EP0392058A1 - Circuit arrangement for drive of at least one electromagnetic relay - Google Patents

Circuit arrangement for drive of at least one electromagnetic relay Download PDF

Info

Publication number
EP0392058A1
EP0392058A1 EP89106654A EP89106654A EP0392058A1 EP 0392058 A1 EP0392058 A1 EP 0392058A1 EP 89106654 A EP89106654 A EP 89106654A EP 89106654 A EP89106654 A EP 89106654A EP 0392058 A1 EP0392058 A1 EP 0392058A1
Authority
EP
European Patent Office
Prior art keywords
relay
circuit arrangement
current
voltage
reference coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89106654A
Other languages
German (de)
French (fr)
Inventor
Richard Siepmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP89106654A priority Critical patent/EP0392058A1/en
Priority to US07/503,681 priority patent/US5107391A/en
Priority to PT93734A priority patent/PT93734A/en
Priority to JP2096635A priority patent/JPH02295016A/en
Publication of EP0392058A1 publication Critical patent/EP0392058A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention relates to a circuit arrangement for actuating at least one electromagnetic relay via an electronic switch which is controlled in pulses.
  • a pulse control of relays is known, for example from DE-A-31 44 000.
  • the resulting current through the coil can be set to a minimum value in accordance with the required holding excitation, in order to reduce the power consumed in the coil and thus the heating to keep the relay low.
  • a fixed duty cycle for this pulse control can only be used if the voltage does not change and the ambient temperature remains approximately the same.
  • An application for the present invention is the use of relays in motor vehicles, where they are tightly packed in relay boxes, where they are not only subject to strong temperature fluctuations from the outside, but also there is a risk of mutual heating within the relay boxes.
  • Another problem is the fact that the battery voltage fluctuates very strongly in a motor vehicle.
  • the excitation coils are moved to the safe side, ie. H. designed for the worst cases, which leads to a correspondingly strong heat development in the relays in question and for the neighboring relays during continuous operation.
  • the Previously known pulse control can be carried out in such a way that the coil current or the voltage would be measured individually for each individual relay and evaluated for the corresponding control of an associated electronic switch.
  • Such individual control circuits would not only be very costly given the increasing number of relays, such as those used in a motor vehicle or in comparable applications, but would also require a large amount of space.
  • the aim of the invention is therefore to provide a control circuit for relays with which an arbitrary number of commonly housed, but individually switched relays can be controlled in such a way that safe holding excitation is ensured, but excessive power consumption and thus undesirable heat development can be avoided .
  • this circuit arrangement has the following features: All excitation circuits of the individually switchable relay windings can be connected in parallel with one another with the first connection to a pole of a DC voltage source and with their second connection via the switching path of an electronic switch to the second pole of the DC voltage source, - A control device is provided which switches the electronic switch on and off, and - The pulse duty factor of the switching pulses is set in the control device depending on the operating voltage of the voltage source and on the ambient temperature of the relay so that the minimum holding current required for the connected relay is not undercut.
  • a minimum holding current is thus set in the control device such that it is just sufficient for all connected or connectable relays, fluctuations in the operating voltage and the ambient temperature always being taken into account.
  • the circuit ar works of course with a relay. The particular advantage results from the group control, since the control device only has to be provided once.
  • the pulse duty factor of the switching pulses is expediently set in the control device in such a way that the holding excitation is generated for each of the connected relays. If, for example, the operating voltage drops to the holding voltage, the clocking changes into a continuous current. Since the withstand voltage is approximately 50% of the nominal voltage, approximately 75% of the power can be saved in this case. However, if the operating voltage rises above the nominal voltage, for example in a motor vehicle to 15 V instead of 12 V nominal voltage, only about 1/6 of the heat is generated in this critical case, as a result of which the temperature of a motor vehicle relay box can be significantly reduced.
  • each excitation circuit of a relay is expediently scanned by a monitoring circuit, and when an additional relay is switched on, a continuous pulse is then applied to the switch-on time electronic switch.
  • Such an input stage for recognizing the control state is necessary for each relay, but this only slightly increases the costs for the overall arrangement, since the main part of the control device with the power stage, i. that is, the electronic switch only has to be provided once for the overall arrangement.
  • the control device can be a digital control device, e.g. B. a microcontroller, the control states of the individual relays as digital input variables and the values measured by sensors for the ambient temperature and the operating voltage are entered as analog input variables.
  • the characteristic values of the relays to be switched on are Expediently stored in the form of tables or characteristic fields, so that the corresponding duty cycle for the electronic switch can be generated according to a calculation rule for the respective input values.
  • control device has a reference coil arranged in thermal contact with the relay, the time constant of which is less than or equal to that of the fastest responding relay, the current flowing in the reference coil being monitored by means of a current monitor and for Determination of the duty cycle is evaluated.
  • This evaluation can take place in such a way that the electronic switch is switched off when the current in the reference coil exceeds a predetermined threshold value above the holding current of the relays, and that the electronic switch is switched on when the current in the reference coil falls below a predetermined threshold value at the holding current .
  • This current monitoring can be carried out, for example, by conventional sensors, such as a measuring resistor. Current monitoring by measuring the magnetic flux in the reference coil via, for example, a field plate is also expedient.
  • FIG. 1 shows a control circuit for a number of relays, the excitation coils RL1, RL2, RL3 ... RLn of which are arranged in parallel.
  • About related Switches s1, s2, s3 ... sn can be connected individually to the operating voltage U B.
  • the end points of the excitation coils RL1 to RLn opposite the switches are located on the switching path of an electronic switch, for example a field effect transistor FET. All relays RL1 to RLn are arranged in a common relay box RB, which is indicated by a broken line.
  • the electronic switch FET is controlled in pulses by a group control device GSE, which generates a pulse ratio at least corresponding to the holding excitation for the relays that can be connected in a pulse generator IG1.
  • This duty cycle is determined as a function of the operating voltage U B and the temperature in the relay box RB.
  • a voltmeter V is connected in parallel to the excitation circuits, and a temperature sensor TS, which is located in the relay box itself, supplies the respectively valid temperature values.
  • the duty cycle is determined from the operating voltage and the temperature in each case according to a function dependent on the relay characteristic values.
  • This function or the characteristic data are stored, for example, in a function memory FM connected to the pulse generator IG1.
  • a free-wheeling diode FD is connected in parallel with the windings in a known manner.
  • FIG. 2 shows an approximately modified embodiment for an analog operation of the group control unit GSE.
  • the excitation windings RL1 to RLn can optionally be connected in parallel to the operating voltage U B via the switches s1 to sn.
  • the connection is scanned via the scanning lines A1 to An, in FIG. 1, for example, the voltage jump across the resistor R1 and the capacitor C is scanned via two Schmitt triggers ST1 and ST2 and evaluated via a downstream AND gate AN to generate a signal becomes.
  • a continuous pulse of, for example, 10 ms is generated in a corresponding pulse generator IG3 via the downstream OR gate OR1 when an additional relay is connected.
  • This continuous pulse is applied directly to the electronic switch FET via the diode D2 and the operational amplifier OP.
  • the actual clock ratio for normal operation is determined in the embodiment of FIG. 2 by a reference coil RS which is arranged in the relay box RB and has a time constant (L / R) which is less than or equal to the time constant of the fastest switching relay.
  • This reference coil is connected to the operating voltage in parallel with the excitation coils of the relays, and its current is monitored to obtain the duty cycle. Since the reference coil is in thermal contact with the relays, its resistance changes as does that of the excitation coils. In addition, the current rise is accelerated at a higher operating voltage, which leads to a reduction in the duty cycle.
  • Current monitoring can be carried out in a known manner on a measuring resistor; in the exemplary embodiment shown, it takes place via a magnetic flux measurement with a field plate FP on the reference coil RS.
  • This field plate FP changes its resistance with the magnetic flux in the reference coil. It is included as a variable resistor together with the resistors R2, R3 and R4 in a voltage divider circuit at the two inputs of the operational amplifier OP.
  • the electronic switch is switched on via the operational amplifier OP and switched off again at a predetermined current, for example at a 10% higher current.
  • a predetermined current for example at a 10% higher current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

In the circuit arrangement for driving a group of electromagnetic relays, all the excitation circuits can be connected parallel to one another and uniformly in series with the switching path of an electronic switch (FET) to a DC voltage source. The electronic switch (FET) is switched on and off in a pulsed manner, the duty cycle being set in a control device as a function of the operating voltage (UB) and of the environmental temperature of the relay, such that the minimum latching current required for the relays connected is not undershot. <IMAGE>

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Ansteuerung mindestens eines elektromagnetischen Relais über einen impuls­weise durchgesteuerten elektronischen Schalter.The invention relates to a circuit arrangement for actuating at least one electromagnetic relay via an electronic switch which is controlled in pulses.

Eine Impulsansteuerung von Relais ist bekannt, beispielsweise aus der DE-A-31 44 000. Durch diese Impulsansteuerung kann man den resultierenden Strom durch die Spule entsprechend der benö­tigten Halteerregung auf einen minimalen Wert einstellen, um die in der Spule verbrauchte Leistung und damit die Erwärmung des Relais gering zu halten. Ein fest eingestelltes Tastver­hältnis für diese Impulsansteuerung läßt sich jedoch nur dann verwenden, wenn die Spannung sich nicht ändert und auch die Um­gebungstemperatur etwa gleich bleibt.A pulse control of relays is known, for example from DE-A-31 44 000. By means of this pulse control, the resulting current through the coil can be set to a minimum value in accordance with the required holding excitation, in order to reduce the power consumed in the coil and thus the heating to keep the relay low. A fixed duty cycle for this pulse control can only be used if the voltage does not change and the ambient temperature remains approximately the same.

Ein Anwendungsfall für die vorliegende Erfindung ist der Ein­satz von Relais in Kraftfahrzeugen, wo sie dicht gepackt in Re­laisboxen untergebracht sind, wo sie nicht nur von außen star­ken Temperaturschwankungen unterworfen sind, sondern auch in­nerhalb der Relaisboxen die Gefahr einer gegenseitigen Aufhei­zung besteht. Dazu kommt als weiteres Problem die Tatsache, daß die Batteriespannung in einem Kraftfahrzeug sehr stark schwankt. Um dabei jedoch auch bei niedrigerer Batteriespannung und bei hohen Umgebungstemperaturen ein sicheres Ansprechen der einzelnen Relais zu gewährleisten, werden die Erregerspulen nach der sicheren Seite, d. h. für die ungünstigsten Fälle, ausgelegt, was bei Dauerbetrieb zu einer entsprechend starken Wärmeentwicklung in den betreffenden Relais und für die benach­barten Relais führt.An application for the present invention is the use of relays in motor vehicles, where they are tightly packed in relay boxes, where they are not only subject to strong temperature fluctuations from the outside, but also there is a risk of mutual heating within the relay boxes. Another problem is the fact that the battery voltage fluctuates very strongly in a motor vehicle. However, in order to ensure that the individual relays respond reliably even when the battery voltage is low and the ambient temperature is high, the excitation coils are moved to the safe side, ie. H. designed for the worst cases, which leads to a correspondingly strong heat development in the relays in question and for the neighboring relays during continuous operation.

Da in solchen Einsatzfällen jedes Relais zu unterschiedlichen Zeiten und unterschiedlich lang angeschaltet wird, müßte die bisher bekannte Impulsansteuerung in der Weise vorgenommen wer­den, daß bei jedem einzelnen Relais der Spulenstrom bzw. die Spannung individuell gemessen und zur entsprechenden Steuerung eines zugeordneten elektronischen Schalters ausgewertet würde. Derartige einzelne Ansteuerschaltungen wären aber bei der zu­nehmenden Anzahl von Relais, wie sie in einem Kraftfahrzeug oder auch in vergleichbaren Anwendungsfällen eingesetzt werden, nicht nur sehr kostspielig, sondern auch mit einem hohen Platz­aufwand verbunden.Since each relay is switched on at different times and for different lengths in such cases, the Previously known pulse control can be carried out in such a way that the coil current or the voltage would be measured individually for each individual relay and evaluated for the corresponding control of an associated electronic switch. Such individual control circuits would not only be very costly given the increasing number of relays, such as those used in a motor vehicle or in comparable applications, but would also require a large amount of space.

Ziel der Erfindung ist es deshalb, eine Ansteuerschaltung für Relais anzugeben, mit der eine beliebige Anzahl von gemeinsam untergebrachten, jedoch individuell geschalteten Relais so an­gesteuert werden kann, daß jeweils die sichere Halteerregung gewährleistet, jedoch ein übermäßiger Leistungsverbrauch und damit eine unerwünschte Wärmeentwicklung vermieden werden kann.The aim of the invention is therefore to provide a control circuit for relays with which an arbitrary number of commonly housed, but individually switched relays can be controlled in such a way that safe holding excitation is ensured, but excessive power consumption and thus undesirable heat development can be avoided .

Erfindungsgemäß besitzt diese Schaltungsanordnung folgende Merkmale:
- Alle Erregerkreise der einzeln einschaltbaren Relaiswicklun­gen sind parallel zueinander mit dem ersten Anschluß an einen Pol einer Gleichspannungsquelle und mit ihrem zweiten An­schluß über die Schaltstrecke eines elektronischen Schalters an den zweiten Pol der Gleichspannungsquelle anschaltbar,
- es ist eine Steuereinrichtung vorgesehen, welche den elektro­nischen Schalter impulsweise durchschaltet und sperrt, und
- das Tastverhältnis der Durchschaltimpulse wird in der Steuer­einrichtung in Abhängigkeit von der Betriebsspannung der Spannungsquelle und von der Umgebungstemperatur der Relais so eingestellt, daß der für die angeschlossenen Relais erforder­liche Mindesthaltestrom nicht unterschritten wird.
According to the invention, this circuit arrangement has the following features:
All excitation circuits of the individually switchable relay windings can be connected in parallel with one another with the first connection to a pole of a DC voltage source and with their second connection via the switching path of an electronic switch to the second pole of the DC voltage source,
- A control device is provided which switches the electronic switch on and off, and
- The pulse duty factor of the switching pulses is set in the control device depending on the operating voltage of the voltage source and on the ambient temperature of the relay so that the minimum holding current required for the connected relay is not undercut.

Bei der erfindungsgemäßen Ansteuerschaltung wird also in der Steuereinrichtung ein Mindesthaltestrom so festgelegt, daß er für alle angeschlossenen bzw. anschließbaren Relais gerade aus­reicht, wobei Schwankungen der Betriebsspannung und der Umge­bungstemperatur immer berücksichtigt werden. Die Schaltung ar­ beitet grundsätzlich natürlich auch schon mit einem Relais. Der besondere Vorteil ergibt sich jedoch durch die Gruppenansteue­rung, da die Steuereinrichtung nur ein einziges Mal vorgesehen werden muß.In the control circuit according to the invention, a minimum holding current is thus set in the control device such that it is just sufficient for all connected or connectable relays, fluctuations in the operating voltage and the ambient temperature always being taken into account. The circuit ar works of course with a relay. The particular advantage results from the group control, since the control device only has to be provided once.

Zweckmäßigerweise wird das Tastverhältnis der Durchschaltimpul­se in der Steuereinrichtung so eingestellt, daß für jedes der angeschlossenen Relais gerade die Halteerregung erzeugt wird. Sinkt beispielsweise die Betriebsspannung auf die Haltespan­nung, so geht das Takten in einen Dauerstrom über. Da die Hal­tespannung etwa 50 % der Nennspannung beträgt, können in diesem Fall ca. 75 % der Leistung eingespart werden. Steigt jedoch die Betriebsspannung über die Nennspannung hinaus, beispielsweise in einem Kfz auf 15 V statt 12 V Nennspannung, so wird in die­sem kritischen Fall nur ca. 1/6 der Wärme erzeugt, wodurch die Temperatur einer Kfz-Relaisbox erheblich gesenkt werden kann.The pulse duty factor of the switching pulses is expediently set in the control device in such a way that the holding excitation is generated for each of the connected relays. If, for example, the operating voltage drops to the holding voltage, the clocking changes into a continuous current. Since the withstand voltage is approximately 50% of the nominal voltage, approximately 75% of the power can be saved in this case. However, if the operating voltage rises above the nominal voltage, for example in a motor vehicle to 15 V instead of 12 V nominal voltage, only about 1/6 of the heat is generated in this critical case, as a result of which the temperature of a motor vehicle relay box can be significantly reduced.

Um jedoch bei der allgemeinen Einstellung des Tastverhältnisses auf Halteerregung auch bei der jeweiligen Neuanschaltung eines Relais dessen sicheres Anziehen zu gewährleisten, wird zweckmä­ßigerweise jeder Erregerstromkreis eines Relais durch eine Überwachungsschaltung abgetastet, und bei Anschaltung eines zu­sätzlichen Relais wird dann jeweils für die Einschaltzeit ein Dauerimpuls an den elektronischen Schalter angelegt. Eine der­artige Eingangsstufe zum Erkennen des Ansteuerzustandes ist zwar für jedes Relais notwendig, doch werden dadurch die Kosten für die Gesamtanordnung nur geringfügig erhöht, da der Haupt­teil der Steuereinrichtung mit der Leistungsstufe, d. h., dem elektronischen Schalter, nur einmal für die Gesamtanordnung vorgesehen sein muß.However, in order to ensure that the relay is reliably energized when a relay is switched on in the general setting of the pulse duty factor for holding excitation, each excitation circuit of a relay is expediently scanned by a monitoring circuit, and when an additional relay is switched on, a continuous pulse is then applied to the switch-on time electronic switch. Such an input stage for recognizing the control state is necessary for each relay, but this only slightly increases the costs for the overall arrangement, since the main part of the control device with the power stage, i. that is, the electronic switch only has to be provided once for the overall arrangement.

Die Steuereinrichtung kann ein digitales Steuergerät, z. B. ei­nen Mikrocontroller, enthalten, wobei die Ansteuerzustände der einzelnen Relais als digitale Eingangsgrößen und die von Senso­ren gemessenen Werte für die Umgebungstemperatur und die Be­triebsspannung als analoge Eingangsgrößen eingegeben werden. Die Kennwerte der anzuschaltenden Relais sind in diesem Fall zweckmäßigerweise in Form von Tabellen oder Kennlinienfeldern gespeichert, so daß nach einer Rechenvorschrift für die jewei­ligen Eingangswerte das entsprechende Tastverhältnis für den elektronischen Schalter erzeugt werden kann.The control device can be a digital control device, e.g. B. a microcontroller, the control states of the individual relays as digital input variables and the values measured by sensors for the ambient temperature and the operating voltage are entered as analog input variables. In this case, the characteristic values of the relays to be switched on are Expediently stored in the form of tables or characteristic fields, so that the corresponding duty cycle for the electronic switch can be generated according to a calculation rule for the respective input values.

Anstelle der digitalen kann aber auch eine analoge Steuerung vorgenommen werden. In diesem Fall ist in einer zweckmäßigen Ausführungsform vorgesehen, daß die Steuereinrichtung eine im thermischen Kontakt zu den Relais angeordnete Referenzspule aufweist, deren Zeitkonstante kleiner oder gleich derjenigen des am schnellsten ansprechenden Relais ist, wobei der in der Referenzspule fließende Strom mittels einer Stromüberwachung überwacht und zur Festlegung des Tastverhältnisses ausgewertet wird. Dabei kann diese Auswertung derart geschehen, daß der elektronische Schalter ausgeschaltet wird, wenn der Strom in der Referenzspule einen vorgegebenen Schwellenwert oberhalb des Haltestroms der Relais übersteigt, und daß der elektronische Schalter eingeschaltet wird, wenn der Strom in der Referenzspu­le einen vorgegebenen Schwellenwert beim Haltestrom unter­schreitet. Diese Stromüberwachung kann beispielsweise durch üb­liche Sensoren, etwa einen Meßwiderstand, erfolgen. Zweckmäßig ist auch eine Stromüberwachung durch Messung des magnetischen Flusses in der Referenzspule über beispielsweise eine Feldplat­te.Instead of digital control, analog control can also be used. In this case, it is provided in an expedient embodiment that the control device has a reference coil arranged in thermal contact with the relay, the time constant of which is less than or equal to that of the fastest responding relay, the current flowing in the reference coil being monitored by means of a current monitor and for Determination of the duty cycle is evaluated. This evaluation can take place in such a way that the electronic switch is switched off when the current in the reference coil exceeds a predetermined threshold value above the holding current of the relays, and that the electronic switch is switched on when the current in the reference coil falls below a predetermined threshold value at the holding current . This current monitoring can be carried out, for example, by conventional sensors, such as a measuring resistor. Current monitoring by measuring the magnetic flux in the reference coil via, for example, a field plate is also expedient.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel an­hand der Zeichnung näher erläutert. Es zeigen

  • FIG 1 eine teilweise schematisch gehaltene Schaltungsanordnung einer Ansteuerschaltung mit einer digialen Steuereinrichtung,
  • FIG 2 eine ähnliche Ansteuerschaltung mit einer analog arbei­tenden Steuereinrichtung.
The invention is explained in more detail using an exemplary embodiment with reference to the drawing. Show it
  • 1 shows a circuit arrangement of a control circuit with a digital control device, which is kept partially schematic,
  • 2 shows a similar control circuit with an analog control device.

FIG 1 zeigt in teilweise vereinfachter Darstellung eine An­steuerschaltung für eine Reihe von Relais, deren Erregerspulen RL1, RL2, RL3 ... RLn parallel angeordnet sind. Über zugehörige Schalter s1, s2, s3 ... sn sind sie wahlweise einzeln an die Betriebsspannung UB anschaltbar. Die den Schaltern entgegenge­setzten Endpunkte der Erregerspulen RL1 bis RLn liegen an der Schaltstrecke eines elektronischen Schalters, beispielsweise eines Feldeffekttransistors FET. Alle Relais RL1 bis RLn sind in einer gemeinsamen Relaisbox RB angeordnet, die durch eine gestrichelte Linie angedeutet ist.1 shows a control circuit for a number of relays, the excitation coils RL1, RL2, RL3 ... RLn of which are arranged in parallel. About related Switches s1, s2, s3 ... sn can be connected individually to the operating voltage U B. The end points of the excitation coils RL1 to RLn opposite the switches are located on the switching path of an electronic switch, for example a field effect transistor FET. All relays RL1 to RLn are arranged in a common relay box RB, which is indicated by a broken line.

Der elektronische Schalter FET wird impulsweise durch eine Gruppensteuereinrichtung GSE durchgesteuert, welche in einem Impulsgenerator IG1 ein der Halteerregung für die anschaltbaren Relais mindestens entsprechendes Tastverhältnis erzeugt. Dieses Tastverhältnis wird in Abhängigkeit von der Betriebsspannung UB und von der Temperatur in der Relaisbox RB festgelegt. Zu die­sem Zweck ist ein Voltmeter V parallel zu den Erregerkreisen geschaltet, und ein Temperatursensor TS, der in der Relaisbox selbst untergebracht ist, liefert die jeweils gültigen Tempera­turwerte. Aus der Betriebsspannung und der Temperatur wird je­weils nach einer von den Relaiskennwerten abhängigen Funktion das Tastverhältnis ermittelt. Diese Funktion bzw. die Kenndaten sind beispielsweise in einem an den Impulsgenerator IG1 ange­schlossenen Funktionsspeicher FM gespeichert. Um während der Abschaltzeit des elektronischen Schalters FET den Stromfluß durch die Erregerspule zu ermöglichen, ist in bekannter Weise eine Freilaufdiode FD parallel zu den Wicklungen geschaltet.The electronic switch FET is controlled in pulses by a group control device GSE, which generates a pulse ratio at least corresponding to the holding excitation for the relays that can be connected in a pulse generator IG1. This duty cycle is determined as a function of the operating voltage U B and the temperature in the relay box RB. For this purpose, a voltmeter V is connected in parallel to the excitation circuits, and a temperature sensor TS, which is located in the relay box itself, supplies the respectively valid temperature values. The duty cycle is determined from the operating voltage and the temperature in each case according to a function dependent on the relay characteristic values. This function or the characteristic data are stored, for example, in a function memory FM connected to the pulse generator IG1. In order to enable the current to flow through the excitation coil during the switch-off time of the electronic switch FET, a free-wheeling diode FD is connected in parallel with the windings in a known manner.

Beim Zuschalten eines der Relais RL1 bis RLn wird die Poten­tialänderung an einer zugehörigen Abtastleitung A1 bis An er­faßt und zur Durchschaltung eines monostabilen Kippgliedes MF ausgewertet. Diese Abtastung ist in FIG 1 nur schematisch ge­zeichnet; soweit eine Pegelanpassung erforderlich ist, wird diese vom Fachmann in üblicher Weise vorgenommen. Das Anspre­chen eines monostabilen Kippgliedes MF in einer der Abtastlei­tungen A1 bis An wird in dem ODER-Glied OR1 erkannt und über den Impulsgenerator IG2 in der Gruppensteuereinheit GSE zur Er­zeugung eines Dauerimpulses ausgewertet. Dieser Dauerimpuls ist zumindest solange bemessen, daß er zum sicheren Ansprechen ei­ nes jeden der anschaltbaren Relais ausreicht. Über das ODER-­Glied OR2 wird dieser Dauerimpuls den Haltestromimpulsen des Impulsgenerators IG1 überlagert, so daß der elektronische Schalter FET für die Dauer des Ansprechens des neu zugeschal­teten Relais durchgeschaltet bleibt.When one of the relays RL1 to RLn is switched on, the potential change is detected on an associated scanning line A1 to An and evaluated for switching a monostable multivibrator MF. This scan is shown only schematically in FIG. 1; if a level adjustment is required, this is carried out in a conventional manner by a person skilled in the art. The response of a monostable multivibrator MF in one of the scan lines A1 to An is recognized in the OR gate OR1 and evaluated via the pulse generator IG2 in the group control unit GSE to generate a continuous pulse. This continuous pulse is dimensioned at least so long that it ei for safe response Each of the relays that can be connected is sufficient. This continuous pulse is superimposed on the holding current pulses of the pulse generator IG1 via the OR gate OR2, so that the electronic switch FET remains switched on for the duration of the response of the newly connected relay.

FIG 2 zeigt eine etwa abgewandelte Ausführungsform für eine analoge Funktionsweise der Gruppensteuereinheit GSE. Soweit in FIG 2 die Bauelemente oder logischen Schaltelemente in ihrer Funktion mit FIG 1 übereinstimmen, sind gleiche Bezugszeichen verwendet. Auch in diesem Fall sind die Erregerwicklungen RL1 bis RLn über die Schalter s1 bis sn wahlweise parallel an die Betriebsspannung UB anschaltbar. Die Anschaltung wird über die Abtastleitungen A1 bis An abgetastet, wobei in FIG 1 beispiels­weise über zwei Schmitt-Trigger ST1 und ST2 eine Abtastung des Spannungssprungs an dem Widerstand R1 und dem Kondensator C vorgenommen und über ein nachgeschaltetes UND-Glied AN zur Er­zeugung eines Signals ausgewertet wird. Über das nachgeschalte­te ODER-Glied OR1 wird auch in diesem Fall bei Anschaltung ei­nes zusätzlichen Relais ein Dauerimpuls von beispielsweise 10 ms in einem entsprechenden Impulserzeuger IG3 erzeugt. Dieser Dauerimpuls wird über die Diode D2 und den Operationsverstärker OP direkt an den elektronischen Schalter FET angelegt.2 shows an approximately modified embodiment for an analog operation of the group control unit GSE. Insofar as the components or logic switching elements in FIG. 2 match in their function with FIG. 1, the same reference numerals are used. In this case, too, the excitation windings RL1 to RLn can optionally be connected in parallel to the operating voltage U B via the switches s1 to sn. The connection is scanned via the scanning lines A1 to An, in FIG. 1, for example, the voltage jump across the resistor R1 and the capacitor C is scanned via two Schmitt triggers ST1 and ST2 and evaluated via a downstream AND gate AN to generate a signal becomes. In this case, too, a continuous pulse of, for example, 10 ms is generated in a corresponding pulse generator IG3 via the downstream OR gate OR1 when an additional relay is connected. This continuous pulse is applied directly to the electronic switch FET via the diode D2 and the operational amplifier OP.

Das eigentliche Taktverhältnis für den Normalbetrieb wird bei der Ausführungsform von FIG 2 durch eine Referenzspule RS be­stimmt, die in der Relaisbox RB angeordnet ist und eine Zeit­konstante (L/R) aufweist, die kleiner oder gleich der Zeitkon­stante des am schnellsten schaltenden Relais ist. Diese Refe­renzspule ist parallel zu den Erregerspulen der Relais an die Betriebsspannung angeschaltet, und zur Gewinnung des Tastver­hältnisses wird ihr Strom überwacht. Da die Referenzspule in thermischem Kontakt zu den Relais steht, ändert sich ihr Wider­stand ebenso wie der der Erregerspulen. Außerdem wird bei höhe­rer Betriebsspannung der Stromanstieg beschleunigt, was zu ei­ner Reduzierung der Einschaltdauer führt.The actual clock ratio for normal operation is determined in the embodiment of FIG. 2 by a reference coil RS which is arranged in the relay box RB and has a time constant (L / R) which is less than or equal to the time constant of the fastest switching relay. This reference coil is connected to the operating voltage in parallel with the excitation coils of the relays, and its current is monitored to obtain the duty cycle. Since the reference coil is in thermal contact with the relays, its resistance changes as does that of the excitation coils. In addition, the current rise is accelerated at a higher operating voltage, which leads to a reduction in the duty cycle.

Die Stromüberwachung kann in bekannter Weise an einem Meßwider­stand erfolgen; im gezeigten Ausführungsbeispiel erfolgt sie über eine magnetische Flußmessung mit einer Feldplatte FP an der Referenzspule RS. Diese Feldplatte FP ändert ihren Wider­stand mit dem magnetischen Fluß in der Referenzspule. Sie ist als veränderlicher Widerstand zusammen mit den Widerständen R2, R3 und R4 in eine Spannungsteilerschaltung an den beiden Ein­gängen des Operationsverstärkers OP einbezogen.Current monitoring can be carried out in a known manner on a measuring resistor; in the exemplary embodiment shown, it takes place via a magnetic flux measurement with a field plate FP on the reference coil RS. This field plate FP changes its resistance with the magnetic flux in the reference coil. It is included as a variable resistor together with the resistors R2, R3 and R4 in a voltage divider circuit at the two inputs of the operational amplifier OP.

Unterschreitet der Strom in der Referenzspule RS einen dem Hal­testrom der angeschlossenen Relais entsprechenden Wert, so wird der elektronische Schalter über den Operationsverstärker OP eingeschaltet und bei einem vorgegebenen, beispielsweise bei einem 10 % höheren Strom, wieder abgeschaltet. Bei abgeschalte­tem elektronischen Schalter FET fließt der Strom in bekannter Weise über die gemeinsame Freilaufdiode FD parallel zu den Spu­len weiter.If the current in the reference coil RS falls below a value corresponding to the holding current of the connected relays, the electronic switch is switched on via the operational amplifier OP and switched off again at a predetermined current, for example at a 10% higher current. When the electronic switch FET is switched off, the current continues to flow in a known manner via the common free-wheeling diode FD in parallel with the coils.

Claims (9)

1. Schaltungsanordnung zur Ansteuerung mindestens eines elek­tromagnetischen Relais mit folgenden Merkmalen:
- alle Erregerkreise der einzeln einschaltbaren Relaiswicklun­gen (RL1 bis RLn) sind parallel zueinander mit dem ersten An­schluß an einen Pol einer Gleichspannungsquelle (UB) und mit ihrem zweiten Anschluß über die Schaltstrecke eines elektro­nischen Schalters (FET) an den zweiten Pol der Gleichspan­nungsquelle anschaltbar;
- es ist eine Steuereinrichtung (GSE) vorgesehen, welche den elektronischen Schalter (FET) impulsweise durchschaltet und sperrt und
- das Tastverhältnis der Durchschaltimpulse wird in der Steuer­einrichtung (GSE) in Abhängigkeit von der Betriebsspannung (UB) der Spannungsquelle und von der Umgebungstemperatur der Relais so eingestellt, daß der für die angeschlossenen Relais erforderliche Mindesthaltestrom nicht unterschritten wird.
1. Circuit arrangement for controlling at least one electromagnetic relay with the following features:
- All excitation circuits of the individually switchable relay windings (RL1 to RLn) can be connected in parallel to one another with the first connection to a pole of a DC voltage source (U B ) and with their second connection via the switching path of an electronic switch (FET) to the second pole of the DC voltage source;
- A control device (GSE) is provided which switches on and off the electronic switch (FET) in pulses and
- The pulse duty factor of the switching pulses is set in the control device (GSE) depending on the operating voltage (U B ) of the voltage source and on the ambient temperature of the relay so that the minimum holding current required for the connected relay is not undercut.
2. Schaltungsanordnung nach Anspruch 1 mit folgenden weiteren Merkmalen:
- alle Erregerstromkreise der Relais werden durch eine Überwa­chungsschaltung (A1 bis An) abgetastet und bei Anschaltung eines Erregerkreises wird für die Einschaltzeit eines Relais ein Dauerimpuls an den elektronischen Schalter (FET) ange­legt.
2. Circuit arrangement according to claim 1 with the following further features:
- All excitation circuits of the relays are scanned by a monitoring circuit (A1 to An) and when an excitation circuit is switched on, a permanent pulse is applied to the electronic switch (FET) for the switch-on time of a relay.
3. Schaltungsanordnung nach Anspruch 2, dadurch ge­kennzeichnet, daß die Anschaltung eines Relais durch eine Spannungsüberwachung zur Erzeugung eines digitalen Signals ausgewertet wird, womit in der Steuereinrichtung ein Dauerimpuls von vorgegebener Länge ausgelöst wird.3. Circuit arrangement according to claim 2, characterized in that the connection of a relay is evaluated by a voltage monitor for generating a digital signal, whereby a continuous pulse of a predetermined length is triggered in the control device. 4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3 mit folgenden weiteren Merkmalen:
- die Meßwerte eines in thermischem Kontakt mit zumindest einem Teil der angeschlossenen Relais stehenden Temperatursensors (TS) sowie eines die Spannung der Gleichspannungsquelle ab­greifenden Spannungsmessers (V) werden einer digitalen Steuereinrichtung (IG1) zugeführt, welche mit Hilfe einer ge­speicherten, von den Kenndaten der Relais abhängigen Funktion das Tastverhältnis der Durchschaltimpulse erzeugt.
4. Circuit arrangement according to one of claims 1 to 3 with the following further features:
- The measured values of a temperature sensor in thermal contact with at least some of the connected relays (TS) and a voltage meter (V) tapping the voltage of the DC voltage source are fed to a digital control device (IG1) which generates the pulse duty factor of the switching pulses with the aid of a stored function which is dependent on the characteristics of the relay.
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 3 mit folgenden weiteren Merkmalen:
- als Sensor für Temperatur und Betriebsspannung wird eine Re­ferenzspule (RS) verwendet, deren Zeitkonstante kleiner oder gleich groß ist wie die des am schnellsten schaltenden Re­lais,
- die Referenzspule (RS) ist in thermischem Kontakt mit zumin­dest einem Teil der Relais angeordnet und parallel zu den Er­regerwicklungen (RL1 bis RLn) an die Betriebsspannung ange­schaltet und
- mittels einer Stromüberwachung wird der durch die Referenz­spule fließende Strom überwacht und zur Festlegung des Tast­verhältnisses ausgewertet.
5. Circuit arrangement according to one of claims 1 to 3 with the following further features:
a reference coil (RS) is used as a sensor for temperature and operating voltage, the time constant of which is less than or equal to that of the fastest switching relay,
- The reference coil (RS) is arranged in thermal contact with at least some of the relays and connected to the operating voltage in parallel with the excitation windings (RL1 to RLn)
- The current flowing through the reference coil is monitored by means of a current monitor and evaluated to determine the pulse duty factor.
6. Schaltungsanordnung nach Anspruch 5, dadurch ge­kennzeichnet, daß der elektronische Schalter (FET) ausgeschaltet wird, wenn der Strom in der Referenzspule (RS) einen vorgegebenen Schwellenwert oberhalb des Haltestroms der Relais übersteigt, und daß er eingeschaltet wird, wenn der Strom in der Referenzspule (RS) einen vorgegebenen Schwellen­wert unterhalb des Haltestroms unterschreitet.6. Circuit arrangement according to claim 5, characterized in that the electronic switch (FET) is switched off when the current in the reference coil (RS) exceeds a predetermined threshold above the holding current of the relays, and that it is switched on when the current in the Reference coil (RS) falls below a predetermined threshold value below the holding current. 7. Schaltungsanordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Stromüberwachung über einen in den Kreis der Referenzspule eingeschalteten Meßwider­stand erfolgt.7. Circuit arrangement according to claim 5 or 6, characterized in that the current monitoring takes place via a measuring resistor switched on in the circuit of the reference coil. 8. Schaltungsanordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Stromüberwachung durch Messung des magnetischen Flusses in der Referenzspule erfolgt.8. Circuit arrangement according to claim 5 or 6, characterized in that the current monitoring is carried out by measuring the magnetic flux in the reference coil. 9. Schaltungsanordnung nach Anspruch 8, dadurch ge­kennzeichnet, daß der magnetische Fluß der Refe­renzspule über eine Feldplatte (FP) abgetastet wird, welche in eine Spannungsteilerschaltung eines Rechteckgenerators (R2, R3, R4, OP) einbezogen ist.9. Circuit arrangement according to claim 8, characterized in that the magnetic flux of the reference coil is scanned via a field plate (FP), which is included in a voltage divider circuit of a rectangular generator (R2, R3, R4, OP).
EP89106654A 1989-04-13 1989-04-13 Circuit arrangement for drive of at least one electromagnetic relay Withdrawn EP0392058A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP89106654A EP0392058A1 (en) 1989-04-13 1989-04-13 Circuit arrangement for drive of at least one electromagnetic relay
US07/503,681 US5107391A (en) 1989-04-13 1990-04-03 Circuit for driving one or more electromagnetic relays which uses minimum power and results in minimum temperature in the relays
PT93734A PT93734A (en) 1989-04-13 1990-04-11 CIRCUIT SYSTEM FOR COMMANDING AT LEAST ONE ELECTROMAGNETIC RELAY
JP2096635A JPH02295016A (en) 1989-04-13 1990-04-13 Control circuit equipment of at least one electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89106654A EP0392058A1 (en) 1989-04-13 1989-04-13 Circuit arrangement for drive of at least one electromagnetic relay

Publications (1)

Publication Number Publication Date
EP0392058A1 true EP0392058A1 (en) 1990-10-17

Family

ID=8201227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106654A Withdrawn EP0392058A1 (en) 1989-04-13 1989-04-13 Circuit arrangement for drive of at least one electromagnetic relay

Country Status (4)

Country Link
US (1) US5107391A (en)
EP (1) EP0392058A1 (en)
JP (1) JPH02295016A (en)
PT (1) PT93734A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471891A2 (en) * 1990-08-21 1992-02-26 Siemens Aktiengesellschaft Circuit arrangement for controlling a group of relays
EP0562908A1 (en) * 1992-03-24 1993-09-29 Valeo Electronique Supply circuit for an electromagnetic relay
DE4332995C1 (en) * 1993-09-28 1994-10-20 Siemens Ag Method for driving relays which are arranged in parallel
DE102007023189A1 (en) * 2007-05-18 2008-11-20 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Circuit arrangement for current regulation of a valve coil
WO2016045856A1 (en) * 2014-09-23 2016-03-31 Robert Bosch Gmbh Electric actuator with pre-heating
EP2383765B1 (en) 2010-04-29 2020-01-15 Kissling Elektrotechnik GmbH Relay with integrated safety circuit
EP4009345A1 (en) * 2020-12-01 2022-06-08 PTC Rail Services GmbH Circuit and method for the energy-optimized operation of electromagnetic drive systems

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140586C2 (en) * 1991-12-10 1995-12-21 Clark Equipment Co N D Ges D S Method and control device for controlling the current through a magnetic coil
US5204633A (en) * 1992-02-25 1993-04-20 International Business Machines Corporation Electromagnetic contactor with closure fault indicator
JP2597635Y2 (en) * 1992-05-01 1999-07-12 株式会社小松製作所 Drive circuit for electromagnetic switch
DE19503536A1 (en) * 1995-02-03 1996-08-08 Bosch Gmbh Robert Circuit arrangement for an engagement relay
DE19939650C2 (en) 1999-08-13 2001-08-02 Siemens Ag Circuit arrangement for operating a relay
US6976569B2 (en) * 2003-04-04 2005-12-20 Visteon Global Technologies, Inc. Pulse width modulation of brake shift interlock solenoid
US7405918B2 (en) * 2004-12-10 2008-07-29 Yazaki North America, Inc. Inductive load control
US20070216225A1 (en) * 2006-03-16 2007-09-20 Lear Corporation Vehicle junction box and method of controlling the same
US7684168B2 (en) * 2007-01-15 2010-03-23 Yazaki North America, Inc. Constant current relay driver with controlled sense resistor
CN103107046A (en) * 2011-11-14 2013-05-15 力铭科技股份有限公司 Relay drive circuit
US20130201594A1 (en) * 2012-02-03 2013-08-08 Pao-Hung Lin Driving circuit for relay
JP2015011836A (en) * 2013-06-27 2015-01-19 古河電気工業株式会社 Relay controller
US10186857B2 (en) 2016-05-16 2019-01-22 Astronics Advanced Electronic Systems Corp. Paralleling mechanical relays for increased current carrying and switching capacity
US10734177B2 (en) * 2017-09-21 2020-08-04 Moxa Inc. Electromagnetic relay device and control method thereof
JP6671440B1 (en) * 2018-09-28 2020-03-25 株式会社Subaru Junction box control device
CA3164049A1 (en) * 2019-12-09 2021-06-17 The Noco Company Jump starting device with a jump start current sharing system, and a jump start current sharing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144000A1 (en) * 1981-11-05 1983-05-11 Siemens AG, 1000 Berlin und 8000 München Electromagnetic relay for pulse operation
FR2568715A1 (en) * 1984-08-03 1986-02-07 Telemecanique Electrique DEVICE FOR CONTROLLING AN ELECTROMAGNET COIL AND ELECTRIC SWITCHING APPARATUS PROVIDED WITH SUCH A DEVICE
DE3504034A1 (en) * 1985-02-06 1986-08-07 Siemens AG, 1000 Berlin und 8000 München Circuit for energising the winding of a monostable relay
DE3701985A1 (en) * 1987-01-23 1988-08-04 Knorr Bremse Ag Ballast electronics for an apparatus which can be energised by DC voltage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2099677B1 (en) * 1970-07-30 1977-08-05 Honeywell Inf Systems Italia
DE2117357A1 (en) * 1971-04-08 1972-10-19 Linde Ag Electrical time delay switch connected to a DC voltage source
EP0029296B1 (en) * 1979-10-24 1986-04-16 LUCAS INDUSTRIES public limited company Internal combustion engine spark ignition system
JPS60220911A (en) * 1984-04-17 1985-11-05 Nissan Motor Co Ltd Control device for solenoid driving current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144000A1 (en) * 1981-11-05 1983-05-11 Siemens AG, 1000 Berlin und 8000 München Electromagnetic relay for pulse operation
FR2568715A1 (en) * 1984-08-03 1986-02-07 Telemecanique Electrique DEVICE FOR CONTROLLING AN ELECTROMAGNET COIL AND ELECTRIC SWITCHING APPARATUS PROVIDED WITH SUCH A DEVICE
DE3504034A1 (en) * 1985-02-06 1986-08-07 Siemens AG, 1000 Berlin und 8000 München Circuit for energising the winding of a monostable relay
DE3701985A1 (en) * 1987-01-23 1988-08-04 Knorr Bremse Ag Ballast electronics for an apparatus which can be energised by DC voltage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELEKTRONIK *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471891A2 (en) * 1990-08-21 1992-02-26 Siemens Aktiengesellschaft Circuit arrangement for controlling a group of relays
EP0471891A3 (en) * 1990-08-21 1992-08-12 Siemens Aktiengesellschaft Circuit arrangement for controlling a group of relays
US5317475A (en) * 1990-08-21 1994-05-31 Siemens Aktiengesellschaft Circuit arrangement for driving a group of relays
EP0562908A1 (en) * 1992-03-24 1993-09-29 Valeo Electronique Supply circuit for an electromagnetic relay
FR2689306A1 (en) * 1992-03-24 1993-10-01 Valeo Electronique Power supply circuit for electromagnetic relay.
EP0650177A1 (en) * 1993-09-28 1995-04-26 Siemens Aktiengesellschaft Method of driving parallel arranged relays
DE4332995C1 (en) * 1993-09-28 1994-10-20 Siemens Ag Method for driving relays which are arranged in parallel
US5552954A (en) * 1993-09-28 1996-09-03 Siemens Aktiengesellschaft Method for triggering parallel relays and circuit for carrying out the method
DE102007023189A1 (en) * 2007-05-18 2008-11-20 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Circuit arrangement for current regulation of a valve coil
US8649152B2 (en) 2007-05-18 2014-02-11 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Circuit configuration for regulating current in a valve coil
EP2383765B1 (en) 2010-04-29 2020-01-15 Kissling Elektrotechnik GmbH Relay with integrated safety circuit
WO2016045856A1 (en) * 2014-09-23 2016-03-31 Robert Bosch Gmbh Electric actuator with pre-heating
CN105658466A (en) * 2014-09-23 2016-06-08 罗伯特·博世有限公司 Electric actuator with pre-heating
CN105658466B (en) * 2014-09-23 2017-09-12 罗伯特·博世有限公司 Electrical actuator with preheating mechanism
EP4009345A1 (en) * 2020-12-01 2022-06-08 PTC Rail Services GmbH Circuit and method for the energy-optimized operation of electromagnetic drive systems

Also Published As

Publication number Publication date
PT93734A (en) 1990-11-20
JPH02295016A (en) 1990-12-05
US5107391A (en) 1992-04-21

Similar Documents

Publication Publication Date Title
EP0392058A1 (en) Circuit arrangement for drive of at least one electromagnetic relay
DE2740289C3 (en) Device for monitoring the level of a liquid contained in a container
EP0705482B1 (en) Switching contactor driving circuitry
WO1982002115A1 (en) Electronic device for the energization of an electromagnetic element
EP0471891A2 (en) Circuit arrangement for controlling a group of relays
EP0131146B1 (en) Electronic switching device, preferably operating without making contact
DE69212364T2 (en) Circuit for detecting short circuits in control devices for inductive loads
EP1234316A1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
DE1043479B (en) Electrical relay protection system
DE3204234C2 (en) Circuit arrangement for controlling a relay
DE2013413A1 (en)
EP0280261A2 (en) Circuit for getting a temperature independent rectangular signal from a measuring signal
EP0309753A1 (en) Method for monitoring an inductive load
DE2252440B2 (en) Pre-release device for synchronous switches
DE3744079A1 (en) ARRANGEMENT FOR TRANSFORMING A VARIABLE VOLTAGE WITHIN A LARGE AREA INTO A BINARY INFORMATION MATERIAL
WO2001008307A1 (en) Electronic drive control mechanism
DE2408254B2 (en) Overload protection device for an electrical load
DE3541995C2 (en) Switching arrangement for electromotive actuators
DE19858697A1 (en) Method and circuit arrangement for monitoring the operating state of a load
DE69818311T2 (en) SOLID STATE OF RELAY
DE2602560C3 (en) Monitoring circuit
EP0509343A2 (en) Method for operating a switching regulator and its arrangement
DE3819097A1 (en) Circuit arrangement for supplying a reluctance motor
EP0716310A2 (en) Circuit for driving and monitoring electric loads in a motor vehicle
DE2026575A1 (en) monitoring circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901108

17Q First examination report despatched

Effective date: 19940121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940601