EP0650534B1 - Coating device - Google Patents

Coating device Download PDF

Info

Publication number
EP0650534B1
EP0650534B1 EP93915935A EP93915935A EP0650534B1 EP 0650534 B1 EP0650534 B1 EP 0650534B1 EP 93915935 A EP93915935 A EP 93915935A EP 93915935 A EP93915935 A EP 93915935A EP 0650534 B1 EP0650534 B1 EP 0650534B1
Authority
EP
European Patent Office
Prior art keywords
metal strip
nozzle
nozzle body
strip
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93915935A
Other languages
German (de)
French (fr)
Other versions
EP0650534A1 (en
EP0650534B2 (en
Inventor
Heinrich Pannenbecker
Ronald Jabs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DUMA MASCHINEN- und ANLAGENBAU BETEILIGUNGS GmbH
Original Assignee
DUMA MASCHINEN- und ANLAGENBAU BETEILIGUNGS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27203976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0650534(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19924223343 external-priority patent/DE4223343C1/en
Priority claimed from DE19934300868 external-priority patent/DE4300868C1/en
Priority claimed from DE19934306394 external-priority patent/DE4306394C1/en
Application filed by DUMA MASCHINEN- und ANLAGENBAU BETEILIGUNGS GmbH filed Critical DUMA MASCHINEN- und ANLAGENBAU BETEILIGUNGS GmbH
Publication of EP0650534A1 publication Critical patent/EP0650534A1/en
Application granted granted Critical
Publication of EP0650534B1 publication Critical patent/EP0650534B1/en
Publication of EP0650534B2 publication Critical patent/EP0650534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates

Definitions

  • the invention relates to a device for the continuous coating of metal strip, in particular for the galvanizing of steel strip, at least one adjustable guide roller being provided below the melt level of a coating agent bath passing through the strip, with a guide roller arranged downstream of the at least one guide roller, arranged above the melt level and with a blow-off medium.
  • a pair of blow-off nozzles between the nozzle bodies of which the strip is guided at a distance from the respective nozzle gaps extending transversely to the strip running direction, with at least one of the two nozzle bodies which can be adjusted relative to the metal strip being assigned an optical measuring device for detecting the distance between the nozzle gap and the metal strip surface, whose Measuring beam with its optical axis is directed almost perpendicular with respect to the metal strip surface and the output signal of an adjusting device for the guide tube lle and / or an adjusting device for the nozzle body can be fed such that the distance between the nozzle gap and the metal strip surface can be predetermined.
  • a device for the continuous coating of steel strip is known from DE-A-30 14 651.
  • This known device is used for the surface treatment of a metal strip, in particular steel strip, coated on both sides with a metal, in particular zinc, in a continuous hot-dip process.
  • the metal strip is guided into a bath with the liquid coating agent and is passed vertically upwards via a deflection roller arranged below the melting level.
  • the guide rollers arranged below the melt level in the coating agent bath serve the purpose Stabilize the tape by ensuring that the tape coated by the coating agent is as flat as possible when it emerges vertically upwards from the coating agent bath and reaches the area of the blow-off nozzle pair.
  • the strip is guided in such a way that it runs as centrally as possible through the opposing nozzle bodies of the blow-off nozzles each arranged on a metal strip side.
  • Another device for blowing galvanized steel strip is known from EP-A-0 249 234.
  • the nozzle gap is formed by two mutually adjustable nozzle lips, so that the pressure of the blow-off medium acting on the metal strip surface can be adjusted.
  • sensors are provided for measuring the layer thickness of the support on the metal strip, which sensors are connected to a computer, by means of whose output control valves are controlled, by means of which the amount of the blow-off medium with which the nozzle gap is acted on can be varied.
  • the coating thickness can be set to a desired setpoint. If there are deviations in the course of the strip from the central position in this device, the coating medium is subjected to inhomogeneities in the coating due to the uneven loading of the strip surface along the strip.
  • a further device is known from WO-A-92/02656, in which the nozzle body is designed as a nozzle line in such a way that, along the direction of the nozzle gap, a plurality of part nozzles which are sealed against one another and can be acted upon separately by the blow-off medium are provided.
  • the nozzle body is designed as a nozzle line in such a way that, along the direction of the nozzle gap, a plurality of part nozzles which are sealed against one another and can be acted upon separately by the blow-off medium are provided.
  • a device of the type mentioned at the outset is known from EP 0 188 813.
  • a plurality of distance measuring devices are provided, which are arranged transversely to the strip running direction and are used to determine the flatness of the strip.
  • Such a device can only be converted with great effort when the width of the metal strip changes.
  • the invention has for its object to develop a device of the type mentioned in such a way that it is more practical.
  • This object is achieved according to the invention in a first variant of the invention in that several measuring devices are provided along the nozzle gap and can be moved by a separate drive parallel to the nozzle gap, the respective output signals of which are jointly evaluated by an adjustment drive for the nozzle body or by an adjustment drive for the guide roller become.
  • a control circuit arrangement is formed by the combination of the optical measuring device and the adjustment devices for the nozzle bodies or guide rollers, which makes it possible to create a precise spatial association between the nozzle gaps on the one hand and the belt on the other.
  • the distance between the metal strip surface and the nozzle gaps can be kept constant, so that a homogeneous coating is always achieved due to the central strip run even in the event of strip running errors, such as inclined or curved strip.
  • the optical measuring device continuously carries out a target-actual comparison by determining the respective actual distance between the nozzle gap and the strip surface. This creates a control loop, which ensures constant blow-off conditions along the bandwidth, so that the overall Coating homogeneity is significantly improved.
  • one of the usually two nozzle bodies arranged on both sides of the metal strip has a measuring device, since the positioning of the other nozzle body can also take place as a function of the distance measurement of the measuring device.
  • Each of the several measuring devices can be moved continuously along parallel to the nozzle gap, so that the metal strip surface is easily scanned.
  • Each measuring device is assigned a separate drive so that it can be easily adapted to different metal strip widths, and in the case of two measuring devices each of the two measuring devices covers half of the bandwidth.
  • a structurally simple solution provides that the measuring device is carried by the nozzle body. Due to the structural unit, changes in distance between the belt surface and the reference points of the optical measuring device which are related to the position of the nozzle gap can be corrected with high accuracy.
  • the nozzle body can be moved transversely and / or rotationally in the normal plane of the metal strip by means of the adjustment drive.
  • the transverse adjustment of the nozzle body comes into play when the position of the metal strip changes parallel to the desired position, that is to say plane-parallel to the nozzle gap, so that compensation can take place due to the lateral movement of the nozzle body.
  • Such a lateral compensation also comes into play when the metal strip experiences a certain curvature. Then it can be achieved through the lateral movement that the required minimum distance between Nozzle gap and metal strip surface is observed so that there is no contact between the two.
  • the rotational adjustment of the nozzle body comes into consideration if the strip is inclined at a certain angle in a plane perpendicular to the running direction, so that it would come into contact with the nozzle gap at the strip edges. This error can also be compensated for by appropriate positioning of the nozzle body.
  • the nozzle body can be pivoted about an axis parallel to the nozzle gap, an angle correction device detecting the pivoting angle being provided for correcting the output signal of the at least one measuring device.
  • an angle correction device detecting the pivoting angle being provided for correcting the output signal of the at least one measuring device.
  • Such an angle correction is necessary if, depending on the viscosity of the coating material, the stripping conditions have to be changed in the course of the process. Since the distance signal is distorted by pivoting the nozzle body about an axis running parallel to the nozzle gap in the case of a measuring sensor fixedly arranged on the nozzle body, an electronic angle detection device is required to correct the above-mentioned error.
  • a nozzle body with at least one measuring device is provided on each of the two metal strip sides, with a common evaluation device for the measuring signals being associated with the coupled actuation of the respective adjustment drives of the two nozzle bodies.
  • Optical sensors which measure the distance from the metal strip surface via the transit time measurement of their light beam are preferably suitable as measuring devices.
  • the object on which the invention is based is achieved in that at least one of the two nozzle bodies which are adjustable relative to the metal strip carries an optical measuring device which can be moved parallel to the nozzle gap and overlaps at least the area of one edge of the metal strip and that the opposite nozzle body has a reflector on which the optical axis of the measuring device is directed in its position outside the metal strip edge and that the measuring device is followed by an evaluation device which assigns the measuring signal to the current position on the travel axis and to a control circuit for an adjusting device of at least one nozzle body and / or for passes an adjustment device for the guide roller so that the distance between the nozzle gap and the metal strip surface can be predetermined.
  • This variant is distinguished by the fact that an accurate distance measurement is made possible both with respect to the distance of the nozzle bodies from one another and the distance of one nozzle body from the metal strip surface facing it. It is essential that the optical measuring device covers two distance ranges, namely those within the metal bandwidth and those outside. While the distance between the nozzle and strip is determined in the area within the metal strip edge, the distance between the nozzle and nozzle results in the area outside the edges. On the basis of these two measurement signals, the nozzle bodies can now be positioned in such a way that both nozzle bodies can be moved to a defined distance with respect to the metal strip, in particular that both nozzle bodies are arranged symmetrically with respect to the strip.
  • An evaluation device is arranged downstream of the measuring device, which assigns the measurement signal to the current position on the travel axis and forwards it to a control circuit for the adjustment device of at least one nozzle body.
  • the evaluation device preferably has a discriminator for distinguishing between the measurement signal reflected by the metal strip and the measurement signal reflected by the reflector. This makes it possible to determine the exact position of the band edge and thus also a balancing in this regard, for example when using it by special nozzles directed towards the edges ("edge nozzles").
  • edge nozzles Such edge nozzles, as described in EP-A-0 219 234, serve to reduce zinc growth on the edges by targeted blowing.
  • the position of the edge nozzle can also be set automatically in that one of the measuring devices detects the respective position of the metal strip edge.
  • the measuring devices that detect the metal strip edge area can also be used for continuous monitoring of the actual metal strip width.
  • the simplest embodiment of the second variant provides that two measuring devices are assigned to the one nozzle body, each of which can be moved over non-overlapping areas of at least half the metal bandwidth, each measuring device being movable by a separate drive.
  • each of the two measuring devices takes on the function of measuring the distance inside the strip edge and outside the strip edge.
  • each of the two measuring devices is moved continuously by separate drives parallel to the nozzle gap, with measurement signals being obtained continuously or in certain time segments.
  • Another embodiment provides instead of two individual measuring devices that the one nozzle body has two pairs of measuring devices, each with non-overlapping travel ranges, the measuring devices of the first pair being movable over less than half the metal bandwidth and the measuring devices of the second pair covering the area of the Cover the respective metal band edge.
  • the functions distance measurement nozzle-band, measurement of Metal band width or distance measurement nozzle-nozzle transferred to separate measuring devices, the first measuring devices for measuring nozzle-band always in the area within the band edge and the second pairs of measuring devices always oscillating around the area of the band edge and being moved by separate drives.
  • each measuring device is arranged on a common guide carriage and each can be driven by separate drives, or, on the other hand, the measuring devices of the first or second pair lie on different nozzle bodies, the measuring devices which can be moved around the area of the metal strip edge on the reflector opposite nozzle body are arranged and here, too, each measuring device is adjustable by a separate drive.
  • Both variants shown are technically equivalent, the latter being simpler to manufacture due to the non-overlapping drives.
  • the reflector is preferably formed by a flat, in particular reflecting tape running parallel to the metal tape, the width of which is selected so that at least the edge positions of the tape to be coated are covered. If you want to coat tapes of different widths, the tape must have such a position that it extends from the area of the edge of the narrowest to the edge of the widest tape in the transverse direction of the tape, so that even with the widest metal tape to be coated, that on the edge directional measuring device receives a corresponding reflection signal.
  • the reflector Since not only the reflector has to be readjusted when the nozzle body rotates, but also the optical measuring device, it is preferably attached to the nozzle body carrying it in such a way that an angular offset can be compensated for by a compensating screw provided for this purpose.
  • the optical measuring device is arranged on a crossmember, relative to which the associated nozzle body can be pivoted, the angular position of the measuring device relative to the belt is retained when the nozzle body is pivoted, so that an additional angle compensation can be dispensed with.
  • FIG. 1 shows a metal strip 1 which, coming from the top right, is obliquely immersed in a coating agent bath 15, of which only the melt level 14 is shown.
  • the band 1 is deflected by means of a deflection roller 6 carried by a holder 13 in such a way that it then runs vertically upwards.
  • two guide rollers 5 are provided, which are located on opposite sides of the metal strip 1.
  • the guide rollers 5 are arranged offset in height from one another and each can be adjusted separately by adjusting drives 12 in the direction perpendicular to the running direction of the metal strip 1.
  • the metal strip 1 coated with liquid zinc emerges from the coating agent bath 15 and strikes two nozzle bodies 2 arranged on one side of the metal strip 1, the nozzle gaps 3 of which have a certain distance X from the respective metal strip surface.
  • One of the nozzle bodies 2 carries an attachment for a measuring device 4 on its upper side.
  • the measuring device 4 is an optical one Sensor that emits a light beam along the optical axis labeled a, which is incident almost perpendicularly on the strip surface.
  • the side of the measuring device 4 on which the light beam emerges is surrounded by a protective sleeve 7 which is pressurized with compressed air.
  • FIG. 2 shows a plan view of the detail from FIG.
  • two measuring devices 4a, 4b are provided along the width of the metal strip 1 and are arranged on a guide carriage 16 , wherein each of the measuring devices 4a, 4b can be moved separately in relation to the nozzle body 2 in a direction parallel to the width of the metal strip 1 or the nozzle gap 3 by means of an associated drive 17a, 17b.
  • the two measuring devices 4a, 4b can be moved by means of the drives 17a, 17b in such a way that the left measuring device 4a can be moved into the left edge area of the metal strip 1 and the right measuring device 4b up to the right metal strip edge area.
  • the entire attachment 8 on the nozzle body 2, which contains the measuring device 4, is encapsulated by means of a protective plate 8a, 8b (FIG. 3).
  • the adjustment drive for the nozzle body 2 consists of two linear drives 11, also shown in FIG. 2, the nozzle body being gimbal-mounted relative to the linear drives.
  • the nozzle body 2 is laterally adjustable in the normal plane of the metal strip, so that the distance between the nozzle gap 3 and the surface of the metal strip can be changed.
  • the nozzle body 2 By moving the drives 11 in opposite directions, the nozzle body 2 can be rotated in the normal plane of the metal strip 1.
  • each nozzle body 2 can be pivoted about a pivot point 9 (see FIG. 3), so that the nozzle gap 3 can be brought into the dashed position shown, which corresponds to a change in angle with respect to the normal plane.
  • an angle detection device 10 is provided, which detects the pivoting angle about the pivot point 9 and emits a corresponding correction signal to compensate for the error of the measuring device 4, which is caused by the fact that the optical axis a is no longer vertical in the event of a pivoting with respect to the tape running direction, ie no longer corresponds to the shortest distance.
  • the aim of the device according to the invention is the distance between the nozzle gap 3 and the metal strip surface to keep each of the two sides of the metal strip at a constant value x.
  • the actual position of the metal strip is continuously detected by the measuring devices 4a, 4b and the respective signal, which is known at a fixed spatial Assignment between measuring device and nozzle gap corresponds to the respective distance of the point on the nozzle gap from the metal strip surface, given to an evaluation device acting on the adjustment drives for the nozzle body or for the guide roller 5.
  • the belt 1 is offset parallel with respect to its central position (dashed line), for example in the direction of the upper nozzle gap of the upper nozzle body, the measuring devices 4a, 4b will determine the same reduction in distance, whereupon the upper nozzle body 2 by means of the adjustment drive 11 4a is moved upward in order to maintain the desired value x of the distance between the nozzle gap 3 and the metal strip surface 1. Accordingly, the adjustment drive 11 of the lower nozzle body 2 also moves upward, so that the desired distance is achieved again as a result.
  • the two measuring devices will each show different distances along the metal strip width, the setpoint of the distance being shown in the upper left area and in the lower right area of FIG. 4b between the nozzle gap and the metal strip surface.
  • the correction is then carried out by rotating the respective nozzle bodies, as is indicated by the circular arrows in FIG. 4b. After the correction has been carried out, the desired distance value must again be observed for this strip running error across the entire bandwidth.
  • Fig. 4c Another possible tape running error is indicated in Fig. 4c, which consists in that the tape 1 bulges. Due to the curvature, the permissible distance in the upper area, for example in the middle of the belt and in the lower area at the belt edges, is undershot, so that there is a danger of contact between the belt and nozzle. According to the invention, this error is corrected in such a way that the upper nozzle body 2 moves laterally upwards until at least the desired value for the distance between the belt and the nozzle gap is maintained along the entire bandwidth. This means that this value is reached in the middle of the strip, while a larger distance is necessarily required at the strip edges.
  • the setting is made so that it moves away from the respective strip edges until the permissible distance is also reached there.
  • the distance will then necessarily be larger in the middle.
  • the tape By coupling the output signals of the measuring devices with the adjustment drive of the guide rollers, the tape can be smoothed, in particular in the case of a determined band curvature, by correspondingly issuing the guide roller 5, whereby the band error is compensated for.
  • the device according to the invention provides, in addition to the compensation of belt running errors described above, the possibility of pivoting the nozzle body 2 with respect to the pivot point 9. This may be necessary, for example, if the viscosity of the coating agent changes in the course of the process, so that the stripping conditions have to be changed accordingly. Then the respective nozzle gaps 3 move into the dashed position shown in FIG. 1.
  • the angle correction device 10 is provided. However, this is not necessary if the measuring devices 4a, 4b are not arranged in a stationary manner on the nozzle body 2, as disclosed in the exemplary embodiments shown in the drawings, but are accommodated in a separate structural unit.
  • the measuring devices 4a, 4b shown in FIG. 2 can be adapted in a simple manner to a changing width of the metal strip 1, since they can be moved independently of one another by means of the drives 17a, 17b.
  • the first exemplary embodiment of the second variant shown in FIG. 5 shows two nozzle bodies 2 arranged on one side of the metal strip 1 to be coated, the nozzle gaps of which are each at a certain distance x from the surface of the metal strip 1.
  • the lower nozzle body 2 shown on the right in FIG. 9 has an attachment for the measuring device 4 on its upper side.
  • the housing of the measuring device 4 consists of a housing cover 8b and a rear housing part 8a, which can be opened.
  • the optical measuring device 4 rests on a carriage 16, on which it can be moved along the width of the metal strip 1.
  • the entire unit consisting of slide 16, measuring device 4 and housing 8a, 8b can be adjusted relative to the nozzle body 2 carrying it by means of an angle compensation screw 20 by a certain angle of rotation. This is important when the nozzle body 2 rotatable about the pivot point 9 is adjusted and this angle is determined by the electronic angle detection 10.
  • Each of the two nozzle bodies 2 can be moved in the normal plane shown in FIG. 5 by means of a drive 11 in the direction perpendicular to the transport direction of the metal strip 1.
  • the adjustment drive consists of two linear drives 11, against which the nozzle body 2 is gimbal-mounted.
  • the drives of the drives move in the same direction, the nozzle body 2 can be adjusted laterally towards or away from the metal strip 1, so that the distance between the nozzle gap 3 and the metal strip surface can be changed.
  • the nozzle body 2 can be rotated in the normal plane shown.
  • two optical measuring devices 4 are provided along the width b of the metal strip, each covering approximately half of the metal strip 1. These are driven by separate drives 17a, 17b continuously in such a way that they cover the travel range designated ⁇ in each case.
  • reflectors 18 are provided, which cover the band edges labeled K in each case.
  • the device shown in FIG. 5 operates as follows:
  • Each of the two measuring devices 4 is moved continuously along the carriage 16, so that the measuring beam designated by a from the respective measuring device 4 is reflected in the area within the metal strip edge K by the metal strip 1. If the measuring device 4 reaches the area of the metal strip edge K, there is an abrupt transition of the reflection from the metal strip to the reflector 18. This abrupt transition enables an exact position detection of the strip edge.
  • the optical measuring device 4 measures the distance between the defined point on the nozzle body 2 and the metal strip surface. If the distance within the metal strip edges shows that the distance changes in the course of the measurement, this means that the metal strip is inclined with respect to the nozzle gap. This can be done by appropriate control the adjustment devices 11 or the guide rollers 5 in the "two or three roller system" (FIG. 1) can be compensated.
  • the measuring device 4 detects a deviation of the measured value from a predetermined value in the area outside the metal strip edges K, this is due to a change in the predetermined distance between the reference points of the two nozzle bodies 2. From the knowledge of both the distance between the reference points on the nozzle bodies 2 and the distance between a nozzle body and the metal strip surface, the balancing can now be carried out by means of the downstream evaluation computer (not shown in more detail).
  • the second exemplary embodiment of the second variant of the invention shown in FIG. 6 differs from the one described in that instead of two measuring devices, each covering more than the band half, four measuring devices are provided, of which the two inner ones are always referred to as ⁇ a Oscillate the travel range, which is always within the band edges K.
  • the two outer measuring devices 4b oscillate within the range denoted by ⁇ b around the strip edges K, the measuring beam of the measuring devices 4b being partly reflected by the metal strip and partly by the reflectors 18. In this way, the measurement signals for the distance between the nozzle body-band or nozzle body-nozzle body and for the bandwidth can be determined at the same time, which enables a faster evaluation.
  • FIGS. 8 and 9 differs from that of FIG. 2 only in that the oscillating in the edge region optical measuring devices 4b are not arranged on the common guide carriage of the nozzle body 2, which also carries the optical measuring devices 4a directed onto the metal strip. Rather, a further guide carriage 16 is provided on the opposite nozzle body 2 for the optical measuring devices 4b directed at the edge regions K. Accordingly, the reflector is then provided on the nozzle body 2 which also carries the optical measuring devices 4a.
  • the travel ranges ⁇ a and ⁇ b covered by the respective measuring devices are unchanged from the exemplary embodiment shown in FIG. 6.
  • each of the nozzle bodies 2 is to be rotated about the pivot point 9.
  • the rotation of the nozzle body 2 is determined by an electronic angle detector 10. So that the optical axis of each measuring device 4a, 4b still falls perpendicularly onto the metal strip 1, the angular offset must be compensated for by an angle compensation screw 20.
  • Such an angle correction can also be carried out electronically by the measurement signal of the angle detection 10 for the position of the compensation screw 20 is used.
  • FIG. 10 shows an alternative to the arrangement in the right-hand half of FIGS. 7 and 9.
  • the measuring device 4 does not rest directly on the nozzle body 2 but is fastened on a crossmember 22, along which the measuring device 4 transversely is movable to the tape running direction.
  • the traverse 22 can be adjusted with respect to the metal strip 1 by means of a crosshead drive 23.
  • the cross member 22 is mounted in the area of the pivot point 9 for the nozzle body 2.
  • the nozzle body 2 is rotatable at the pivot point 9 with respect to the cross member 22, so that when the nozzle body 2 is rotated into the position shown in dashed lines in FIG. 12, the cross member 23 and thus the measuring device 4 remain stationary.
  • a shield plate 24 is provided above the nozzle gap 3, which is carried essentially flat by the nozzle body 2 and is only slightly inclined in the direction of the nozzle gap 3 at its edge assigned to the metal strip to prevent contact with the tape. In this way, blow-off medium loaded with zinc is held in the space below the screen, so that the optical measuring device, which is sensitive to contamination, is protected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating Apparatus (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Coating With Molten Metal (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Seal Device For Vehicle (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to a device for the continous galvanisation of steel strip, with a pair of blow-off nozzles downstream of at least a guide roller (5) which can be fed with a blow-off medium, especially compressed air, between the nozzle bodies (2) of which the strip (1) is guided at a distance from the nozzle slots extending transversely to the direction of travel of the strip. In order to improve the uniformity of the coating, in a first embodiment of the invention there is allocated to one of the two nozzle bodies (2) an optical measuring instrument (4) to detect the distance between the nozzle slot (3) and the surface of the metal strip, the output signal of which can be fed to the adjusting device for the guide roller (5) and/or that for the nozzle body (2) in such a way that the distance between the nozzle slot (3) and the surface of the metal strip can take a predetermined value. In a second embodiment of the invention, the optical measuring instrument (4, 4a, 4b) can be moved parallel to the nozzle slot covering at least the region of an edge (K) of the metal strip and the opposite nozzle body (2) has a reflector (18) on which the optical axis (a) of the measuring instrument (4b, 4) is directed in its position outside the edge (K) of the metal strip.

Description

Die Erfindung betrifft eine Vorrichtung zum kontinuierlichen Beschichten von Metallband, insbesondere zum Verzinken von Stahlband, wobei unterhalb des Schmelzespiegels eines vom Band durchlaufenden Beschichtungsmittelbades mindestens eine verstellbare Führungsrolle vorgesehen ist, mit einem der mindestens einen Führungsrolle nachgeordneten, oberhalb des Schmelzespiegels angeordneten und mit einem Abblasmedium, insbesondere Druckluft, beaufschlagbaren Abblasdüsenpaar, zwischen dessen Düsenkörpern das Band mit Abstand zu den jeweiligen sich quer zur Bandlaufrichtung erstreckenden Düsenspalten geführt ist, wobei mindestens einem der beiden relativ zum Metallband verstellbaren Düsenkörper eine optische Meßeinrichtung zur Erfassung des Abstandes zwischen Düsenspalt und Metallbandoberfläche zugeordnet ist, deren Meßstrahl mit seiner optischen Achse nahezu senkrecht in Bezug zur Metallbandfläche gerichtet ist und deren Ausgangssignal einer Vertelleinrichtung für die Führungsrolle und/oder einer Verstelleinrichtung für den Düsenkörper derart zuführbar ist, daß der Abstand zwischen Düsenspalt und Metallbandoberfläche vorgebbar ist.The invention relates to a device for the continuous coating of metal strip, in particular for the galvanizing of steel strip, at least one adjustable guide roller being provided below the melt level of a coating agent bath passing through the strip, with a guide roller arranged downstream of the at least one guide roller, arranged above the melt level and with a blow-off medium. in particular compressed air, a pair of blow-off nozzles, between the nozzle bodies of which the strip is guided at a distance from the respective nozzle gaps extending transversely to the strip running direction, with at least one of the two nozzle bodies which can be adjusted relative to the metal strip being assigned an optical measuring device for detecting the distance between the nozzle gap and the metal strip surface, whose Measuring beam with its optical axis is directed almost perpendicular with respect to the metal strip surface and the output signal of an adjusting device for the guide tube lle and / or an adjusting device for the nozzle body can be fed such that the distance between the nozzle gap and the metal strip surface can be predetermined.

Eine Vorrichtung zum kontinuierlichen Beschichten von Stahlband ist aus der DE-A-30 14 651 bekannt. Diese bekannte Vorrichtung dient zur Oberflächenbehandlung eines im Durchlauf-Schmelztauchverfahren beidseitig mit einem Metall, insbesondere Zink, überzogenen Metallbands, insbesondere Stahlbands. Hierzu wird das Metallband in ein Bad mit dem flüssigen Beschichtungsmittel geführt und über eine unterhalb des Schmelzspiegels angeordnete Umlenkrolle senkrecht nach oben weitergeführt. Die unterhalb des Schmelzespiegels im Beschichtungsmittelbad angeordneten Führungsrollen dienen der Stabilisierung des Bandes, indem sie sicherstellen, daß das vom Beschichtungsmittel überzogene Band möglichst flach ist, wenn es senkrecht nach oben aus dem Beschichtungsmittelbad austritt und in den Bereich des Abblasdüsenpaares gelangt. Dabei wird das Band so geführt, daß es möglichst mittig durch die sich gegenüberstehenden Düsenkörper der jeweils auf einer Metallbandseite angeordneten Abblasdüsen verläuft. Es hat sich aber gezeigt, daß es dennoch zu Inhomogenitäten der Schichtdicke auf dem aus dem Düsenkörperpaar austretenden Band kommt, welche durch die Verstellung der Führungsrollen alleine nicht ausgeglichen werden können.A device for the continuous coating of steel strip is known from DE-A-30 14 651. This known device is used for the surface treatment of a metal strip, in particular steel strip, coated on both sides with a metal, in particular zinc, in a continuous hot-dip process. For this purpose, the metal strip is guided into a bath with the liquid coating agent and is passed vertically upwards via a deflection roller arranged below the melting level. The guide rollers arranged below the melt level in the coating agent bath serve the purpose Stabilize the tape by ensuring that the tape coated by the coating agent is as flat as possible when it emerges vertically upwards from the coating agent bath and reaches the area of the blow-off nozzle pair. The strip is guided in such a way that it runs as centrally as possible through the opposing nozzle bodies of the blow-off nozzles each arranged on a metal strip side. However, it has been shown that there are nevertheless inhomogeneities in the layer thickness on the belt emerging from the pair of nozzle bodies, which cannot be compensated for by the adjustment of the guide rollers alone.

Eine andere Vorrichtung zum Abblasen von verzinktem Stahlband ist aus der EP-A-0 249 234 bekannt. Bei dieser Vorrichtung wird der Düsenspalt durch zwei gegeneinander verstellbare Düsenlippen gebildet, so daß der auf die Metallbandoberfläche wirkende Druck des Abblasmediums einstellbar ist. Bei dieser Vorrichtung sind zur Messung der Schichtdicke der Auflage auf dem Metallband Sensoren vorgesehen, die mit einem Rechner verbunden sind, mittels dessen Ausgang Regelventile gesteuert werden, über die die Menge des Abblasmediums, mit dem der Düsenspalt beaufschlagt wird, variierbar ist.Another device for blowing galvanized steel strip is known from EP-A-0 249 234. In this device, the nozzle gap is formed by two mutually adjustable nozzle lips, so that the pressure of the blow-off medium acting on the metal strip surface can be adjusted. In this device, sensors are provided for measuring the layer thickness of the support on the metal strip, which sensors are connected to a computer, by means of whose output control valves are controlled, by means of which the amount of the blow-off medium with which the nozzle gap is acted on can be varied.

Hierdurch kann die Beschichtungsdicke auf einen gewünschten Sollwert eingestellt werden. Treten bei dieser Vorrichtung Abweichungen im Bandverlauf von der mittigen Lage auf, kommt es aufgrund der ungleichmäßigen Beaufschlagung der Bandoberfläche entlang der Bandbreite mit dem Abblasmedium zu Inhomogenitäten in der Beschichtung.As a result, the coating thickness can be set to a desired setpoint. If there are deviations in the course of the strip from the central position in this device, the coating medium is subjected to inhomogeneities in the coating due to the uneven loading of the strip surface along the strip.

Eine weitere Vorrichtung ist aus der WO-A-92/02656 bekannt, bei der der Düsenkörper als Düsenzeile ausgebildet ist derart, daß entlag der Richtung des Düsenspalts mehrere getrennt mit dem Abblasmedium beaufschlagbare gegeneinander abgedichtete Teildüsen vorgesehen sind. Hierdurch können Unebenheiten des zu beschichteten Bandes korrigiert werden, da die Druckbedingungen entlang der Breite des Düsenspalts durch die Aufteilung in die Teildüsen variabel sind.A further device is known from WO-A-92/02656, in which the nozzle body is designed as a nozzle line in such a way that, along the direction of the nozzle gap, a plurality of part nozzles which are sealed against one another and can be acted upon separately by the blow-off medium are provided. As a result, unevenness in the strip to be coated can be corrected because the Pressure conditions along the width of the nozzle gap are variable due to the division into the partial nozzles.

Eine Vorrichtung der eingangs genannten Art ist aus der EP 0 188 813 bekannt. Hierbei sind mehrere quer zur Bandlaufrichtung angeordnete Abstandsmeßeinrichtungen vorgesehen, mittels denen die Planheit des Bandes ermittelt wird. Eine solche Vorrichtung ist nur mit großem Aufwand bei sich verändernder Breite des Metallbandes umzurüsten.A device of the type mentioned at the outset is known from EP 0 188 813. In this case, a plurality of distance measuring devices are provided, which are arranged transversely to the strip running direction and are used to determine the flatness of the strip. Such a device can only be converted with great effort when the width of the metal strip changes.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art dahingehend weiterzuentwickeln, daß sie eine höhere Praktikabilität erhält.The invention has for its object to develop a device of the type mentioned in such a way that it is more practical.

Diese Aufgabe wird erfindungsgemäß nach einer ersten Variante der Erfindung dadurch gelöst, daß entlang des Düsenspaltes mehrere, von einem separatem Antrieb parallel zum Düsenspalt verfahrbare Meßeinrichtungen vorgesehen sind, deren jeweilige Ausgangssignale von einem Verstellantrieb für den Düsenkörper bzw. von einem Verstellantrieb für die Führungsrolle gemeinsam ausgewertet werden.This object is achieved according to the invention in a first variant of the invention in that several measuring devices are provided along the nozzle gap and can be moved by a separate drive parallel to the nozzle gap, the respective output signals of which are jointly evaluated by an adjustment drive for the nozzle body or by an adjustment drive for the guide roller become.

Erfindungsgemäß wird durch die Kombination aus optischer Meßeinrichtung und den Verstelleinrichtungen für die Düsenkörper bzw. Führungsrollen eine Regelkreisanordnung gebildet, die es ermöglicht, eine genaue räumliche Zuordnung zwischen den Düsenspalten einerseits und dem Band andererseits zu schaffen. Entsprechend dem aktuellen Bandverlauf kann der Abstand zwischen Metallbandoberfläche und Düsenspalten jeweils konstant gehalten werden, so daß durch den mittigen Bandverlauf auch bei Bandlauffehlern, wie schräg laufendem oder gewölbtem Band, stets eine homogene Beschichtung erreicht wird. Die optische Meßeinrichtung führt dabei kontinuierlich einen Soll-Ist-Vergleich durch, indem sie den jeweiligen tatsächlichen Abstand zwischen Düsenspalt und Bandoberfläche bestimmt. Hierdurch wird ein Regelkreis geschaffen, welcher für entlang der Bandbreite konstante Abblasbedingungen sorgt, wodurch insgesamt die Beschichtungshomogenität deutlich verbessert wird. Dabei reicht es aus, wenn einer der üblicherweise zwei beidseitig des Metallbandes angeordneten Düsenkörper über eine Meßeinrichtung verfügt, da die Positionierung des anderen Düsenkörpers ebenfalls in Abhängigkeit der Abstandsmessung der Meßeinrichtung erfolgen kann. Dadurch, daß entlang des Düsenspalts mehrere Meßeinrichtungen vorgesehen sind, deren Ausgangssignale vom Verstellantrieb für den Düsenkörper gemeinsam ausgewertet werden, lassen sich Inhomogenitäten entlang der gesamten Breite des Metallbandes noch genauer erfassen. Dabei ist jede der mehreren Meßeinrichtungen kontinuierlich entlang parallel zum Düsenspalt verfahrbar, so daß eine einfache Abtastung der Metallbandoberfläche erfolgt. Dabei ist jeder Meßeinrichtung ein separater Antrieb zugeordnet, so daß eine einfache Anpassung an unterschiedliche Metallbandbreiten erfolgen kann, wobei im Falle von zwei Meßeinrichtungen jede der beiden Meßeinrichtungen jeweils eine Hälfte der Bandbreite überstreicht.According to the invention, a control circuit arrangement is formed by the combination of the optical measuring device and the adjustment devices for the nozzle bodies or guide rollers, which makes it possible to create a precise spatial association between the nozzle gaps on the one hand and the belt on the other. Depending on the current strip run, the distance between the metal strip surface and the nozzle gaps can be kept constant, so that a homogeneous coating is always achieved due to the central strip run even in the event of strip running errors, such as inclined or curved strip. The optical measuring device continuously carries out a target-actual comparison by determining the respective actual distance between the nozzle gap and the strip surface. This creates a control loop, which ensures constant blow-off conditions along the bandwidth, so that the overall Coating homogeneity is significantly improved. It is sufficient if one of the usually two nozzle bodies arranged on both sides of the metal strip has a measuring device, since the positioning of the other nozzle body can also take place as a function of the distance measurement of the measuring device. The fact that several measuring devices are provided along the nozzle gap, the output signals of which are jointly evaluated by the adjustment drive for the nozzle body, make it possible to detect inhomogeneities along the entire width of the metal strip even more precisely. Each of the several measuring devices can be moved continuously along parallel to the nozzle gap, so that the metal strip surface is easily scanned. Each measuring device is assigned a separate drive so that it can be easily adapted to different metal strip widths, and in the case of two measuring devices each of the two measuring devices covers half of the bandwidth.

Eine konstruktiv einfache Lösung sieht vor, daß die Meßeinrichtung vom Düsenkörper getragen wird. Durch die bauliche Einheit können Abstandsveränderungen zwischen Bandoberfläche und dem mit der Position des Düsenspalts in Beziehung stehenden Referenzpunkte der optischen Meßeinrichtung mit hoher Genauigkeit ausgeregelt werden.A structurally simple solution provides that the measuring device is carried by the nozzle body. Due to the structural unit, changes in distance between the belt surface and the reference points of the optical measuring device which are related to the position of the nozzle gap can be corrected with high accuracy.

Von besonderer Bedeutung ist, daß der Düsenkörper in der Normalebene des Metallbandes mittels des Verstellantriebs transversal und/oder rotatorisch bewegbar ist. Die transversale Verstellung des Düsenkörpers kommt dabei zum Tragen, wenn sich die Lage des Metallbandes parallel zur Soll-Lage, also planparallel zum Düsenspalt verändert, so daß durch die Lateralbewegung des Düsenkörpers ein Ausgleich erfolgen kann. Ein solcher Lateralausgleich kommt auch dann zum Tragen, wenn das Metallband eine bestimmte Wölbung erfährt. Dann kann durch die Lateralbewegung erreicht werden, daß stets der erforderliche Minimalabstand zwischen Düsenspalt und Metallbandoberfläche eingehalten wird, so daß es nicht zu Berührungen beider kommt. Die rotatorische Verstellung des Düsenkörpers kommt in Betracht, falls das Band sich in einer Ebene senkrecht zur Laufrichtung betrachtet um einen bestimmten Winkel schrägstellt, so daß es an den Bandkanten zum Kontakt mit dem Düsenspalt käme. Durch entsprechende Positionierung des Düsenkörpers läßt sich auch dieser Fehler kompensieren.It is particularly important that the nozzle body can be moved transversely and / or rotationally in the normal plane of the metal strip by means of the adjustment drive. The transverse adjustment of the nozzle body comes into play when the position of the metal strip changes parallel to the desired position, that is to say plane-parallel to the nozzle gap, so that compensation can take place due to the lateral movement of the nozzle body. Such a lateral compensation also comes into play when the metal strip experiences a certain curvature. Then it can be achieved through the lateral movement that the required minimum distance between Nozzle gap and metal strip surface is observed so that there is no contact between the two. The rotational adjustment of the nozzle body comes into consideration if the strip is inclined at a certain angle in a plane perpendicular to the running direction, so that it would come into contact with the nozzle gap at the strip edges. This error can also be compensated for by appropriate positioning of the nozzle body.

Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß der Düsenkörper um eine Achse parallel zum Düsenspalt verschwenkbar ist, wobei zur Korrektur des Ausgangssignals der mindestens einen Meßeinrichtung eine den Verschwenkungswinkel erfassende Winkelkorrektureinrichtung vorgesehen ist. Eine solche Winkelkorrektur ist erforderlich, wenn in Abhängigkeit von der Viskosität des Beschichtungsmaterials die Abstreifbedingungen im Laufe des Prozesses verändert werden müssen. Da durch Verschwenken des Düsenkörpers um eine parallel zum Düsenspalt verlaufende Achse im Falle eines auf dem Düsenkörper fest angeordneten Meßsensors eine Verfälschung des Abstandssignals eintritt, ist eine elektronische Winkelerfassungseinrichtung zur Korrektur des genannten Fehlers erforderlich.According to a further embodiment of the invention, it is provided that the nozzle body can be pivoted about an axis parallel to the nozzle gap, an angle correction device detecting the pivoting angle being provided for correcting the output signal of the at least one measuring device. Such an angle correction is necessary if, depending on the viscosity of the coating material, the stripping conditions have to be changed in the course of the process. Since the distance signal is distorted by pivoting the nozzle body about an axis running parallel to the nozzle gap in the case of a measuring sensor fixedly arranged on the nozzle body, an electronic angle detection device is required to correct the above-mentioned error.

Schließlich ist es nach einem weiter bevorzugten Ausführungsbeispiel der Erfindung vorgesehen, daß auf beiden Metallbandseiten jeweils ein Düsenkörper mit jeweils mindestens einer Meßvorrichtung vorgesehen ist, wobei eine gemeinsame Auswerteeinrichtung für die Meßsignale zur gekoppelten Ansteuerung der jeweiligen Verstellantriebe der beiden Düsenkörper zugeordnet ist. Hierdurch kann insbesondere die Zielsetzung erreicht werden, ein homogenes beidseitiges Beschichten des Metallbandes zu erreichen.Finally, it is provided according to a further preferred embodiment of the invention that a nozzle body with at least one measuring device is provided on each of the two metal strip sides, with a common evaluation device for the measuring signals being associated with the coupled actuation of the respective adjustment drives of the two nozzle bodies. In this way, in particular the objective of achieving a homogeneous coating of the metal strip on both sides can be achieved.

Als Meßeinrichtungen eignen sich vorzugsweise solche optischen Sensoren, welche den Abstand zur Metallbandoberfläche über die Laufzeitmessung ihres Lichtstrahls erfassen.Optical sensors which measure the distance from the metal strip surface via the transit time measurement of their light beam are preferably suitable as measuring devices.

Die der Erfindung zugrundeliegende Aufgabe wird nach einer zweiten erfindungsgemäßen Variante dadurch gelöst, daß mindestens einer der beiden relativ zum Metallband verstellbaren Düsenkörper eine optische Meßeinrichtung trägt, die parallel zum Düsenspalt mindestens den Bereich einer Kante des Metallbandes überdeckend verfahrbar ist und daß der gegenüberliegende Düsenkörper einen Reflektor aufweist, auf den die optische Achse der Meßeinrichtung in deren Position außerhalb der Metallbandkante gerichtet ist und daß der Meßeinrichtung eine Auswerteeinrichtung nachgeordnet ist, die das Meßsignal der aktuellen Position auf der Verfahrachse zuordnet und an einen Regelkreis für eine Verstelleinrichtung mindestens eines Düsenkörpers und/oder für eine Verstelleinrichtung für die Führungsrolle weitergibt, so daß der Abstand zwischen Düsenspalt und Metallbandoberfläche vorgebbar ist.According to a second variant of the invention, the object on which the invention is based is achieved in that at least one of the two nozzle bodies which are adjustable relative to the metal strip carries an optical measuring device which can be moved parallel to the nozzle gap and overlaps at least the area of one edge of the metal strip and that the opposite nozzle body has a reflector on which the optical axis of the measuring device is directed in its position outside the metal strip edge and that the measuring device is followed by an evaluation device which assigns the measuring signal to the current position on the travel axis and to a control circuit for an adjusting device of at least one nozzle body and / or for passes an adjustment device for the guide roller so that the distance between the nozzle gap and the metal strip surface can be predetermined.

Diese Variante zeichnet sich dadurch aus, daß eine genaue Abstandsmessung sowohl im Bezug auf den Abstand der Düsenkörper voneinander als auch des Abstandes jeweils eines Düsenkörpers von der ihm zugewandten Metallbandoberfläche ermöglicht wird. Wesentlich ist dabei, daß die optische Meßeinrichtung zwei Abstandsbereiche überdeckt, nämlich denjenigen innerhalb der Metallbandbreite und denjenigen außerhalb. Während im Bereich innerhalb der Metallbandkante der Abstand Düse-Band ermittelt wird, ergibt sich im Bereich außerhalb der Kanten der Abstand Düse-Düse. Aufgrund dieser beiden Meßsignale kann die Positionierung der Düsenkörper nunmehr so erfolgen, daß beide Düsenkörper in Bezug auf das Metallband auf einen definierten Abstand gefahren werden können, insbesondere, daß beide Düsenkörper symmetrisch im Bezug auf das Band angeordnet sind.This variant is distinguished by the fact that an accurate distance measurement is made possible both with respect to the distance of the nozzle bodies from one another and the distance of one nozzle body from the metal strip surface facing it. It is essential that the optical measuring device covers two distance ranges, namely those within the metal bandwidth and those outside. While the distance between the nozzle and strip is determined in the area within the metal strip edge, the distance between the nozzle and nozzle results in the area outside the edges. On the basis of these two measurement signals, the nozzle bodies can now be positioned in such a way that both nozzle bodies can be moved to a defined distance with respect to the metal strip, in particular that both nozzle bodies are arranged symmetrically with respect to the strip.

Dabei ist der Meßeinrichtung eine Auswerteeinrichtung nachgeordnet, die das Meßsignal der aktuellen Position auf der Verfahrachse zuordnet und an einen Regelkreis für die Verstelleinrichtung mindestens eines Düsenkörpers weitergibt. Hiedurch ergibt sich eine Automatisierungsmöglichkeit, indem der oder die Düsenkörper über eine oder mehrere Verstelleinrichtungen entsprechend dem gewonnenen Meßsignal so verstellt werden, daß sich ein möglichst mittiger Verlauf des Bandes ergibt.An evaluation device is arranged downstream of the measuring device, which assigns the measurement signal to the current position on the travel axis and forwards it to a control circuit for the adjustment device of at least one nozzle body. This results in an automation possibility in that the nozzle body or bodies are adjusted via one or more adjustment devices in accordance with the measurement signal obtained in such a way that the strip runs as centrally as possible.

Vorzugsweise weist die Auswerteeinrichtung einen Diskriminator zur Unterscheidung zwischen dem vom Metallband und dem vom Reflektor reflektierten Meßsignal auf. Hierdurch ist es möglich, die exakte Position der Bandkante festzustellen und somit auch diesbezüglich eine Symmetrierung, beispielsweise bei der Verwendung von speziellen auf die Kanten gerichteten Düsen ("Kantendüsen") zu erreichen. Solche Kantendüsen, wie sie in der EP-A-0 219 234 beschrieben sind, dienen dazu, Zinkaufwachsungen an den Kanten durch gezieltes Anblasen zu reduzieren. Erfindungsgemäß kann die Position der Kantendüse ebenfalls automatisch eingestellt werden, in dem eine der Meßeinrichtungen die jeweilige Lage der Metallbandkante detektiert. Neben der Positionierungsmöglichkeit für die Kantendüsen können die den Metallbandkantenbereich erfassende Meßeinrichtungen auch zur kontinuierlichen Überwachung der tatsächlichen Metallbandbreite eingesetzt werden.The evaluation device preferably has a discriminator for distinguishing between the measurement signal reflected by the metal strip and the measurement signal reflected by the reflector. This makes it possible to determine the exact position of the band edge and thus also a balancing in this regard, for example when using it by special nozzles directed towards the edges ("edge nozzles"). Such edge nozzles, as described in EP-A-0 219 234, serve to reduce zinc growth on the edges by targeted blowing. According to the invention, the position of the edge nozzle can also be set automatically in that one of the measuring devices detects the respective position of the metal strip edge. In addition to the possibility of positioning the edge nozzles, the measuring devices that detect the metal strip edge area can also be used for continuous monitoring of the actual metal strip width.

Die einfachste Ausgestaltung der zweiten Variante sieht vor, daß dem einen Düsenkörper zwei Meßeinrichtungen zugeordnet sind, die jeweils über sich nicht überlappende Bereiche von mindestens der halben Metallbandbreite verfahrbar sind, wobei jede Meßeinrichtung von einem separaten Antrieb verfahrbar ist. Bei dieser Ausführungsform übernimmt jede der beiden Meßeinrichtungen die Funktion der Abstandsmessung innerhalb der Bandkante als auch außerhalb der Bandkante. Während der Beschichtung wird dabei jede der beiden Meßeinrichtungen von getrennten Antrieben kontinuierlich parallel zum Düsenspalt verfahren, wobei ständig oder in bestimmten Zeitabschnitten Meßsignale gewonnen werden.The simplest embodiment of the second variant provides that two measuring devices are assigned to the one nozzle body, each of which can be moved over non-overlapping areas of at least half the metal bandwidth, each measuring device being movable by a separate drive. In this embodiment, each of the two measuring devices takes on the function of measuring the distance inside the strip edge and outside the strip edge. During the coating process, each of the two measuring devices is moved continuously by separate drives parallel to the nozzle gap, with measurement signals being obtained continuously or in certain time segments.

Eine weitere Ausführungsform sieht anstelle von zwei einzelnen Meßeinrichtungen vor, daß der eine Düsenkörper zwei Paare von Meßeinrichtungen mit sich jeweils nicht überlappenden Verfahrbereichen aufweist, wobei die Meßeinrichtungen des ersten Paares über weniger als der halben Metallbandbreite verfahrbar sind und die Meßeinrichtungen des zweiten Paares den Bereich der jeweiligen Metallbandkante überdecken. Hierdurch werden die Funktionen Abstandsmessung Düse-Band, Messung der Metallbandbreite bzw. Abstandsmessung Düse-Düse auf separate Meßeinrichtungen übertragen, wobei die ersten Meßeinrichtungen für die Messung Düse-Band immer im Bereich innerhalb der Bandkante und die zweiten Paare von Meßeinrichtungen immer um den Bereich der Bandkante herum oszillierend und von getrennten Antrieben verfahren werden.Another embodiment provides instead of two individual measuring devices that the one nozzle body has two pairs of measuring devices, each with non-overlapping travel ranges, the measuring devices of the first pair being movable over less than half the metal bandwidth and the measuring devices of the second pair covering the area of the Cover the respective metal band edge. As a result, the functions distance measurement nozzle-band, measurement of Metal band width or distance measurement nozzle-nozzle transferred to separate measuring devices, the first measuring devices for measuring nozzle-band always in the area within the band edge and the second pairs of measuring devices always oscillating around the area of the band edge and being moved by separate drives.

Dabei sind die Alternativen denkbar, daß einerseits alle Meßeinrichtungen auf einem gemeinsamen Führungsschlitten angeordnet und jeweils von separaten Antrieben antreibbar sind oder andererseits die Meßeinrichtungen des ersten bzw. zweiten Paares auf unterschiedlichen Düsenkörpern liegen, wobei die um den Bereich der Metallbandkante verfahrbaren Meßeinrichtungen auf dem dem Reflektor gegenüberliegenden Düsenkörper angeordnet sind und auch hier jede Meßeinrichtung von einem separaten Antrieb verstellbar ist. Beide dargestellten Varianten sind technisch äquivalent, wobei die letztere aufgrund der sich nicht überlappenden Antriebe herstellungstechnisch einfacher ist.The alternatives are conceivable that, on the one hand, all measuring devices are arranged on a common guide carriage and each can be driven by separate drives, or, on the other hand, the measuring devices of the first or second pair lie on different nozzle bodies, the measuring devices which can be moved around the area of the metal strip edge on the reflector opposite nozzle body are arranged and here, too, each measuring device is adjustable by a separate drive. Both variants shown are technically equivalent, the latter being simpler to manufacture due to the non-overlapping drives.

Der Reflektor ist vorzugsweise durch ein ebenes, parallel zum Metallband verlaufendes insbesondere reflektierendes Band gebildet, dessen Breite so gewählt ist, daß mindestens die Kantenpositionen des zu beschichtenden Bandes überdeckt werden. Will man nun Bänder unterschiedlicher Breite beschichten, so muß das Band eine solche Position haben, daß es vom Bereich der Kante des schmalsten bis über die Kante des breitesten Bandes hinaus sich in Bandquerrichtung erstreckt, damit auch beim breitesten zu beschichtenden Metallband noch die auf die Kante gerichtete Meßeinrichtung ein entsprechendes Reflektionssignal erhält.The reflector is preferably formed by a flat, in particular reflecting tape running parallel to the metal tape, the width of which is selected so that at least the edge positions of the tape to be coated are covered. If you want to coat tapes of different widths, the tape must have such a position that it extends from the area of the edge of the narrowest to the edge of the widest tape in the transverse direction of the tape, so that even with the widest metal tape to be coated, that on the edge directional measuring device receives a corresponding reflection signal.

Eine gute Justierungsmöglichkeit ergibt sich, wenn die Drehachse des Reflektors in einer gemeinsamen Parallelebene zum Metallband liegt, die auch durch den Drehpunkt des Düsenkörpers liegt, welcher den Reflektor trägt.A good adjustment possibility arises if the axis of rotation of the reflector lies in a common plane parallel to the metal strip, which also lies through the pivot point of the nozzle body which carries the reflector.

Da nicht nur der Reflektor bei einer Drehung des Düsenkörpers nachjustiert werden muß, sondern auch die optische Meßeinrichtung, ist diese vorzugsweise so auf dem sie tragenden Düsenkörper befestigt, daß ein Winkelversatz durch eine hierfür vorgesehene Ausgleichsschraube kompensiert werden kann.Since not only the reflector has to be readjusted when the nozzle body rotates, but also the optical measuring device, it is preferably attached to the nozzle body carrying it in such a way that an angular offset can be compensated for by a compensating screw provided for this purpose.

Wenn die optische Meßeinrichtung auf einer Traverse angeordnet ist, gegenüber der der zugehörige Düsenkörper verschwenkbar ist, bleibt die Winkellage der Meßeinrichtung gegenüber dem Band beim Verschwenken des Düsenkörpers erhalten, so daß auf eine zusätzliche Winkelkompensation verzichtet werden kann.If the optical measuring device is arranged on a crossmember, relative to which the associated nozzle body can be pivoted, the angular position of the measuring device relative to the belt is retained when the nozzle body is pivoted, so that an additional angle compensation can be dispensed with.

Erfindung wird im folgenden anhand einer Zeichnung näher erläutert.The invention is explained in more detail below with the aid of a drawing.

Dabei zeigen:

Fig. 1 - Fig. 4
Ausführungsbeispiele zu der ersten Variante der Erfindung.
und
Fig. 5 - Fig. 10
Ausführungsbeispiele zu der zweiten Variante der Erfindung
Show:
1-4
Exemplary embodiments of the first variant of the invention.
and
5-10
Embodiments of the second variant of the invention

Im einzelnen zeigen die Figuren:

Fig. 1
ein erstes Ausführungsbeispiel im Schnitt der Gesamtbeschichtungsvorrichtung,
Fig. 2
das erste Ausführungsbeispiel als Draufsicht in der Normalebene des Metallbandes, in dem die Abblaseinheit darstellenden Detail,
Fig. 3
ein Schnitt entlang der Linie AA in Fig.1,
Fig. 4
eine Skizze zur Erläuterung der Funktion der Vorrichtung nach der ersten Variante der Erfindung bei
Fig. 4a
einer Lateralverschiebung des Metallbandes,
Fig. 4b
einer Schrägstellung des Metallbandes und
Fig. 4c
einer Wölbung des Metallbandes;
Fig. 5
ein erstes Ausführungsbeispiel als Draufsicht in der Normalebene des Metallbandes.
Fig. 6
ein zweites Ausführungsbeispiel.
Fig. 7
einen Schnitt entlang der Linie A-A in den Figuren 5 oder 6,
Fig.8
ein drittes Ausführungsbeispiel, ebenfalls als Draufsicht in der Normalebene des Metallbandes,
Fig. 9
einen Schnitt entlang der Linie B-B in Fig. 8 und
Fig. 10
ein viertes Ausführungsbeispiel im Schnitt.
The figures show in detail:
Fig. 1
a first embodiment in section of the overall coating device,
Fig. 2
the first embodiment as a plan view in the normal plane of the metal strip, in the detail representing the blow-off unit,
Fig. 3
2 shows a section along the line AA in FIG. 1,
Fig. 4
a sketch to explain the function of the device according to the first variant of the invention
Fig. 4a
a lateral displacement of the metal strip,
Fig. 4b
an inclination of the metal strip and
Fig. 4c
a curvature of the metal strip;
Fig. 5
a first embodiment as a plan view in the normal plane of the metal strip.
Fig. 6
a second embodiment.
Fig. 7
4 shows a section along the line AA in FIGS. 5 or 6,
Fig. 8
a third embodiment, also as a plan view in the normal plane of the metal strip,
Fig. 9
a section along the line BB in Fig. 8 and
Fig. 10
a fourth embodiment in section.

Das in Fig. 1 dargestellte Ausführungsbeispiel nach der ersten Variante der Erfindung für eine Beschichtungsvorrichtung zeigt ein Metallband 1, welches von rechts oben kommend schräg in ein Beschichtungsmittelbad 15 eintaucht, von dem lediglich der Schmelzespiegel 14 dargestellt ist. Unterhalb des Schmelzespiegels 14 wird das Band 1 mittels einer von einer Halterung 13 getragenen Umlenkrolle 6 so umgelenkt, daß es anschließend senkrecht nach oben verläuft. In Bandlaufrichtung nachgeordnet aber noch unterhalb des Schmelzespiegels 14 sind zwei Führungsrollen 5 vorgesehen, die sich auf entgegengesetzten Seiten des Metallbandes 1 befinden. Die Führungsrollen 5 sind höhenversetzt zueinander angeordnet und jeweils getrennt durch Verstellantriebe 12 in Richtung senkrecht zur Laufrichtung des Metallbandes 1 verstellbar. Oberhalb der Führungsrollen 5 tritt das mit flüssigem Zink beschichtete Metallband 1 aus dem Beschichtungsmittelbad 15 aus und trifft auf zwei an jeweils einer Seite des Metallbandes 1 angeordnete Düsenkörper 2, deren Düsenspalte 3 einen bestimmten Abstand X zur jeweiligen Metallbandoberfläche haben. Einer der Düsenkörper 2 trägt auf seiner Oberseite einen Aufsatz für eine Meßeinrichtung 4. Die Meßeinrichtung 4 ist ein optischer Sensor, der einen Lichtstrahl entlang der mit a bezeichneten optischen Achse aussendet, welcher annähernd senkrecht auf die Bandoberfläche einfällt. Zur Vermeidung von Verunreinigungen ist die Seite der Meßeinrichtung 4, auf der der Lichtstrahl austritt, mit einer mit Druckluft beaufschlagten Schutzhülse 7 umgeben.
Wie im Detail insbesondere aus Fig. 2 hervorgeht, die eine Draufsicht desjenigen Ausschnittes von Fig. 1 zeigt, der den Bereich der Düsenkörper 2 bildet, sind entlang der Breite des Metallbandes 1 zwei Meßeinrichtungen 4a,4b vorgesehen, die auf einem Führungsschlitten 16 angeordnet sind, wobei jede der Meßeinrichtungen 4a,4b mittels eines zugehörigen Antriebs 17a,17b in einer Richtung parallel zur Breite des Metallbandes 1 bzw. des Düsenspalts 3 in Bezug auf den Düsenkörper 2 separat verfahrbar ist.
The embodiment shown in FIG. 1 according to the first variant of the invention for a coating device shows a metal strip 1 which, coming from the top right, is obliquely immersed in a coating agent bath 15, of which only the melt level 14 is shown. Below the melt level 14, the band 1 is deflected by means of a deflection roller 6 carried by a holder 13 in such a way that it then runs vertically upwards. Downstream of the strip running direction but still below the melt level 14, two guide rollers 5 are provided, which are located on opposite sides of the metal strip 1. The guide rollers 5 are arranged offset in height from one another and each can be adjusted separately by adjusting drives 12 in the direction perpendicular to the running direction of the metal strip 1. Above the guide rollers 5, the metal strip 1 coated with liquid zinc emerges from the coating agent bath 15 and strikes two nozzle bodies 2 arranged on one side of the metal strip 1, the nozzle gaps 3 of which have a certain distance X from the respective metal strip surface. One of the nozzle bodies 2 carries an attachment for a measuring device 4 on its upper side. The measuring device 4 is an optical one Sensor that emits a light beam along the optical axis labeled a, which is incident almost perpendicularly on the strip surface. To avoid contamination, the side of the measuring device 4 on which the light beam emerges is surrounded by a protective sleeve 7 which is pressurized with compressed air.
As can be seen in detail in particular from FIG. 2, which shows a plan view of the detail from FIG. 1 which forms the region of the nozzle body 2, two measuring devices 4a, 4b are provided along the width of the metal strip 1 and are arranged on a guide carriage 16 , wherein each of the measuring devices 4a, 4b can be moved separately in relation to the nozzle body 2 in a direction parallel to the width of the metal strip 1 or the nozzle gap 3 by means of an associated drive 17a, 17b.

Die beiden Meßeinrichtungen 4a,4b können mittels der Antriebe 17a,17b so verfahren werden, daß die linke Meßeinrichtung 4a bis in den linken Randbereich des Metallbandes 1 und die rechte Meßeinrichtung 4b bis hin zu dem rechten Metallbandrandbereich verfahren werden kann.The two measuring devices 4a, 4b can be moved by means of the drives 17a, 17b in such a way that the left measuring device 4a can be moved into the left edge area of the metal strip 1 and the right measuring device 4b up to the right metal strip edge area.

Der gesamte Aufsatz 8 auf den Düsenkörper 2, welcher die Meßeinrichtung 4 beinhaltet, ist mittels eines Schutzblechs 8a, 8b (Fig. 3) abgekapselt.The entire attachment 8 on the nozzle body 2, which contains the measuring device 4, is encapsulated by means of a protective plate 8a, 8b (FIG. 3).

Der Verstellantrieb für den Düsenkörper 2 besteht aus zwei ebenfalls in Fig. 2 dargestellten Linearantrieben 11, wobei der Düsenkörper gegenüber den Linearantrieben kardanisch gelagert ist. Bei gleichgerichteter Bewegung der Antriebe ist der Düsenkröper 2 in der Normalebene des Metallbandes lateral verstellbar, so daß der Abstand zwischen Düsenspalt 3 und Oberfläche des Metallbandes veränderbar ist.The adjustment drive for the nozzle body 2 consists of two linear drives 11, also shown in FIG. 2, the nozzle body being gimbal-mounted relative to the linear drives. When the drives move in the same direction, the nozzle body 2 is laterally adjustable in the normal plane of the metal strip, so that the distance between the nozzle gap 3 and the surface of the metal strip can be changed.

Durch gegensinnige Bewegung der Antriebe 11 ist der Düsenkörper 2 in der Normalebene des Metallbandes 1 drehbar.By moving the drives 11 in opposite directions, the nozzle body 2 can be rotated in the normal plane of the metal strip 1.

Als weitere Verstellmöglichkeit ist vorgesehen, daß jeder Düsenkörper 2 sich um einen Drehpunkt 9 (siehe Fig.3) verschwenken läßt, so daß der Düsenspalt 3 in die dargestellte gestrichelte Position gebracht werden kann, welche einer Winkeländerung gegenüber der Normalebene entspricht. Im oberen Bereich des Düsenkörpers 2 ist eine Winkelerfassungseinrichtung 10 vorgesehen, die den Verschwenkungswinkel um den Drehpunkt 9 feststellt und ein entsprechendes Korrektursignal zum Ausgleich des Fehlers der Meßeinrichtung 4 abgibt, der dadurch bedingt ist, daß die optische Achse a im Falle einer Verschwenkung nicht mehr senkrecht in Bezug auf die Bandlaufrichtung ist, d.h. nicht mehr der kürzesten Entfernung entspricht. Die Funktion der erfindungsgemäßen Vorrichtung gemäß Figur 1 - 3, wird anhand der Skizzen in Fig. 4 nunmehr näher erläutert:As a further adjustment option, it is provided that each nozzle body 2 can be pivoted about a pivot point 9 (see FIG. 3), so that the nozzle gap 3 can be brought into the dashed position shown, which corresponds to a change in angle with respect to the normal plane. In the upper area of the nozzle body 2, an angle detection device 10 is provided, which detects the pivoting angle about the pivot point 9 and emits a corresponding correction signal to compensate for the error of the measuring device 4, which is caused by the fact that the optical axis a is no longer vertical in the event of a pivoting with respect to the tape running direction, ie no longer corresponds to the shortest distance. The function of the device according to the invention according to FIGS. 1-3 is now explained in more detail with reference to the sketches in FIG. 4:

Ziel der erfindungsgemäßen Vorrichtung ist es, den Abstand zwischen Düsenspalt 3 und Metallbandoberfläche jeder der beiden Seiten des Metallbandes auf einem konstanten Wert x zu halten. Um Abweichungen von der ebenen Mittellage des Metallbandes, die in den Fig. 4a-4c durch die gestrichelte Linie dargestellt ist, auszugleichen, wird die tatsächliche Lage des Metallbandes von den Meßeinrichtungen 4a,4b kontinuierlich erfaßt und das jeweilige Signal, welches bei fester bekannter räumlicher Zuordnung zwischen Meßeinrichtung und Düsenspalt dem jeweiligen Abstand des Punktes auf dem Düsenspalt von der Metallbandoberfläche entspricht, an eine auf die Verstellantriebe für die Düsenkörper bzw. für die Führungsrolle 5 wirkende Auswerteinrichtung gegeben.The aim of the device according to the invention is the distance between the nozzle gap 3 and the metal strip surface to keep each of the two sides of the metal strip at a constant value x. In order to compensate for deviations from the flat central position of the metal strip, which is represented by the dashed line in FIGS. 4a-4c, the actual position of the metal strip is continuously detected by the measuring devices 4a, 4b and the respective signal, which is known at a fixed spatial Assignment between measuring device and nozzle gap corresponds to the respective distance of the point on the nozzle gap from the metal strip surface, given to an evaluation device acting on the adjustment drives for the nozzle body or for the guide roller 5.

Falls das Metallband vom mittigen Verlauf abweicht, kann dies durch die laterale oder rotatorische Verstellung der Verstellantriebe 11 der Düsenkörper 2 kompensiert werden. Es sind grundsätzlich 3 Fehlerarten möglich, die in den Fig. 4a-4c skizziert sind.If the metal strip deviates from the central course, this can be compensated for by the lateral or rotary adjustment of the adjustment drives 11 of the nozzle body 2. In principle, three types of error are possible, which are outlined in FIGS. 4a-4c.

Wenn gemäß Fig. 4a das Band 1 in Bezug auf seine Mittellage (gestrichelte Linie) parallel versetzt ist, z.B in Richtung des oberen Düsenspaltes des oberen Düsenkörpers, werden die Meßeinrichtungen 4a,4b dieselbe Abstandverringerung feststellen, woraufhin der obere Düsenkörper 2 mittels des Verstellantriebs 11 in Fig. 4a nach oben bewegt wird, um den Sollwert x des Abstandes zwischen Düsenspalt 3 und Metallbandoberfläche 1 einzuhalten. Entsprechend bewegt sich der Verstellantrieb 11 des unteren Düsenkörpers 2 ebenfalls nach oben, so daß im Ergebnis der gewünschte Abstand wieder erreicht wird.If, according to FIG. 4a, the belt 1 is offset parallel with respect to its central position (dashed line), for example in the direction of the upper nozzle gap of the upper nozzle body, the measuring devices 4a, 4b will determine the same reduction in distance, whereupon the upper nozzle body 2 by means of the adjustment drive 11 4a is moved upward in order to maintain the desired value x of the distance between the nozzle gap 3 and the metal strip surface 1. Accordingly, the adjustment drive 11 of the lower nozzle body 2 also moves upward, so that the desired distance is achieved again as a result.

Wenn gemäß Fig. 4b das Metallband gegenüber der mittigen gestrichelten Position um einen bestimmten Neigungswinkel schräg gestellt ist, werden die beiden Meßeinrichtungen entlang der Metallbandbreite jeweils unterschiedliche Abstände anzeigen, wobei im oberen linken Bereich und im unteren rechten Bereich von Fig. 4b der Sollwert des Abstandes zwischen Düsenspalt und Metallbandoberfläche unterschritten wird. Die Korrektur erfolgt dann durch Drehung der jeweiligen Düsenkörper, wie dies durch die kreisförmigen Pfeile in Fig. 4b angedeutet ist. Nach Ablauf der Korrektur ist auch bei diesem Bandlauffehler über die gesamte Bandbreite wieder der gewünschte Abstandswert einzuhalten.If, according to FIG. 4b, the metal strip is inclined by a certain angle of inclination with respect to the central dashed position, the two measuring devices will each show different distances along the metal strip width, the setpoint of the distance being shown in the upper left area and in the lower right area of FIG. 4b between the nozzle gap and the metal strip surface. The correction is then carried out by rotating the respective nozzle bodies, as is indicated by the circular arrows in FIG. 4b. After the correction has been carried out, the desired distance value must again be observed for this strip running error across the entire bandwidth.

Ein weiterer möglicher Bandlauffehler ist in Fig. 4c angedeutet, der darin besteht, daß sich das Band 1 wölbt. Durch die Wölbung wird der zulässige Abstand im oberen Bereich etwa in der Bandmitte und im unteren Bereich an den Bandkanten unterschritten, so daß es hierdurch zur Gefahr eine Berührung zwischen Band und Düse kommt. Erfindungsgemäß erfolgt eine Korrektur dieses Fehlers derart, daß sich der obere Düsenkörper 2 lateral nach oben verstellt, bis entlang der gesamten Bandbreite mindestens der Sollwert für den Abstand zwischen Band und Düsenspalt eingehalten ist. Dies bedeutet, daß dieser Wert in der Bandmitte erreicht wird, während an den Bandkanten notwendigerweise ein größerer Abstand erforderlich ist.Another possible tape running error is indicated in Fig. 4c, which consists in that the tape 1 bulges. Due to the curvature, the permissible distance in the upper area, for example in the middle of the belt and in the lower area at the belt edges, is undershot, so that there is a danger of contact between the belt and nozzle. According to the invention, this error is corrected in such a way that the upper nozzle body 2 moves laterally upwards until at least the desired value for the distance between the belt and the nozzle gap is maintained along the entire bandwidth. This means that this value is reached in the middle of the strip, while a larger distance is necessarily required at the strip edges.

Umgekehrt wird in Bezug auf den unteren Düsenkörper die Einstellung so vorgenommen, daß sich dieser soweit von den jeweiligen Bandkanten entfernt, bis auch dort der zulässige Abstand erreicht wird. Notwendigerweise wird dann in der Mitte der Abstand größer sein.Conversely, with respect to the lower nozzle body, the setting is made so that it moves away from the respective strip edges until the permissible distance is also reached there. The distance will then necessarily be larger in the middle.

Durch die Kopplung der Ausgangssignale der Meßeinrichtungen mit dem Verstellantrieb der Führungsrollen läßt sich insbesondere bei einer festgestellten Bandwölbung durch entsprechende Ausstellung der Führungsrolle 5 das Band glätten, wodurch der Bandfehler ausgeglichen wird.By coupling the output signals of the measuring devices with the adjustment drive of the guide rollers, the tape can be smoothed, in particular in the case of a determined band curvature, by correspondingly issuing the guide roller 5, whereby the band error is compensated for.

Die erfindungsgemäße Vorrichtung sieht über die zuvor beschriebene Kompensation von Bandlauffehlern hinaus die Möglichkeit vor, die Düsenkörper 2 in Bezug auf den Drehpunkt 9 zu verschwenken. Dies kann beispielsweise erforderlich sein, wenn sich die Viskosität des Beschichtungsmittels im Laufe des Verfahrens ändert, so daß die Abstreifbedingungen entsprechend abgeändert werden müssen. Dann bewegen sich die jeweiligen Düsenspalte 3 in die in Fig. 1 dargestellte gestrichelte Position. Um durch die Winkeländerung auftretenden Meßfehler zu kompensieren, ist die Winkelkorrektureinrichtung 10 vorgesehen. Diese ist jedoch nicht erforderlich, falls die Meßeinrichtungen 4a,4b nicht, wie in den in den Zeichnungen dargestellten Ausführungsbeispielen offenbart, auf dem Düsenkörper 2 ortsfest angeordnet, sondern in einer separaten baulichen Einheit untergebracht sind.The device according to the invention provides, in addition to the compensation of belt running errors described above, the possibility of pivoting the nozzle body 2 with respect to the pivot point 9. This may be necessary, for example, if the viscosity of the coating agent changes in the course of the process, so that the stripping conditions have to be changed accordingly. Then the respective nozzle gaps 3 move into the dashed position shown in FIG. 1. In order to compensate for measurement errors occurring due to the change in angle, the angle correction device 10 is provided. However, this is not necessary if the measuring devices 4a, 4b are not arranged in a stationary manner on the nozzle body 2, as disclosed in the exemplary embodiments shown in the drawings, but are accommodated in a separate structural unit.

Die in Fig. 2 dargestellten Meßeinrichtungen 4a,4b können in einfacher Weise an eine sich ändernde Breite des Metallbandes 1 angepaßt werden, da sie unabhängig voreinander mittels der Antriebe 17a,17b verfahrbar sind.The measuring devices 4a, 4b shown in FIG. 2 can be adapted in a simple manner to a changing width of the metal strip 1, since they can be moved independently of one another by means of the drives 17a, 17b.

Im folgenden wird die zweite Variante der Erfindung näher erläutert wobei gleiche Bezugszeichen entsprechende Bauteile bezeichnen.The second variant of the invention is explained in more detail below, the same reference numerals denoting corresponding components.

Das in Fig. 5 dargestellte erste Ausführungsbeispiel der zweiten Variante zeigt zwei an jeweils einer Seite des zu beschichtenden Metallbandes 1 angeordnete Düsenkörper 2, deren Düsenspalte jeweils einen bestimmten Abstand x zur Oberfläche des Metallbandes 1 haben. Der in Fig. 9 rechts dargestellte untere Düsenkörper 2 trägt auf seiner Oberseite einen Aufsatz für die Meßeinrichtung 4.The first exemplary embodiment of the second variant shown in FIG. 5 shows two nozzle bodies 2 arranged on one side of the metal strip 1 to be coated, the nozzle gaps of which are each at a certain distance x from the surface of the metal strip 1. The lower nozzle body 2 shown on the right in FIG. 9 has an attachment for the measuring device 4 on its upper side.

Das Gehäuse der Meßeinrichtung 4 besteht aus einem Gehäusedeckel 8b und einem hinteren Gehäuseteil 8a, welcher geöffnet werden kann.The housing of the measuring device 4 consists of a housing cover 8b and a rear housing part 8a, which can be opened.

Die optische Meßeinrichtung 4 ruht auf einem Schlitten 16, auf welchem sie längs der Breite des Metallbandes 1 verfahrbar ist.The optical measuring device 4 rests on a carriage 16, on which it can be moved along the width of the metal strip 1.

Die gesamte Einheit bestehend aus Schlitten 16, Meßeinrichtung 4 und Gehäuse 8a,8b kann gegenüber dem sie tragenden Düsenkörper 2 mittels einer Winkelausgleichsschraube 20 um einen bestimmten Drehwinkel verstellt werden. Dies ist dann von Bedeutung, wenn der um den Drehpunkt 9 drehbare Düsenkörper 2 verstellt wird und dieser Winkel von der elektronischen Winkelerfassung 10 ermittelt wird.The entire unit consisting of slide 16, measuring device 4 and housing 8a, 8b can be adjusted relative to the nozzle body 2 carrying it by means of an angle compensation screw 20 by a certain angle of rotation. This is important when the nozzle body 2 rotatable about the pivot point 9 is adjusted and this angle is determined by the electronic angle detection 10.

Jeder der beiden Düsenkörper 2 ist mittels eines Antriebs 11 in senkrechter Richtung zur Transportrichtung des Metallbandes 1 in der in Fig. 5 dargestellten Normalebene verfahrbar. Allerdings besteht für jeden Düsenkörper 11 der Verstellantrieb aus zwei Linearantrieben 11, gegenüber denen der Düsenkörper 2 kardanisch gelagert ist. Bei gleichgerichteter Bewegung seiner Antriebe ist der Düsenkörper 2 lateral zum Metallband 1 hin oder von ihm fort verstellbar, so daß der Abstand zwischen Düsenspalt 3 und Metallbandoberfläche veränderbar ist.Each of the two nozzle bodies 2 can be moved in the normal plane shown in FIG. 5 by means of a drive 11 in the direction perpendicular to the transport direction of the metal strip 1. However, for each nozzle body 11, the adjustment drive consists of two linear drives 11, against which the nozzle body 2 is gimbal-mounted. When the drives of the drives move in the same direction, the nozzle body 2 can be adjusted laterally towards or away from the metal strip 1, so that the distance between the nozzle gap 3 and the metal strip surface can be changed.

Bei gegensinniger Bewegung der Antriebe 11 ist der Düsenkörper 2 in der dargestellten Normalebene drehbar.When the drives 11 move in opposite directions, the nozzle body 2 can be rotated in the normal plane shown.

Wie aus Fig. 5 hervorgeht, sind entlang der Breite b des Metallbandes zwei optische Meßeinrichtungen 4 vorgesehen, die jeweils etwa die Hälfte des Metallbandes 1 überdecken. Diese werden von getrennten Antrieben 17a,17b angetrieben kontinuierlich derart verfahren, daß sie den jeweils mit Δ bezeichneten Verfahrbereich überdecken.As can be seen from FIG. 5, two optical measuring devices 4 are provided along the width b of the metal strip, each covering approximately half of the metal strip 1. These are driven by separate drives 17a, 17b continuously in such a way that they cover the travel range designated Δ in each case.

Auf dem gegenüberliegenden Düsenkörper 2 sind Reflektoren 18 vorgesehen, die die jeweils mit K bezeichneten Bandkanten überdecken.On the opposite nozzle body 2, reflectors 18 are provided, which cover the band edges labeled K in each case.

Die in Fig. 5 dargestellte Vorrichtung arbeitet wie folgt:The device shown in FIG. 5 operates as follows:

Jede der beiden Meßeinrichtungen 4 wird entlang des Schlittens 16 kontinuierlich verfahren, so daß der mit a bezeichnete Meßstrahl der jeweiligen Meßeinrichtung 4 im Bereich innerhalb der Metallbandkante K vom Metallband 1 reflektiert wird. Gelangt die Meßeinrichtung 4 in den Bereich der Metallbandkante K erfolgt ein sprunghafter Übergang der Reflexion vom Metallband auf den Reflektor 18. Dieser sprunghafte Übergang ermöglicht eine genaue Lageerkennung der Bandkante.Each of the two measuring devices 4 is moved continuously along the carriage 16, so that the measuring beam designated by a from the respective measuring device 4 is reflected in the area within the metal strip edge K by the metal strip 1. If the measuring device 4 reaches the area of the metal strip edge K, there is an abrupt transition of the reflection from the metal strip to the reflector 18. This abrupt transition enables an exact position detection of the strip edge.

Im Bereich innerhalb der Kanten K mißt die optische Meßeinrichtung 4 jeweils den Abstand zwischen dem definierten Punkt auf dem Düsenkörper 2 und der Metallbandoberfläche. Zeigt sich im Laufe der Messung innerhalb des Verfahrweges innerhalb der Metallbandkanten, daß sich der Abstand ändert, bedeutet dies eine Schrägstellung des Metallbandes im Bezug auf den Düsenspalt. Dies kann durch entsprechende Ansteuerung der Verstelleinrichtungen 11 oder der Führungsrollen 5 beim "Zwei- oder Dreirollensystem" (Fig.1) kompensiert werden.In the area within the edges K, the optical measuring device 4 measures the distance between the defined point on the nozzle body 2 and the metal strip surface. If the distance within the metal strip edges shows that the distance changes in the course of the measurement, this means that the metal strip is inclined with respect to the nozzle gap. This can be done by appropriate control the adjustment devices 11 or the guide rollers 5 in the "two or three roller system" (FIG. 1) can be compensated.

Stellt andererseits die Meßeinrichtung 4 im Bereich außerhalb der Metallbandkanten K eine Abweichung des Meßwertes von einem vorbestimmten Wert fest, ist dies auf eine Veränderung des vorgegebenen Abstandes zwischen den Bezugspunkten der beiden Düsenkörper 2 zurückzuführen. Aus der Kenntnis sowohl des Abstandes zwischen den Bezugspunkten auf den Düsenkörpern 2 als auch des Abstandes zwischen einem Düsenkörper und der Metallbandoberfläche kann nun mittels des nachgeschalteten nicht näher dargestellten Auswerterechners die Symmetrierung erfolgen.On the other hand, if the measuring device 4 detects a deviation of the measured value from a predetermined value in the area outside the metal strip edges K, this is due to a change in the predetermined distance between the reference points of the two nozzle bodies 2. From the knowledge of both the distance between the reference points on the nozzle bodies 2 and the distance between a nozzle body and the metal strip surface, the balancing can now be carried out by means of the downstream evaluation computer (not shown in more detail).

Das in Fig. 6 dargestellte zweite Ausführungsbeispiel der zweiten Variante Erfindung unterscheidet sich von dem beschriebenen dadurch, daß anstelle von zwei Meßeinrichtungen, die jeweils mehr als die Bandhälfte überdecken, vier Meßeinrichtungen vorgesehen sind, von denen die beiden inneren ständig in dem mit Δ a bezeichneten Verfahrbereich oszillieren, der stets innerhalb der Bandkanten K liegt. Die beiden äußeren Meßeinrichtungen 4b oszillieren hingegen innerhalb des mit Δ b bezeichneten Bereichs um die Bandkanten K, wobei der Meßstrahl der Meßeinrichtungen 4b teils vom Metallband und teils von den Reflektoren 18 reflektiert wird. Hierdurch lassen sich die Meßsignale für den Abstand Düsenkörper-Band bzw. Düsenkörper-Düsenkörper sowie für die Bandbreite gleichzeitig ermitteln, wodurch eine schnellere Auswertung möglich ist.The second exemplary embodiment of the second variant of the invention shown in FIG. 6 differs from the one described in that instead of two measuring devices, each covering more than the band half, four measuring devices are provided, of which the two inner ones are always referred to as Δ a Oscillate the travel range, which is always within the band edges K. The two outer measuring devices 4b, on the other hand, oscillate within the range denoted by Δ b around the strip edges K, the measuring beam of the measuring devices 4b being partly reflected by the metal strip and partly by the reflectors 18. In this way, the measurement signals for the distance between the nozzle body-band or nozzle body-nozzle body and for the bandwidth can be determined at the same time, which enables a faster evaluation.

Das in Fig. 8 und 9 dargestellte Ausführungsbeispiel unterscheidet sich von demjenigen der Fig. 2 lediglich dadurch, daß die im Kantenbereich oszillierenden optischen Meßeinrichtungen 4b nicht auf dem gemeinsamen Führungsschlitten des Düsenkörpers 2 angeordnet sind, welcher auch die auf das Metallband gerichteten optischen Meßeinrichtungen 4a trägt. Vielmehr ist für die auf die Kantenbereiche K gerichteten optischen Meßeinrichtungen 4b ein weiterer Führungsschlitten 16 auf dem gegenüberliegenden Düsenkörper 2 vorgesehen. Entsprechend ist der Reflektor dann auf demjenigen Düsenkörper 2 vorgesehen, der auch die optischen Meßeinrichtungen 4a trägt. Die von den jeweiligen Meßeinrichtungen überstrichenen Verfahrbereiche Δ a bzw. Δ b sind gegenüber dem in Fig. 6 dargestellten Ausführungsbeispiel unverändert.The embodiment shown in FIGS. 8 and 9 differs from that of FIG. 2 only in that the oscillating in the edge region optical measuring devices 4b are not arranged on the common guide carriage of the nozzle body 2, which also carries the optical measuring devices 4a directed onto the metal strip. Rather, a further guide carriage 16 is provided on the opposite nozzle body 2 for the optical measuring devices 4b directed at the edge regions K. Accordingly, the reflector is then provided on the nozzle body 2 which also carries the optical measuring devices 4a. The travel ranges Δ a and Δ b covered by the respective measuring devices are unchanged from the exemplary embodiment shown in FIG. 6.

Die dargestellten Ausführungsbeispiele bieten Vorteile bei der Justierung. Soll nämlich aus technologischen Gründen das Band 1 nicht in der in durchgezogenen Linien dargestellten Position abgeblasen werden sondern in der gestrichelten Position, so ist jeder der Düsenkörper 2 um den Drehpunkt 9 zu drehen. Die Drehung des Düsenkörpers 2 wird dabei von einer elektronischen Winkelerfassung 10 festgestellt. Damit die optische Achse jeder Meßeinrichtung 4a,4b nach wie vor senkrecht auf das Metallband 1 einfällt, muß der Winkelversatz ausgeglichen werden, und zwar durch eine Winkelausgleichsschraube 20. Eine solche Winkelkorrektur kann auch elektronisch erfolgen, indem das Meßsignal der Winkelerfassung 10 zur Stellung der Ausgleichsschraube 20 verwendet wird.The exemplary embodiments shown offer advantages in the adjustment. If, for technological reasons, the band 1 is not to be blown off in the position shown in solid lines but in the dashed position, each of the nozzle bodies 2 is to be rotated about the pivot point 9. The rotation of the nozzle body 2 is determined by an electronic angle detector 10. So that the optical axis of each measuring device 4a, 4b still falls perpendicularly onto the metal strip 1, the angular offset must be compensated for by an angle compensation screw 20. Such an angle correction can also be carried out electronically by the measurement signal of the angle detection 10 for the position of the compensation screw 20 is used.

Das in Fig.10 dargestellte Ausführungsbeispiel zeigt eine Alternative zur Anordnung in der jeweils rechten Bildhälfte der Figuren 7 und 9. Gemäß diesem Ausführungsbeispiel ruht die Meßeinrichtung 4 nicht direkt auf dem Düsenkörper 2 sondern ist auf einer Traverse 22 befestigt, entlang der die Meßeinrichtung 4 quer zur Bandlaufrichtung verfahrbar ist. Die Traverse 22 ist mittels eines Traversenantriebes 23 im Bezug auf das Metallband 1 verstellbar. Die Traverse 22 ist im Bereich des Drehpunkts 9 für den Düsenkörper 2 gelagert. Allerdings ist der Düsenkörper 2 im Drehpunkt 9 drehbar gegenüber der Traverse 22, so daß bei einer Drehung des Düsenkörpers 2 in die in Figur 12 gestrichelt dargestellte Position die Traverse 23 und somit die Meßeinrichtung 4 ortsfest bleiben.The exemplary embodiment shown in FIG. 10 shows an alternative to the arrangement in the right-hand half of FIGS. 7 and 9. According to this exemplary embodiment, the measuring device 4 does not rest directly on the nozzle body 2 but is fastened on a crossmember 22, along which the measuring device 4 transversely is movable to the tape running direction. The traverse 22 can be adjusted with respect to the metal strip 1 by means of a crosshead drive 23. The cross member 22 is mounted in the area of the pivot point 9 for the nozzle body 2. However, the nozzle body 2 is rotatable at the pivot point 9 with respect to the cross member 22, so that when the nozzle body 2 is rotated into the position shown in dashed lines in FIG. 12, the cross member 23 and thus the measuring device 4 remain stationary.

Dies bedeutet, daß die Orientierung der Meßeinrichtung 4 im Bezug auf das Metallband 1 auch bei Drehung des Düsenkörpers 2 um den Drehpunkt 9 erhalten bleibt. Hierdurch können zusätzliche Kompensationsmittel zum Ausgleich der Drehung entfallen.This means that the orientation of the measuring device 4 with respect to the metal strip 1 is retained even when the nozzle body 2 is rotated about the pivot point 9. As a result, additional compensation means to compensate for the rotation can be omitted.

Darüber hinaus ist in den Ausführungsbeispielen nach den Figuren 7, 9, 10 ein oberhalb des Düsenspaltes 3 angeordnetes Schirmblech 24 vorgesehen, welches vom Düsenkörper 2 getragen im wesentlichen eben verläuft und nur an seiner dem Metallband zugeordneten Kante leicht in Richtung Düsenspalt 3 geneigt ist, um eine Berührung mit dem Band zu verhindern. Hierdurch wird mit Zink beladenes Abblasmedium in den Raum unterhalb des Schirmes festgehalten, so daß die gegen Verschmutzung empfindliche optische Meßeinrichtung geschützt ist.In addition, in the exemplary embodiments according to FIGS. 7, 9, 10, a shield plate 24 is provided above the nozzle gap 3, which is carried essentially flat by the nozzle body 2 and is only slightly inclined in the direction of the nozzle gap 3 at its edge assigned to the metal strip to prevent contact with the tape. In this way, blow-off medium loaded with zinc is held in the space below the screen, so that the optical measuring device, which is sensitive to contamination, is protected.

Bezugszeichenliste:Reference symbol list:

11
MetallbandMetal strap
22nd
DüsenkörperNozzle body
33rd
DüsenspaltNozzle gap
4,4a,4b4,4a, 4b
optische Meßeinrichtungoptical measuring device
55
FührungsrolleLeadership role
66
UmlenkrollePulley
77
SchutzhülseProtective sleeve
8,8a,8b8.8a, 8b
SchutzblechFender
99
Drehpunktpivot point
1010th
WinkelerfassungAngle detection
1111
Verstellantrieb für DüsenkörperAdjustment drive for nozzle body
1212th
Verstellantrieb für FührungsrolleAdjustment drive for guide roller
1313
Halterung für UmlenkrolleBracket for pulley
1414
SchmelzespiegelMelt level
1515
BeschichtungsmittelbadCoating agent bath
1616
FührungsschlittenGuide carriage
17a,b17a, b
Antrieb für FührungsschlittenDrive for guide carriage
1818th
Reflektorreflector
1919th
Drehpunkt ReflektorPivot point reflector
2020th
WinkelausgleichsschraubeAngle compensation screw
2121
Drehpunkt MeßeinrichtungPivot measuring device
2222
Traversetraverse
2323
Antrieb für TraverseTraverse drive
2424th
LeitblechBaffle
xx
Abstand Düsenspalt zur MetallbandoberflächeDistance from the nozzle gap to the metal strip surface
aa
optische Achse der Meßeinrichtungoptical axis of the measuring device
bb
MetallbandbreiteMetal bandwidth
KK
MetallbandkanteMetal band edge
ΔΔ
VerfahrbereichTravel range
ΔaΔa
Verfahrbereich der AbstandsmeßeinrichtungTravel range of the distance measuring device
ΔbΔb
Verfahrbereich der KantenmeßeinrichtungTravel range of the edge measuring device

Claims (26)

  1. A device for the continuous coating of metal strip, more particularly for the galvanizing of steel strip, wherein at least one adjustable guide roller (5) is disposed below the melt surface (14) of a bath (15) of coating agent through which the strip (1) passes, the device having a pair of blowing-off nozzles which are disposed above the melt surface (14) downstream of at least one guide roller (5) and which are operated by a blowing-off medium, more particularly compressed air, and between whose nozzle bodies (2) the strip (1) is guided at a distance from the corresponding nozzle orifices extending transversely of the direction in which the strip passes, while associated with at least one of the two nozzle bodies (2) adjustable in relation to the metal strip (1) is an optical measuring device (4) which determines the distance between the nozzle orifice (3) and the metal strip surface and whose measuring beam is directed with its optical axis substantially perpendicular in relation to the metal strip surface and whose output signal can be so supplied to an adjusting device for the guide roller (5) and/or an adjusting device for the nozzle body (2) that the distance between the nozzle orifice (3) and the metal strip surface can be predetermined, characterized in that disposed along the nozzle orifice is a number of measuring devices (4a, 4b) which can be moved parallel with the nozzle orifice (3) by a separate drive (17a, 17b) and whose respective output signals are jointly evaluated by an adjusting drive (11) for the nozzle body (2) and an adjusting drive (12) for the guide roller (5) respectively.
  2. A device according to claim 1, characterized in that the optical measuring device (4) is borne by the nozzle body (2).
  3. A device according to one of the preceding claims, characterized in that the nozzle body (2) can be moved in rotation by the adjusting drive (11) in the normal plane of the metal strip (1).
  4. A device according to one of the preceding claims, characterized in that the nozzle body (2) can then be moved transversely by the adjusting drive (11) in the normal plane of the metal strip (1).
  5. A device according to one of the preceding claims, characterized in that the nozzle body (2) can be pivoted around an axis parallel with the nozzle orifice (3).
  6. A device according to claim 5, characterized in that an angle-correcting device (10) which determines the pivoting angle is provided to correct the output signal of the measuring device (4).
  7. A device according to one of the preceding claims, characterized in that a nozzle body (2) having at least one measuring device (4) is provided on each of the two sides of the metal strip.
  8. A device according to one of the preceding claims, characterized in that a common evaluating device is provided for the measuring signals for the coupled operation of the respective adjusting drives (11) of the two nozzle bodies (2).
  9. A device according to one of the preceding claims, characterized in that the measuring device (4) is an optical sensor which determines the distance from the metal strip surface over the transit time of its light beam.
  10. A device for the continuous coating of metal strip, more particularly for the galvanizing of steel strip, wherein at least one adjustable guide roller (5) is disposed below the melt surface (14) of a bath (15) of coating agent through which the strip (1) passes, the device having a pair of blowing-off nozzles which are disposed above the melt surface (14) downstream of the at least one guide roller (5) and which are operated by a blowing-off medium, more particularly compressed air, and between whose nozzle bodies (2) the strip (1) is guided at a distance from the corresponding nozzle orifices extending transversely of the direction in which the strip passes, characterized in that at least one of the two nozzle bodies (2) adjustable in relation to the metal strip (1) bears an optical measuring device (4, 4a, 4b) which can be moved parallel with the nozzle orifice to cover the area of an edge (K) of the metal strip; the opposite nozzle body (2) has a reflector (18) at which the optical axis (a) of the measuring device (4b, 4) is directed in its position outside the metal strip edge (K); and disposed downstream of the measuring device (4, 4a, 4b) is an evaluating device which allocates the measuring signal to the actual position on the axis of movement and transmits said signal to a control circuit for an adjusting device (11) of at least one nozzle body (2) and/or for an adjusting device (12) for the guide roller (5), so that the distance between the nozzle orifice (3) and the metal strip surface can be predetermined.
  11. A device according to claim 10, characterized in that the evaluating device comprises a discriminator for distinguishing between the measuring signal reflected from the metal strip and the measuring signal reflected from the reflector.
  12. A device according to one of claims 10 or 11, characterized in that associated with one nozzle body (2) are two measuring devices (4) which can each be moved over non-overlapping areas (Δ) of at least half the metal strip width.
  13. A device according to one of claims 10 or 11, characterized in that one nozzle body (2) has two pairs of measuring devices (4a, 4b) each having non-overlapping areas of movement, the measuring devices of the first pair (4a) being movable over less than half the metal strip width (b), and the measuring devices of the second pair (4b) covering the area of the particular metal strip edge (K) (Fig. 8).
  14. A device according to one of claims 10 to 13, characterized in that all the measuring devices (4, 4a, 4b) are disposed on a common or a separate guide carriage (12) and can each be driven by separate drives (17a, 17b).
  15. A device according to claim 13, characterized in that the measuring devices of the first and second pairs (4a, 4b) are disclosed on different nozzle bodies (2), the measuring devices (4b) which can be moved by the area of the metal strip edge (K) being disposed on the nozzle body (2) which is opposite the reflector (18).
  16. A device according to one of claims 10 to 15, characterized in that each measuring device (4, 4a, 4b) can be moved by a separate drive (17a, b).
  17. A device according to one of claims 10 to 16, characterized in that the reflector is formed by a flat, more particularly reflecting ribbon which extends parallel with the metal strip (1) and whose width is such as to cover at least the edge positions of the strip to be coated.
  18. A device according to claim 17, characterized in that the reflector band is retained by a support attached to the nozzle body (2).
  19. A device according to claim 18, characterized in that the reflector support can be rotated around a pivot (19).
  20. A device according to claim 19, characterized in that the reflector plane extends through the pivot (9) of the pivot-supporting nozzle body (2).
  21. A device according to claim 15, characterized in that the reflector (18) is retained by a casing (8a, 8b) bearing a group of measuring devices (4a).
  22. A device according to one of claims 10 to 21, characterized in that the nozzle body (2) can be pivoted around an axis parallel with the nozzle orifice (3), an angle-correcting device (10) which determines the pivoting angle being provided for correcting the input signal of the measuring device (4).
  23. A device according to one of the preceding claims, characterized in that the optical measuring device borne by the nozzle body (2) can be adjusted by means of an angle-equalizing screw (20).
  24. A device according to one of the preceding claims, characterized in that the optical measuring device (4, 4a, 4b) is disposed on a traverse (22) which can be adjusted in the direction of the metal strip more particularly by means of a traverse line (23).
  25. A device according to claim 24, characterized in that the nozzle body (2) can be pivoted in relation to the traverse (22).
  26. A device according to claims 1 or 10, characterized in that provided above the nozzle orifice (3) in the direction which the strip passes is a more particularly flat screening plate (24) which screens the area where the light beam emerges from the optical measuring device (4) and which is borne by the nozzle body (2) and is chamfered in the direction of the nozzle orifice (3) at its edge adjacent the strip (1).
EP93915935A 1992-07-16 1993-07-16 Coating device Expired - Lifetime EP0650534B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE4223343 1992-07-16
DE19924223343 DE4223343C1 (en) 1992-07-16 1992-07-16 Blow off device
DE19934300868 DE4300868C1 (en) 1993-01-15 1993-01-15 Coating device
DE4300868 1993-01-15
DE4306394 1993-03-02
DE19934306394 DE4306394C1 (en) 1993-03-02 1993-03-02 Blow-off device and method for blowing off excess coating material
PCT/EP1993/001879 WO1994002658A1 (en) 1992-07-16 1993-07-16 Coating device

Publications (3)

Publication Number Publication Date
EP0650534A1 EP0650534A1 (en) 1995-05-03
EP0650534B1 true EP0650534B1 (en) 1996-10-09
EP0650534B2 EP0650534B2 (en) 2001-05-02

Family

ID=27203976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93915935A Expired - Lifetime EP0650534B2 (en) 1992-07-16 1993-07-16 Coating device

Country Status (4)

Country Link
EP (1) EP0650534B2 (en)
AT (1) ATE144003T1 (en)
DE (1) DE59304141D1 (en)
WO (1) WO1994002658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101131A1 (en) 2013-02-05 2014-08-07 Thyssenkrupp Steel Europe Ag Apparatus for hot dip coating of metal strip

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014355A3 (en) * 2001-08-30 2003-09-02 Ct Rech Metallurgiques Asbl METHOD AND DEVICE FOR MEASURING DISTANCES ON SHINY METAL STRIPS.
DE102006052000A1 (en) 2006-11-03 2008-05-08 Emg Automation Gmbh Device for stabilizing the run of a metal strip
CN101650160B (en) * 2009-03-27 2013-04-03 嘉兴市清河高力绝缘有限公司 Roller gap measuring and regulating method of four-roller paint applicator
CN102780338B (en) * 2012-07-12 2016-11-09 上海紫邦科技有限公司 Four-roller type stator sector piece coating machine
DE102014225516B3 (en) * 2014-11-21 2016-03-31 Fontaine Engineering Und Maschinen Gmbh Method and device for coating a metal strip
EP3382054A1 (en) * 2017-03-30 2018-10-03 Tata Steel IJmuiden B.V. Coated metal sheet, method to provide such a coated metal sheet, and hot dip galvanizing device to manufacture such a coated metal sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141556A (en) * 1979-04-18 1980-11-05 Nisshin Steel Co Ltd Nozzle-steel strip interval measuring instrument in molten metal plating equipment
JPS5698466A (en) * 1980-01-10 1981-08-07 Nippon Steel Corp Measuring method for distance between plated steel plate and gas wiper nozzle
DE3500878C1 (en) * 1985-01-12 1986-01-09 Thyssen Stahl AG, 4000 Düsseldorf Method and device for coating strips with molten metal, in particular for hot-dip galvanizing steel strips
JPS6230865A (en) * 1985-07-31 1987-02-09 Sumitomo Metal Ind Ltd Method and apparatus for producing metal hot dipped strip
JP3015086B2 (en) * 1990-09-25 2000-02-28 川崎製鉄株式会社 Method and apparatus for measuring position and shape of running belt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101131A1 (en) 2013-02-05 2014-08-07 Thyssenkrupp Steel Europe Ag Apparatus for hot dip coating of metal strip
WO2014122128A1 (en) 2013-02-05 2014-08-14 Thyssenkrupp Steel Europe Ag Device for hot-dip coating a metal strip
US9453275B2 (en) 2013-02-05 2016-09-27 Thyssenkrupp Steel Europe Ag Device for hot dip coating metal strip including a snout and an extension piece

Also Published As

Publication number Publication date
EP0650534A1 (en) 1995-05-03
ATE144003T1 (en) 1996-10-15
EP0650534B2 (en) 2001-05-02
WO1994002658A1 (en) 1994-02-03
DE59304141D1 (en) 1996-11-14

Similar Documents

Publication Publication Date Title
EP0690932B1 (en) Blow-off device
DE3851378T2 (en) Glossy device.
DE19803240A1 (en) Paint curtain applicator
EP0650534B1 (en) Coating device
DE19735603C1 (en) Vacuum coating installation
DE4421050B4 (en) Method and device for measuring at least one property of a two-sided material web
EP0249234B2 (en) Blow-off device for the continuous two-sided coating of strip metal
DE69006528T2 (en) Spectrophotometer.
EP0215310A2 (en) Drive device for a tubular roll
DE3644454C1 (en) Headbox for a paper machine or the like.
DE4300868C1 (en) Coating device
DE4306394C1 (en) Blow-off device and method for blowing off excess coating material
DE4223343C1 (en) Blow off device
DE3334879C1 (en) Apparatus for turning and guiding a running web of material
EP1035413B1 (en) Apparatus for automatically testing the regularity of textile samples
DE3320160A1 (en) Device for thickness control when coating flat articles, preferably when applying a glazing layer to ceramic plates
DE2917666C2 (en) Warping machine
DE3810242C2 (en) Device for acting on both sides of a strip
EP3619333B1 (en) Device for treating a metal strip
DE3503116A1 (en) MEASURING INSTRUMENT
DE102022100820B3 (en) Stabilizing device and sensor structure for continuously moving metal strips
EP0642010B1 (en) Method for determining the hardness of material in the form of a continuous web or wire
DE20101126U1 (en) Device on a direct roving winder for contactless detection of the actual diameter of the roving coil and direct roving winder with such a device
DE1902628A1 (en) X-ray camera for X-ray diffraction analysis according to Guinier
DE3102684A1 (en) DEVICE FOR IMPACTING AN OBJECT WITH RADIATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960109

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961009

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961009

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961009

Ref country code: DK

Effective date: 19961009

REF Corresponds to:

Ref document number: 144003

Country of ref document: AT

Date of ref document: 19961015

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961010

REF Corresponds to:

Ref document number: 59304141

Country of ref document: DE

Date of ref document: 19961114

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70199

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970109

Ref country code: PT

Effective date: 19970109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970625

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970702

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 70199

Country of ref document: IE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970717

Year of fee payment: 5

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: FONTAINE ENGINEERING UND MASCHINEN GMBH

Effective date: 19970705

NLR1 Nl: opposition has been filed with the epo

Opponent name: FONTAINE ENGINEERING UND MASCHINEN GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980716

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980716

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: FONTAINE ENGINEERING UND MASCHINEN GMBH

Effective date: 19970705

R26 Opposition filed (corrected)

Opponent name: FONTAINE ENGINEERING UND MASCHINEN GMBH

Effective date: 19970705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980716

NLR1 Nl: opposition has been filed with the epo

Opponent name: FONTAINE ENGINEERING UND MASCHINEN GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20010502

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: DE

Effective date: 20090210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120720

Year of fee payment: 20

Ref country code: BE

Payment date: 20120720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120711

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304141

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304141

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130716

BE20 Be: patent expired

Owner name: *DUMA MASCHINEN- UND ANLAGENBAU BETEILIGUNGS G.M.B

Effective date: 20130716

Owner name: *PANNENBECKER HEINRICH

Effective date: 20130716

Owner name: *JABS RONALD

Effective date: 20130716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 144003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130717