011083053A1 (en) 2010-01-05 2011-07-14 Basf Se Heat transfer and heat storage fluids for extremely high temperatures, based on polysulfides

Also Published As

Publication number Publication date
EP0652297B1 (en) 1999-05-26
CN1106467A (en) 1995-08-09
PL305673A1 (en) 1995-05-15
CN1038051C (en) 1998-04-15
JP3517462B2 (en) 2004-04-12
US5411702A (en) 1995-05-02
ATE180517T1 (en) 1999-06-15
KR950014344A (en) 1995-06-15
JPH07238353A (en) 1995-09-12
RU2122044C1 (en) 1998-11-20
RU94040155A (en) 1997-02-27
DE59309611D1 (en) 1999-07-01

Similar Documents

Publication Publication Date Title
DE1238672B (en) Use of a nickel-cobalt-chromium alloy for castings that are resistant to creep at high temperatures
DE102012011162A1 (en) Nickel-chromium alloy with good processability, creep resistance and corrosion resistance
DE102018107248A1 (en) USE OF NICKEL CHROME IRON ALUMINUM ALLOY
US4740354A (en) Nickel-base alloys for high-temperature forging dies usable in atmosphere
EP0652297B1 (en) Iron-aluminium alloy and application of this alloy
US4613368A (en) Tri-nickel aluminide compositions alloyed to overcome hot-short phenomena
EP0581204A1 (en) Heat-resistant material
US3257178A (en) Coated metal article
GB2116211A (en) Oxidation resistant nickel alloy
EP0570072B1 (en) Method of producing a chromium-base alloy
EP1589122B1 (en) Coating containing NiAl beta Phases
DE2161954A1 (en) FERRITIC HEAT RESISTANT STEEL
EP0709478B1 (en) Alloy based of silicides and further containing chromium and molybdenum
DE3590031C2 (en) Process for producing a metal powder
DE1219236B (en) Process for the production of castings, in particular of gas turbine rotors with blades cast onto the hub, from a nickel-chromium alloy
EP0609682B1 (en) Oxidation- and corrosion-resistant alloy based on doped iron aluminide and application of this alloy
EP0303957B1 (en) Corrosion resisting alloy and corrosion resisting member
EP0340789B1 (en) Hot working aluminum base alloys
CA1101699A (en) High-strength, high-expansion manganese alloy
EP0260465B1 (en) Oxide dispersion-strengthened nickel-base superalloy with improved corrosion resistance
DE3630321C2 (en)
US3515545A (en) Refractory and ceramic brazing alloys
JPS6130645A (en) Tantalum-niobium-molybdenum-tangsten alloy
EP0425972B1 (en) Oxidation- and corrosion-resistant heat-resisting alloy, based on an intermetallic compound
DE2712692A1 (en) NICKEL-CHROME ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

17P Request for examination filed

Effective date: 19951006

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980717

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990526

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990526

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990526

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990526

REF Corresponds to:

Ref document number: 180517

Country of ref document: AT

Date of ref document: 19990615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309611

Country of ref document: DE

Date of ref document: 19990701

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990826

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990811

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ASEA BROWN BOVERI A.G.

Effective date: 19991130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091108