EP0650177B1 - Method of driving parallel arranged relays - Google Patents

Method of driving parallel arranged relays Download PDF

Info

Publication number
EP0650177B1
EP0650177B1 EP94114740A EP94114740A EP0650177B1 EP 0650177 B1 EP0650177 B1 EP 0650177B1 EP 94114740 A EP94114740 A EP 94114740A EP 94114740 A EP94114740 A EP 94114740A EP 0650177 B1 EP0650177 B1 EP 0650177B1
Authority
EP
European Patent Office
Prior art keywords
rel
relay
relay operating
switch
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94114740A
Other languages
German (de)
French (fr)
Other versions
EP0650177A1 (en
Inventor
Manfred Glehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0650177A1 publication Critical patent/EP0650177A1/en
Application granted granted Critical
Publication of EP0650177B1 publication Critical patent/EP0650177B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the invention relates to a method for controlling relay excitation coils according to the preamble of claim 1. (EP-A- 0 392 058).
  • a relay has an armature through which switch contacts can be actuated.
  • the force required for actuation must be applied by the relay excitation coil.
  • a certain current through the excitation coil is required to attract the armature and to actuate the switch contacts. Since the losses in the magnetic circuit caused by the air gap become smaller after the armature has been tightened, a lower current is sufficient to hold the contacts than to tighten. The consequence of this is that in general the drive current of the relay can be reduced by half to a third in this case, as a result of which the power loss due to the lower holding current and thus the heating of the excitation coil is reduced.
  • a known method is that after reaching the response state, the holding current is reduced by switching to a voltage source with a lower supply voltage.
  • Another known method is that the relay is controlled with a clock ratio after reaching the response state, so that the holding current drops to a steady state.
  • Another known method is to initially supply the relay with a higher control voltage, which is possible with the aid of a voltage multiplier.
  • relays or relay groups are to be supplied by one voltage source, a separate circuit is required for each relay, for example for clocking. This requires a lot of circuitry and thus high manufacturing costs.
  • the flowchart shown in FIG. 1 shows the process sequence for switching on and switching off several relays.
  • the routine begins at step S1. In a subsequent step S2, all the desired relays are switched on. In a subsequent decision step S3, a decision is made as to whether the desired relays have picked up. If “No” is determined, the desired relays continue to be supplied with the starting current. If “yes” is determined, the routine proceeds to step S4, where the desired relays are driven with a clock ratio.
  • step S5 it is determined whether all or individual relays are to be switched off. If “No” is determined, this or these are further controlled at S4 with the clock ratio. If “yes” is decided, the relays that are to remain switched on are fixed via a switch at step S6, i.e. without a clock ratio, switched on. In a subsequent step S7, a common switch is operated simultaneously. With this switch, the relays to be switched off are quickly switched off. The routine ends at step S8.
  • FIG. 2 now shows a circuit arrangement with which a clocked control can be carried out.
  • two relay excitation coils Rel 1 and Rel 2 are connected in parallel to a voltage source Ub, each of which can be switched by a switch s1, s2 located in series.
  • a diode D1, D2 connected in the reverse direction is connected, to which a common Z-diode Z operated in the reverse direction is connected, the anode of which is connected to the voltage source Ub.
  • a common switch s0 is arranged parallel to the Zener diode Z, through which the Zener diode Z can be bridged.
  • the switches s1, s2 can be switched clocked by a clock generator, not shown, according to the method.
  • the time course of the current as a function of time is shown on the basis of a diagram which shows the current course through the relay excitation coil Rel 1 as an example.
  • the relay excitation coil Rel 1 is switched on by the switch s1 to the voltage source Ub, as a result of which the current in the relay excitation coil Rel 1 u. due to the occurring induction voltage, which counteracts the applied voltage Ub, increases with a delay.
  • the common switch s0 is closed.
  • the response state of relay Rel 1 should be reached, the small dip in the current curve, which occurs due to the changing inductance due to the attraction of the armature, not being shown.
  • the response state of the relay excitation coil Rel 1 is thus reached at the time t1, the time t1 being determined beforehand by measurement or calculation from the power supply voltage Ub, the ohmic resistance of the relay excitation coil, the inductance and the temperature which arises.
  • switch s1 now begins to clock due to the activation of the clock generator.
  • the switch s1 is thus opened at the time t1, so that the current i1 in the relay excitation coil Rel 1 drops.
  • the negative switch-off voltage peak occurring at time t1 breaks down due to the diode D1 to the value of its forward voltage drop, so that the switch-off peak is reduced.
  • the common switch s0 remains closed.
  • the switch s1 is now closed again by the clock generator, with the result that the current i1 in the relay excitation coil Rel 1 rises again.
  • the switch s1 is opened again, so that the current i1 in the relay excitation coil Rel 1 rises again.
  • the process continues alternately over the times t4, t5, so that after a certain time the steady state shown in FIG. 4 is established, the current i1 forming the holding current at which the relay armature remains attracted.
  • the magnitude of the current i1 is determined by the ratio of the switch-on time Tx to the switch-off time Ty indicated in FIG. 3, which is referred to as the clock ratio.
  • the diagram shown in FIG. 5 shows the current profile i1 (t) in the relay excitation coil Rel 1, the current profile i2 (t) in the relay excitation coil Rel 2 and the switch positions s1, s2, s0, the thick lines of the switch positions showing the closed state to indicate this switch.
  • the time profile of the currents i1 and i2 at the time t0 to thousand corresponds to the current profile shown in FIGS. 3 and 4 for the steady state. Accordingly, the current i1 is controlled clocked by the relay excitation coil Rel 1, as is the current i2 by the relay excitation coil Rel 2.
  • the switches s1 and s2 are controlled clocked in accordance with the clock ratio. The switch s0 is always closed.
  • the switch S0 has a certain resistance in the "on" position (the switch can be designed as a transistor switch), whereas the resistance of the Z diode is extremely small in the region of the breakdown voltage, so that the relay excitation coil rel 1 is quickly discharged via the diode D1, which leads to a desired rapid drop in the relay armature of the excitation coil Rel 1.
  • the voltage between the diode D1 and the Zener diode rises briefly steeply, so that if the switch s2 were actuated in this state, that is, the switch s2 was also temporarily switched off, the relay Rel 2 would fall off.
  • the switch s2 (and possible other switches) is closed, which remains in a closed position in a non-clocked operation until the time t1 until the time t1 is reached , where, as already described in Figure 3, is switched back to clocked operation.
  • the power loss increases again somewhat, but the component expenditure is significantly lower.
  • FIG. 6 shows a subcircuit for generating the control signals for the switches s1 and s2, although this task can also be performed by a microprocessor.
  • the circuit consists of two inputs E1, E2, each of which is connected to an input of an AND gate, the signals for Si1, Si2 being removable at its output.
  • the inputs E1, E2 are also connected to a monostable, retriggerable flip-flop Q, which here has two negative edge-controlled inputs.
  • the exit of the Flip-flops are connected to an input of two OR gates, the other input of the two OR gates being connected to a clock generator.
  • the respective outputs of the two OR gates are connected to the respective second input of the AND gates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Ansteuerung von Relaiserregerspulen nach dem Oberbegriff von Patentanspruch 1. (EP-A- 0 392 058).The invention relates to a method for controlling relay excitation coils according to the preamble of claim 1. (EP-A- 0 392 058).

Bekanntlich weist ein Relais einen Anker auf, durch den Schaltkontakte betätigt werden können. Die zur Betätigung erforderliche Kraft muß von der Relaiserregerspule aufgebracht werden. Bei gegebener Windungszahl der Erregerspule ist zum Anzug des Ankers und zur Betätigung der Schaltkontakte ein bestimmter Strom durch die Erregerspule erforderlich. Da nach dem Anzug des Ankers die durch den Luftspalt hervorgerufenen Verluste im magnetischen Kreis geringer werden, genügt zum Halten der Kontakte ein niedrigerer Strom als zum Anzug. Die Folge davon ist, daß im allgemeinen der Ansteuerstrom des Relais in diesem Fall auf die Hälfte bis auf ein Drittel verringert werden kann, wodurch sich die Verlustleistung aufgrund des niedrigeren Haltestroms und damit die Erwärmung der Erregerspule verringert.As is known, a relay has an armature through which switch contacts can be actuated. The force required for actuation must be applied by the relay excitation coil. For a given number of turns of the excitation coil, a certain current through the excitation coil is required to attract the armature and to actuate the switch contacts. Since the losses in the magnetic circuit caused by the air gap become smaller after the armature has been tightened, a lower current is sufficient to hold the contacts than to tighten. The consequence of this is that in general the drive current of the relay can be reduced by half to a third in this case, as a result of which the power loss due to the lower holding current and thus the heating of the excitation coil is reduced.

Zur Verringerung des Haltestroms sind verschiedene Verfahren bekannt. Ein bekanntes Verfahren besteht darin, daß nach Erreichen des Ansprechzustandes der Haltestrom dadurch verringert wird, indem man auf eine Spannungsquelle mit einer niedrigeren Versorgungsspannung umschaltet. Ein anderes bekanntes Verfahren besteht darin, daß man das Relais nach Erreichen des Ansprechzustandes mit einem Taktverhältnis ansteuert, so daß der Haltestrom bis auf einen eingeschwungenen Endzustand absinkt. Ein weiteres bekanntes Verfahren besteht darin, das Relais anfangs mit einer höheren Ansteuerspannung zu versorgen, was mit Hilfe eines Spannungsvervielfachers möglich ist.Various methods are known for reducing the holding current. A known method is that after reaching the response state, the holding current is reduced by switching to a voltage source with a lower supply voltage. Another known method is that the relay is controlled with a clock ratio after reaching the response state, so that the holding current drops to a steady state. Another known method is to initially supply the relay with a higher control voltage, which is possible with the aid of a voltage multiplier.

Wenn mehrere Relais oder Relaisgruppen durch eine Spannungsquelle versorgt werden sollen, so ist beispielsweise für das Takten für jedes Relais eine eigene Schaltung erforderlich. Das bedingt einen hohen Schaltungsaufwand und damit hohe Herstellungskosten.If several relays or relay groups are to be supplied by one voltage source, a separate circuit is required for each relay, for example for clocking. This requires a lot of circuitry and thus high manufacturing costs.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren aufzuzeigen, mit dem mehrere Relais bauteilesparend und verlustarm betrieben werden können.It is an object of the present invention to demonstrate a method with which several relays can be operated in a component-saving and low-loss manner.

Die Aufgabe wird erfindungsgemäß durch den Patentanspruch 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.The object is achieved by claim 1. Advantageous further developments are characterized in the subclaims.

Die Erfindung wird nun anhand von sieben Figuren näher erläutert.The invention will now be explained in more detail with reference to seven figures.

Es zeigen:

  • Figur 1 ein Flußdiagramm zur Erklärung des Verfahrensablaufs nach der Erfindung;
  • Figur 2 eine Schaltungsanordnung zur Ansteuerung von zwei Relais;
  • Figur 3 einen Stromverlauf zur Erklärung der Wirkungsweise der Schaltungsanordnung von Figur 2;
  • Figur 4 einen Stromverlauf zur Erklarung des eingeschwungenen Zustandes der Anordnung nach Figur 2;
  • Figur 5 einen Stromverlauf zur Erklärung des Aussschaltvorganges der Anordnung nach Figur 2;
  • Figur 6 eine Schaltungsanordnung zur Erzeugung der Ansteuersignale der Anordnung nach Figur 2; und
  • Figur 7 die Schalterstellungen von drei Relais sowie das entsprechende Ausgangssignal eines monostabilen, wiedertriggerbaren Flip-Flops.
Show it:
  • Figure 1 is a flow chart for explaining the process flow according to the invention;
  • Figure 2 shows a circuit arrangement for controlling two relays;
  • FIG. 3 shows a current profile to explain the mode of operation of the circuit arrangement from FIG. 2;
  • FIG. 4 shows a current profile to explain the steady state of the arrangement according to FIG. 2;
  • FIG. 5 shows a current profile to explain the switching-off process of the arrangement according to FIG. 2;
  • FIG. 6 shows a circuit arrangement for generating the control signals of the arrangement according to FIG. 2; and
  • Figure 7 shows the switch positions of three relays and the corresponding output signal of a monostable, retriggerable flip-flop.

Das in Figur 1 gezeigte Flußdiagramm zeigt den Verfahrensablauf zum Einschalten und Ausschalten von mehreren Relais. Bei Schritt S1 beginnt die Routine. In einem darauf folgenden Schritt S2 werden alle gewünschten Relais eingeschaltet. In einem sich daran anschließenden Entscheidungsschritt S3 wird entschieden, ob die gewünschten Relais angezogen haben. Wenn "Nein" festgestellt wird, werden die gewünschten Relais weiter mit dem Anzugsstrom versorgt. Wenn "Ja" festgestellt wird, schreitet die Routine zu Schritt S4, wo die gewünschten Relais mit einem Taktverhältnis angesteuert werden.The flowchart shown in FIG. 1 shows the process sequence for switching on and switching off several relays. The routine begins at step S1. In a subsequent step S2, all the desired relays are switched on. In a subsequent decision step S3, a decision is made as to whether the desired relays have picked up. If "No" is determined, the desired relays continue to be supplied with the starting current. If "yes" is determined, the routine proceeds to step S4, where the desired relays are driven with a clock ratio.

In einem weiteren Schritt S5 wird festgestellt, ob alle oder einzelne Relais abgeschaltet werden sollen. Wenn "Nein" festgestellt wird, werden dieses oder diese bei S4 weiter mit dem Taktverhältnis angesteuert. Wenn "Ja" entschieden wird, werden bei Schritt S6 die Relais, die eingeschaltet bleiben sollen, über einen Schalter fest, d.h. ohne ein Taktverhältnis, eingeschaltet. In einem sich anschließenden Schritt S7 wird gleichzeitig ein gemeinsamer Ausschalter betätigt. Durch diesen Ausschalter werden die auszuschaltenden Relais schnell ausgeschaltet. Bei Schritt S8 endet die Routine.In a further step S5 it is determined whether all or individual relays are to be switched off. If "No" is determined, this or these are further controlled at S4 with the clock ratio. If "yes" is decided, the relays that are to remain switched on are fixed via a switch at step S6, i.e. without a clock ratio, switched on. In a subsequent step S7, a common switch is operated simultaneously. With this switch, the relays to be switched off are quickly switched off. The routine ends at step S8.

Figur 2 zeigt nun eine Schaltungsanordnung, mit der eine getaktete Ansteuerung durchgeführt werden kann. Als Beispiel sind zwei Relaiserregerspulen Rel 1 und Rel 2 parallel an eine Spannungsquelle Ub angeschaltet, die jeweils durch einen in Reihe liegenden Schalter s1, s2 geschaltet werden können. Parallel zur jeweiligen Relaiserregerspule Rel 1, Rel 2 ist jeweils eine in Sperrichtung geschaltete Diode D1, D2 angeschlossenen, an die sich eine gemeinsame in Sperrichtung betriebene Z-Diode Z anschließt, deren Anode mit der Spannungsquelle Ub verbunden ist. Parallel zur Z-Diode Z ist ein gemeinsamer Ausschalter s0 angeordnet, durch den die Z-Diode Z überbrückbar ist. Die Schalter s1, s2 können gemäß dem Verfahren von einem nicht dargestellten Taktgenerator getaktet geschaltet werden.Figure 2 now shows a circuit arrangement with which a clocked control can be carried out. As an example, two relay excitation coils Rel 1 and Rel 2 are connected in parallel to a voltage source Ub, each of which can be switched by a switch s1, s2 located in series. In parallel to the respective relay excitation coil Rel 1, Rel 2, a diode D1, D2 connected in the reverse direction is connected, to which a common Z-diode Z operated in the reverse direction is connected, the anode of which is connected to the voltage source Ub. A common switch s0 is arranged parallel to the Zener diode Z, through which the Zener diode Z can be bridged. The switches s1, s2 can be switched clocked by a clock generator, not shown, according to the method.

In Figur 3 ist nun der zeitliche Verlauf des Stroms in Abhängigkeit von der Zeit anhand eines Diagramms dargestellt, das als Beispiel den Stromverlauf durch die Relaiserregerspule Rel 1 zeigt. Im Zeitpunkt t0 wird die Relaiserregerspule Rel 1 durch den Schalter s1 an die Spannungsquelle Ub angeschaltet, wodurch der Strom in der Relaiserregerspule Rel 1 u.a. aufgrund der auftretenden Induktionsspannung, die der angelegten Spannung Ub entgegenwirkt, verzögert ansteigt. Der gemeinsame Ausschalter s0 ist geschlossen. Im Zeitpunkt t1 soll der Ansprechzustand des Relais Rel 1 erreicht sein, wobei der kleine Einbruch in der Stromkurve, der durch die sich dabei ändernde Induktivität durch das Anziehen des Ankers auftritt, nicht dargestellt ist. Im Zeitpunkt t1 wird also der Ansprechzustand der Relaiserregerspule Rel 1 erreicht, wobei der Zeitpunkt t1 vorher durch Messung oder Berechnung aus der Stromversorgungsspannung Ub, dem ohmschen Widerstand der Relaiserregerspule, der Induktivitat und der sich einstellenden Temperatur bestimmt wird.In FIG. 3, the time course of the current as a function of time is shown on the basis of a diagram which shows the current course through the relay excitation coil Rel 1 as an example. At time t0, the relay excitation coil Rel 1 is switched on by the switch s1 to the voltage source Ub, as a result of which the current in the relay excitation coil Rel 1 u. due to the occurring induction voltage, which counteracts the applied voltage Ub, increases with a delay. The common switch s0 is closed. At time t1, the response state of relay Rel 1 should be reached, the small dip in the current curve, which occurs due to the changing inductance due to the attraction of the armature, not being shown. The response state of the relay excitation coil Rel 1 is thus reached at the time t1, the time t1 being determined beforehand by measurement or calculation from the power supply voltage Ub, the ohmic resistance of the relay excitation coil, the inductance and the temperature which arises.

Im Zeitpunkt t1 beginnt nun der Schalter s1 aufgrund der Ansteuerung des Taktgenerators zu takten. Somit wird der Schalter s1 im Zeitpunkt t1 geöffnet, so daß der Strom i1 in der Relaiserregerspule Rel 1 absinkt. Die im Zeitpunkt t1 auftretenden negative Ausschaltspannungsspitze bricht aufgrund der Diode D1 auf den Wert ihres Vorwärtsspannungsabfalls zusammen, so daß die Abschaltspitze abgebaut wird. Der gemeinsame Ausschalter s0 bleibt weiterhin geschlossen.At time t1, switch s1 now begins to clock due to the activation of the clock generator. The switch s1 is thus opened at the time t1, so that the current i1 in the relay excitation coil Rel 1 drops. The negative switch-off voltage peak occurring at time t1 breaks down due to the diode D1 to the value of its forward voltage drop, so that the switch-off peak is reduced. The common switch s0 remains closed.

Im Zeitpunkt t2 wird nun der Schalter s1 durch den Taktgenerator wieder geschlossen, was zur Folge hat, daß der Strom i1 in der Relaiserregerspule Rel 1 wieder ansteigt. Im Zeitpunkt t3 wird der Schalter s1 wieder geöffnet, so daß der Strom i1 in der Relaiserregerspule Rel 1 wieder ansteigt. Dieser Vorgang setzt sich über die Zeitpunkte t4, t5 abwechselnd fort, so daß sich nach einer gewissen Zeit der in Figur 4 gezeigte eingeschwungene Endzustand einstellt, wobei der Strom i1 den Haltestrom bildet, bei dem der Relaisanker angezogen bleibt. Die Höhe des Stroms i1 wird durch das in Figur 3 angedeutete Verhaltnis der Einschaltdauer Tx zur Ausschaltdauer Ty bestimmt, was als Taktverhältnis bezeichnet wird.At time t2, the switch s1 is now closed again by the clock generator, with the result that the current i1 in the relay excitation coil Rel 1 rises again. At time t3, the switch s1 is opened again, so that the current i1 in the relay excitation coil Rel 1 rises again. This The process continues alternately over the times t4, t5, so that after a certain time the steady state shown in FIG. 4 is established, the current i1 forming the holding current at which the relay armature remains attracted. The magnitude of the current i1 is determined by the ratio of the switch-on time Tx to the switch-off time Ty indicated in FIG. 3, which is referred to as the clock ratio.

In Figur 5 wird nun der Ausschaltvorgang erläutert und zwar unter der Annahme, daß die Relaiserregerspule Rel 1 ausgeschaltet werden soll und die Relaiserregerspule Rel 2 weiter eingeschaltet bleiben soll.The switch-off process is now explained in FIG. 5, on the assumption that the relay excitation coil Rel 1 is to be switched off and the relay excitation coil Rel 2 is to remain switched on.

Bei dem in Figur 5 dargestellten Diagramm sind der Stromverlauf i1(t) in der Relaiserregerspule Rel 1, der Stromverlauf i2(t) in der Relaiserregerspule Rel 2 und die Schalterstellungen s1, s2, s0 dargestellt, wobei die dicken Linien der Schalterstellungen den geschlossenen Zustand dieser Schalter andeuten sollen.The diagram shown in FIG. 5 shows the current profile i1 (t) in the relay excitation coil Rel 1, the current profile i2 (t) in the relay excitation coil Rel 2 and the switch positions s1, s2, s0, the thick lines of the switch positions showing the closed state to indicate this switch.

Der zeitliche Verlauf der Ströme i1 und i2 im Zeitpunkt t0 bis taus entspricht dem in Figur 3 und 4 gezeigten Stromverlauf für den eingeschwungenen Zustand. Demnach wird der Strom i1 durch die Relaiserregerspule Rel 1 getaktet gesteuert, ebenso der Strom i2 durch die Relaiserregerspule Rel 2. Die Schalter s1 und s2 werden gemäß dem Taktverhältnis getaktet gesteuert. Der Schalter s0 ist dabei immer geschlossen.The time profile of the currents i1 and i2 at the time t0 to thousand corresponds to the current profile shown in FIGS. 3 and 4 for the steady state. Accordingly, the current i1 is controlled clocked by the relay excitation coil Rel 1, as is the current i2 by the relay excitation coil Rel 2. The switches s1 and s2 are controlled clocked in accordance with the clock ratio. The switch s0 is always closed.

Im Zeitpunkt taus wird entschieden, daß die Relaiserregerspule Rel 1 abschalten soll. Somit wird der Schalter s1 geöffnet, wodurch der Strom i1 entsprechend der in Figur 5 dargestellten Abschaltkurve absinkt. Im gleichen Zeitpunkt öffnet der gemeinsame Ausschalter s0, so daß die Abschaltspannungsspitze der Relaiserregerspule Rel 1 über die Diode D1 und die gemeinsame Z-Diode begrenzt wird. Damit der Abschaltvorgang für die Relaiserregerspule Rel 1 schnell vor sich geht, sollen alle Relais mit möglichst hoher Abschaltspannung betrieben werden. Deshalb wird im Zeitpunkt taus auch der Schalter s0 , der als gemeinsamer Ausschalter dient, geöffnet. Der Grund dafür ist, daß der Schalter S0 in der "Ein"-Stellung einen gewissen Widerstand aufweist (der Schalter kann als Transistorschalter ausgebildet sein), wogegen der Widerstand der Z-Diode im Bereich der Durchbruchspannung äußerst klein ist, so daß die Relaiserregerspule Rel 1 schnell über die Diode D1 entladen wird, was zu einem gewünschten schnellen Abfall des Relaisankers der Erregerspule Rel 1 führt. Während des Entladens steigt die Spannung zwischen der Diode D1 und der Z-Diode kurzzeitig steil an, so daß, wenn der Schalter s2 weiter getaktet in diesem Zustand angesteuert werden würde, d.h., der Schalter s2 auch zeitweise ausgeschaltet werden wurde, auch das Relais Rel 2 abfallen würde. Damit jedoch die Relaiserregerspule Rel 2 (und mögliche andere Relaiserregerspulen) nicht ebenfalls ausschalten, wird der Schalter s2 (und mögliche andere Schalter) geschlossen, wobei dieser in einem nichtgetakteten Betrieb bis zum Zeitpunkt t1 in einer geschlossenen Stellung verbleibt, bis der Zeitpunkt t1 erreicht ist, wo, wie bereits in Figur 3 beschrieben, wieder auf getakteten Betrieb umgeschaltet wird. Wahrend dieser Phase wird zwar die Verlustleistung wieder etwas größer, der Bauteileaufwand ist aber wesentlich geringer.At the time thousand it is decided that the relay excitation coil Rel 1 should switch off. The switch s1 is thus opened, as a result of which the current i1 drops in accordance with the switch-off curve shown in FIG. At the same time, the common switch s0 opens, so that the shutdown voltage peak of the relay excitation coil Rel 1 is limited via the diode D1 and the common Zener diode. So that the switch-off process for the relay excitation coil Rel 1 is quick, all relays should be operated with the highest possible shutdown voltage. For this reason, switch s0, which serves as a common switch-off switch, is also opened at time thousand. The reason for this is that the switch S0 has a certain resistance in the "on" position (the switch can be designed as a transistor switch), whereas the resistance of the Z diode is extremely small in the region of the breakdown voltage, so that the relay excitation coil rel 1 is quickly discharged via the diode D1, which leads to a desired rapid drop in the relay armature of the excitation coil Rel 1. During the discharge, the voltage between the diode D1 and the Zener diode rises briefly steeply, so that if the switch s2 were actuated in this state, that is, the switch s2 was also temporarily switched off, the relay Rel 2 would fall off. However, so that the relay excitation coil Rel 2 (and possible other relay excitation coils) do not also switch off, the switch s2 (and possible other switches) is closed, which remains in a closed position in a non-clocked operation until the time t1 until the time t1 is reached , where, as already described in Figure 3, is switched back to clocked operation. During this phase, the power loss increases again somewhat, but the component expenditure is significantly lower.

In Figur 6 ist eine Teilschaltung zur Erzeugung der Ansteuersignale für die Schalter s1 und s2 dargestellt, wobei jedoch diese Aufgabe auch durch einen Mikroprozessor wahrgenommen werden kann.FIG. 6 shows a subcircuit for generating the control signals for the switches s1 and s2, although this task can also be performed by a microprocessor.

Die Schaltung besteht aus zwei Eingängen E1, E2, die jeweils mit einem Eingang eines UND-Gliedes verbunden sind, wobei jeweils an dessen Ausgang die Signale für Si1, Si2 abnehmbar sind. Die Eingänge E1, E2 sind weiterhin mit einem monostabilen, wiedertriggerbaren Flip-Flop Q verbunden, das hier zwei negativ flankengesteuerte Eingänge aufweist. Der Ausgang des Flip-Flops steht mit jeweils einem Eingang von zwei ODER-Gliedern in Verbindung, wobei der jeweilige andere Eingang der zwei ODER-Glieder an einem Taktgenerator angeschlossen ist. Die jeweiligen Ausgänge der beiden ODER-Glieder sind an den jeweiligen zweiten Eingang der UND-Glieder angeschlossen.The circuit consists of two inputs E1, E2, each of which is connected to an input of an AND gate, the signals for Si1, Si2 being removable at its output. The inputs E1, E2 are also connected to a monostable, retriggerable flip-flop Q, which here has two negative edge-controlled inputs. The exit of the Flip-flops are connected to an input of two OR gates, the other input of the two OR gates being connected to a clock generator. The respective outputs of the two OR gates are connected to the respective second input of the AND gates.

In Figur 7 sind als Beispiel drei Relaissignale gezeigt. An jeder abfallenden Flanke des Eingangssignals. d.h., wenn die Ansteuerung des Relais aufhört, soll jedesmal ein AUS_allg Impuls entstehen. Überlappen sich zwei Impulse gegenseitig, so soll der letzte maßgebend sein, d.h., das Monoflop muß wiedertriggerbar sein. Das Ansteuersignal für den Schalter s0 ist logisch mit dem AUS_allg identisch, nur daß eine Potentialverschiebung durchgeführt werden muß.In Figure 7, three relay signals are shown as an example. On every falling edge of the input signal. i.e. when the activation of the relay stops, an OFF_allg pulse should occur each time. If two pulses overlap, the last one should be decisive, i.e. the monoflop must be retriggerable. The control signal for the switch s0 is logically identical to the AUS_allg, only that a potential shift must be carried out.

Claims (6)

  1. Method for driving a plurality of relay operating coils which are connected in parallel to a common voltage source and can each be switched on and off by relay circuit means assigned to them, the relay operating coils (Rel 1, Rel 2) to be switched on in each case being driven at a duty ratio (Tx,/Ty), after reaching their pull-in state (t1) , via relay circuit means from a common clock generator (TG), in such a manner that a steady state holding current which is less than the pull-in state occurs, characterized in that the relay operating coils (Rel 1, Rel 2) can be switched off by common switching-off means (s0), the respective relay operating coil switching means remaining closed for those relay operating coils which are intended to continue to operate with the holding current in a steady state (Fig. 5), so that a briefly rising pull-in current (i2(t)) occurs in the associated relay operating coil (Rel 2) which, after a predetermined time (t1) is driven once again by the clock generator (TG) at a duty ratio (Tx/Ty).
  2. Method according to Claim 1, characterized in that the predetermined time is governed by the time duration required for the respective relay operating coil to reach the pull-in state.
  3. Method according to Claim 1, characterized in that the relay operating coils used are of the same type.
  4. Method according to Claims 1 and 3, characterized in that, if only a sub-group of relay operating coils are of the same type, the method is applied to this type group.
  5. Method according to Claim 1, characterized in that the predetermined time duration is calculated and set by a microprocessor.
  6. Use of a circuit arrangement for carrying out the method according to Claim 1, one diode (D1, D2) in each case being connected in parallel with the respective relay operating coil (Rel 1, Rel 2), each diode being connected in the reverse direction to the voltage source (Ub) via a common zener diode (Z) connected in series in the reverse direction, common switching-off means (s0) being connected in parallel with the zener diode.
EP94114740A 1993-09-28 1994-09-19 Method of driving parallel arranged relays Expired - Lifetime EP0650177B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332995A DE4332995C1 (en) 1993-09-28 1993-09-28 Method for driving relays which are arranged in parallel
DE4332995 1993-09-28

Publications (2)

Publication Number Publication Date
EP0650177A1 EP0650177A1 (en) 1995-04-26
EP0650177B1 true EP0650177B1 (en) 1997-11-19

Family

ID=6498841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94114740A Expired - Lifetime EP0650177B1 (en) 1993-09-28 1994-09-19 Method of driving parallel arranged relays

Country Status (3)

Country Link
US (1) US5552954A (en)
EP (1) EP0650177B1 (en)
DE (2) DE4332995C1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4429918A1 (en) * 1994-08-23 1996-02-29 Bosch Siemens Hausgeraete Circuit arrangement for controlling at least one electrically controllable magnet
IT1284693B1 (en) * 1996-07-23 1998-05-21 Fiat Ricerche DEVICE FOR CONTROL OF INDUCTIVE LOADS, ESPECIALLY OF INJECTORS IN AN INJECTION SYSTEM FOR A COMBUSTION ENGINE
US5892650A (en) * 1996-11-29 1999-04-06 Denso Corporation Solenoid valve driving device
DE19731269B4 (en) * 1997-07-22 2006-02-23 Hager Electro Gmbh Device for switching electrical contacts
US20090015066A1 (en) * 2007-07-10 2009-01-15 Yazaki North America, Inc. Close-loop relay driver with equal-phase interval
CN101866737A (en) * 2009-04-14 2010-10-20 杨泰和 Electromagnetic actuator for starting at high voltage and electrifying and maintaining at low voltage
US9871378B2 (en) 2012-09-28 2018-01-16 Kohler Co. Paralleling module for a generator system
US9548612B2 (en) 2012-09-28 2017-01-17 Kohler Co. Paralleling module for a generator system
US10186857B2 (en) 2016-05-16 2019-01-22 Astronics Advanced Electronic Systems Corp. Paralleling mechanical relays for increased current carrying and switching capacity
KR102661621B1 (en) * 2019-05-03 2024-04-29 현대자동차주식회사 System and method for controlling high voltage relay of eco-friendly vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2053767A1 (en) * 1969-11-10 1971-05-27 Zentronik Veb K Circuit arrangement for controlling electromagnets
DE2000117A1 (en) * 1970-01-02 1971-07-08 Anker Werke Ag Circuit arrangement for operating electromagnetic consumers
DE3208660A1 (en) * 1981-03-12 1982-09-23 Lucas Industries Ltd., Birmingham, West Midlands Control circuit
DE3308660C2 (en) * 1983-03-11 1985-12-19 Stb Strahlentechnische Bilddiagnostik Heinz Fleck, 2080 Pinneberg Method for comparing medical x-ray recordings taken at different points in time
DE3331678A1 (en) * 1983-09-02 1985-04-04 Westdeutsche Elektrogerätebau GmbH, 4770 Soest Circuit arrangement for pull-in and holding excitation of a relay, which excitation can be limited in time by means of external circuitry
DE3434343A1 (en) * 1984-09-19 1986-03-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for the power supply of relays
IT1221019B (en) * 1985-04-01 1990-06-21 Ates Componenti Elettron INTEGRATED ELECTRONIC DEVICE FOR THE CONTROL OF INDUCTIVE LOADS, WITH RECIRCULATION ELEMENT
DE3911431A1 (en) * 1989-04-07 1990-10-11 Siemens Ag Integratable free-wheeling circuit
EP0392058A1 (en) * 1989-04-13 1990-10-17 Siemens Aktiengesellschaft Circuit arrangement for drive of at least one electromagnetic relay
DE4026427C1 (en) * 1990-08-21 1992-02-13 Siemens Ag, 8000 Muenchen, De
DE4117535A1 (en) * 1991-05-29 1992-12-03 Miele & Cie Relay control circuit for domestic electrical appliance - uses switching transistor supplied with control signal dependent on supply voltage amplitude

Also Published As

Publication number Publication date
DE4332995C1 (en) 1994-10-20
DE59404623D1 (en) 1998-01-02
US5552954A (en) 1996-09-03
EP0650177A1 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP0704097B1 (en) Process and device for controlling electromagnetic consumers
EP0006843B2 (en) Electronically controlled magnetic valve
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
EP0650177B1 (en) Method of driving parallel arranged relays
DE3718309A1 (en) CIRCUIT ARRANGEMENT FOR THE CLOCKED CONTROL OF SEMICONDUCTOR SWITCHES
DE19709767C1 (en) Controlling several coupled end stages esp. with gradient amplifier of nuclear resonance tomography
DE19522582C2 (en) Circuit arrangement for operating an electromagnet
EP0205806B1 (en) Process and circuit for the control of a valve
DE3126600C2 (en) Circuit arrangement for controlling an electrical load with an electromagnetic holding relay
DE10341582B4 (en) Circuit arrangement for fast switching of inductive loads
EP0965140B1 (en) Current-controlled output stage for electromagnetic actuators
DE3623908A1 (en) Control circuit for the magnet coil of an electromagnet
DE2922521C2 (en) Circuit arrangement for the control of magnets in recording devices for teletyping technology
DE3904605C2 (en)
DE19731836A1 (en) Method and device for driving a shutdown thyristor
DE3611221A1 (en) Internal combustion engine having inlet and outlet valves
DE3118626C2 (en) Device for potential-free control of one or more power semiconductors
DE3040806C2 (en) Circuit arrangement for switching over or further switching a bistable or multi-stable relay
EP3407365B1 (en) Switching arrangement for actuating a number of electromagnetic linear actuators
DE2602600A1 (en) CONTROL DEVICE FOR INDIVIDUALLY CONNECTED AND DISCONNECTABLE ACTUATORS
DE2329374A1 (en) CONTROL CIRCUIT FOR RAPID EXCITATION OF ELECTROMAGNETIC SYSTEMS, IN PARTICULAR OF A STEPPER MOTOR
DE3027183A1 (en) Inductive element two current power supply - has diode control circuit incorporating switch off release delay minimisation
DE3119515A1 (en) Circuit arrangement for operating a bistable relay with a monostable switching characteristic
DE212958C (en)
CH664175A5 (en) CIRCUIT ARRANGEMENT FOR CONTROLLING AN ELECTROMAGNETIC ACTUATOR FOR A TEXTILE MACHINE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19951211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970317

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19971119

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLEHR, MANFRED

REF Corresponds to:

Ref document number: 59404623

Country of ref document: DE

Date of ref document: 19980102

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990921

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990924

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991118

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000919

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST