JPS60220911A - Control device for solenoid driving current - Google Patents

Control device for solenoid driving current

Info

Publication number
JPS60220911A
JPS60220911A JP7705084A JP7705084A JPS60220911A JP S60220911 A JPS60220911 A JP S60220911A JP 7705084 A JP7705084 A JP 7705084A JP 7705084 A JP7705084 A JP 7705084A JP S60220911 A JPS60220911 A JP S60220911A
Authority
JP
Japan
Prior art keywords
magnetic flux
solenoid
signal
flux density
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7705084A
Other languages
Japanese (ja)
Other versions
JPS6253928B2 (en
Inventor
Masahiro Honma
正宏 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7705084A priority Critical patent/JPS60220911A/en
Publication of JPS60220911A publication Critical patent/JPS60220911A/en
Publication of JPS6253928B2 publication Critical patent/JPS6253928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Relay Circuits (AREA)

Abstract

PURPOSE:To enable to hold constant the holding current without being subjected to the effect of the internal resistance due to the temperature rise of the solenoid and the effect of the fluctuation of the driving voltage by a method wherein the solenoid driving current is controlled by a magnetic flux signal, which is sent from the magnetic flux density sensor whereby the magnetic flux density directly detected. CONSTITUTION:A signal P10, which functions as a digital magnetic flux signal, is inputted in a microprocessor 14 by a magnetic flux signal Bi, which is sent from a magnetroelectric conversion element 9 whereby a magnetic flux density Bi is directly detected and when the magnetic flux density Bi reached a reference value (maximum magnetic flux BM) needed for actuating the solenoid, the microprocessor 14 makes the magnetic flux Bi reduce to a prescribed holding magnetic flux BH. Base current runs on the side of base of a driving transistor Tr16, which makes an output signal P20 to function as ON and OFF signals output to the Tr16 of a power circuit 15 so that his holding magnetic flux BH becomes constant and solenoid driving current Ci is flowed to an exciting coil 12. The holding current can be always held in a constant condition by such a way without being subjected to the effect of the internal resistance due to the temperature rise of the solenoid and the effect of the voltage fluctuation of the driving voltage by controlling the driving current, which is flowed from the side of the solenoid power source. As a result, the solinoid can be stably actuated by such a control.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ソレノイドバルブやソレノイドスイッチ等に
用いられるソレノイド駆動電流制御装jδに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solenoid drive current control device jδ used for solenoid valves, solenoid switches, and the like.

(従来技術) 従来のソレノイド駆動電流制御装置としては、例えば特
開昭54−15165号公報に記載されているような装
置が知られている。
(Prior Art) As a conventional solenoid drive current control device, for example, a device as described in Japanese Patent Application Laid-open No. 15165/1984 is known.

この従来装置は、ソレノイドに直列に微小抵抗を挿入し
、この端子電圧差を電流フィードバック信号として、ソ
レノイドに流れる駆動電流の制御を行なうもので、ソレ
ノイドの作動が完了したことを判断する手段としては、
駆動始めだけに定格の数倍の過大電流が流れるようにす
ることで行なっていた。
This conventional device inserts a microresistance in series with the solenoid, and uses this terminal voltage difference as a current feedback signal to control the drive current flowing through the solenoid.It is used as a means to determine when the solenoid has completed operation. ,
This was done by allowing an excessive current several times the rated value to flow only at the beginning of drive.

しかしながら、このような従来装置にあっては、微小抵
抗の端子電圧差により駆動電流の制御を行なうものであ
るために、ソレノイドの温度上昇による内部抵抗の影響
や駆動電圧の電圧変動の影響を受けることが避けられず
、保持電流にバラツキを生じて、ソレノイドの離脱時間
が一定しないものであった。
However, in such conventional devices, since the drive current is controlled by a terminal voltage difference of a minute resistance, it is affected by internal resistance due to temperature rise of the solenoid and voltage fluctuations in the drive voltage. This was unavoidable, causing variations in the holding current and making the solenoid disconnection time inconsistent.

また、ソレノイドの作動完了の判断を、予め過大電流を
流して行なうようにしていたために、必要以上の電流が
ソレノイドの作動完了後も流れ続けるもので、大幅な電
力消費量の低減を図り得ないものであった。
In addition, because the determination of whether the solenoid has completed its operation is made by passing an excessive current in advance, more current than necessary continues to flow even after the solenoid has completed its operation, making it impossible to significantly reduce power consumption. It was something.

(発明の目的) 本発明は、上述のような問題点を解消しようとなされた
ものであって、その目的とするところは、ソレノイドの
動作制御を安定して行なうことができ、かつ、電力消費
量を大幅に低減させることのできるソレノイド駆動電流
制御装置を提供することにある。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and its purpose is to be able to stably control the operation of a solenoid, and to reduce power consumption. An object of the present invention is to provide a solenoid drive current control device that can significantly reduce the amount of current.

(発明の構成) 即ち、上述した目的を達成するために本発明は、ソレノ
イドの励磁コイルによって発生する磁路に配設して磁束
密度を直接検出させ、磁束信号を出力させる磁束密度セ
ンサと、該磁束密度センサからの磁束信号を入力し、磁
束がツレ/イドを作動させるために必要な基準値に達し
たとき、磁束を所定の保持磁束まで低減させ、この保持
磁束が一定となるようにソレノイド駆動電流を制御させ
る駆動電流制御手段と、を備えた構成とした。
(Structure of the Invention) That is, in order to achieve the above-mentioned object, the present invention provides a magnetic flux density sensor that is disposed in a magnetic path generated by an excitation coil of a solenoid to directly detect magnetic flux density and output a magnetic flux signal; The magnetic flux signal from the magnetic flux density sensor is input, and when the magnetic flux reaches the reference value required to operate the slide/id, the magnetic flux is reduced to a predetermined holding magnetic flux, and this holding magnetic flux is kept constant. A drive current control means for controlling a solenoid drive current is provided.

(発明の効果) 従って、かかる本発明のソレノイド駆動電流制御装置に
あっては、上述のように磁束密度を直接検出する磁束密
度センサからの磁束信号によりソレノイド駆動電流を制
御するものであるために、ソレノイドの温度上昇による
内部抵抗の影響や駆動電圧の電圧変動の影響を受けるこ
と無く、常に保持電流を一定とすることができ、安定し
たソレノイドの動作制御を行なうことができる。
(Effects of the Invention) Therefore, in the solenoid drive current control device of the present invention, the solenoid drive current is controlled by the magnetic flux signal from the magnetic flux density sensor that directly detects the magnetic flux density as described above. The holding current can be kept constant at all times without being affected by internal resistance due to temperature rise of the solenoid or voltage fluctuations of the drive voltage, and stable solenoid operation control can be performed.

また、ソレノイドの作動完了の判断を、磁束がソレノイ
ドを作動させるために必要な基準値に達することで判断
し、その判断直後から駆動電流を保持電流まで低減させ
るものであるために、電力消費の無駄がなく、電力消費
量を大幅に低減させることができる。
In addition, the completion of solenoid operation is determined by the magnetic flux reaching the reference value required to operate the solenoid, and the drive current is reduced to the holding current immediately after that determination, which reduces power consumption. There is no waste, and power consumption can be significantly reduced.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、ソレノイドバルブ
のソレノイド電流制御装置を例にとり説明する。
In describing this embodiment, a solenoid current control device for a solenoid valve will be taken as an example.

まず、第1〜第6図により実施例装置の構成を説明する
First, the configuration of the embodiment device will be explained with reference to FIGS. 1 to 6.

Sはソレノイドバルブのソレノイド部であって、このソ
レノイド部Sは、外ヨーク1、励磁コイル2、コイルポ
ビン3、内ヨーク4、非磁性体5、固定側プランジャ6
、スリーブ7及び可動側プランジャ8とによって構成さ
れている。
S is a solenoid part of a solenoid valve, and this solenoid part S includes an outer yoke 1, an excitation coil 2, a coil pobbin 3, an inner yoke 4, a non-magnetic body 5, and a fixed side plunger 6.
, a sleeve 7 and a movable plunger 8.

尚、磁路Mは、内ヨーク4、固定側プランジャ6、スリ
ーブ7及び可動側プランジャ8によって、第1図に示す
ように、閉ループで形成される。
The magnetic path M is formed in a closed loop by the inner yoke 4, the fixed plunger 6, the sleeve 7, and the movable plunger 8, as shown in FIG.

9は磁束密度センサとしての磁電変換素子であって、前
記固定側プランジャ6に磁路Mの磁束方向と直交するよ
うに、しかも可動側プランジャ8からの衝撃にも十分耐
えることができる位置に配設させたもので、磁路Mの磁
束密度Biを検出して磁束信号(Bi)を出力するもの
である。
Reference numeral 9 denotes a magnetoelectric conversion element as a magnetic flux density sensor, which is disposed on the fixed plunger 6 so as to be perpendicular to the magnetic flux direction of the magnetic path M, and at a position where it can sufficiently withstand the impact from the movable plunger 8. It detects the magnetic flux density Bi of the magnetic path M and outputs a magnetic flux signal (Bi).

尚、磁路Mの長さ見、両プランジャ6.8の空隙10の
長さδ、磁路Mの透磁率p、コイルターン数Nとし、磁
路M内部を通る磁束と空隙10の磁束は等しく磁束のも
れがないとすると、空隙10における磁束密度Biは次
式で与えられる。
In addition, considering the length of the magnetic path M, the length δ of the air gap 10 between both plungers 6.8, the magnetic permeability p of the magnetic path M, and the number of coil turns N, the magnetic flux passing inside the magnetic path M and the magnetic flux of the air gap 10 are Assuming that there is no leakage of magnetic flux, the magnetic flux density Bi in the air gap 10 is given by the following equation.

Bi=NI/(δ/ル0+(文−δ)/ル)従って、励
磁コイル2の励磁電流工と磁路の磁束密度Biは、第4
図に示すように、比例関係にあり、磁束密度Biを励磁
電流I(ソレノイド駆動電流)の制御データとして使用
できることを示している。
Bi=NI/(δ/ru0+(text-δ)/ru) Therefore, the excitation current of the excitation coil 2 and the magnetic flux density Bi of the magnetic path are the fourth
As shown in the figure, there is a proportional relationship, indicating that the magnetic flux density Bi can be used as control data for the excitation current I (solenoid drive current).

また、第5図は磁電変換素子として代表的なGa−As
系ホール素子の磁束密度とホール電圧との関係を示した
もので、両者は比例関係にあり、かつ、温度特性も安定
しているために好ましいものである。
In addition, Fig. 5 shows Ga-As, a typical magnetoelectric conversion element.
This figure shows the relationship between the magnetic flux density and Hall voltage of the Hall element, which is preferable because the two are in a proportional relationship and the temperature characteristics are stable.

11は信号増幅変換回路であって、前記磁電変換素子9
からの磁束信号(Bi)を増幅させると共に、デジタル
信号に変換させるもので、増幅器12とA/D変換器1
3により構成されている。
11 is a signal amplification conversion circuit, and the magnetoelectric conversion element 9
Amplifier 12 and A/D converter 1
It is composed of 3.

尚、信号増幅変換回路11からは、デジタル磁束信号と
しての信号(PIO)を後述するマイクロプロセッサ1
4に出力する。
Note that the signal amplification conversion circuit 11 outputs a signal (PIO) as a digital magnetic flux signal to the microprocessor 1, which will be described later.
Output to 4.

14は駆動電流制御手段としてのマイクロプロセッサで
あって、前記デジタル磁束信号としての信号(PIO)
を入力し、磁束Bfがソレノイドを作動させるために必
要な基準値(最大磁束BM)に達したら、磁束密度Bi
を所定の保持磁束BHまで低減させ、この保持磁束BH
が一定となるように、出力端子から後述する電源回路1
5の駆動トランジスタ16にON・OFF信号、として
の出力信号(P2O)を出力させるもので、CPU、R
AM、ROM、I10ポートを含み、ROMでは第7図
のフローチャート図で示す制御プログラムが予め書き込
まれている。
14 is a microprocessor as a drive current control means, and the signal (PIO) as the digital magnetic flux signal is
is input, and when the magnetic flux Bf reaches the reference value (maximum magnetic flux BM) required to operate the solenoid, the magnetic flux density Bi
is reduced to a predetermined holding magnetic flux BH, and this holding magnetic flux BH
power supply circuit 1, which will be described later, from the output terminal so that
5 outputs an output signal (P2O) as an ON/OFF signal to the drive transistor 16 of the CPU, R
It includes an AM, a ROM, and an I10 port, and a control program shown in the flowchart of FIG. 7 is written in advance in the ROM.

15は電源回路であって、前記マイクロプロセッサ14
からの出力信号(P 20)を入力し、励磁コイル2に
対して電源からのソレノイド駆動電流Ciを出力信号(
P 20)に応じて通電させる回路であって、出力信号
(P 20)がONであれば駆動トランジスタ16のベ
ース側にベース電流が流れ、励磁コイル2にソレノイド
駆動電流C1が流される。
15 is a power supply circuit, and the microprocessor 14
input the output signal (P20) from the
This is a circuit that energizes in response to P20), and when the output signal (P20) is ON, a base current flows to the base side of the drive transistor 16, and a solenoid drive current C1 flows to the excitation coil 2.

尚、電源回路15は、前記駆動トランジスタ16と、コ
イルサージ吸収のためのフライホイールダイオード17
と、トランジスタ保護用コンデンサ18と、トランジス
タ保護用ツェナーダイオード19とによって形成されて
いる。
The power supply circuit 15 includes the drive transistor 16 and a flywheel diode 17 for absorbing coil surge.
, a transistor protection capacitor 18 , and a transistor protection Zener diode 19 .

20は電源スィッチであって、電源21からの電圧をソ
レノイド指令信号(N F)として前記マイクロプロセ
ッサ14に印加させるものである。
Reference numeral 20 denotes a power switch that applies the voltage from the power source 21 to the microprocessor 14 as a solenoid command signal (NF).

尚、図中22で示すものは励磁コイル用配線ポート、2
3は磁電変換素子用配線ボートである。
In addition, what is indicated by 22 in the figure is the wiring port for the excitation coil, 2
3 is a wiring boat for the magnetoelectric transducer.

次に、第7図〜第9図により作用を説明する。Next, the operation will be explained with reference to FIGS. 7 to 9.

まず、マイクロプロセッサ14の判断201でソレノイ
ド指令信号(NF)がONになったがどうかを判別する
(第8図(C)−■工程)。
First, in judgment 201 of the microprocessor 14, it is determined whether the solenoid command signal (NF) has been turned ON (step 2 in FIG. 8(C)).

そして、ONであれば処理202に進み、マイクロプロ
セッサ14の出力信号(P2O)をONにし、さらに処
理203に進む。
If it is ON, the process proceeds to process 202, where the output signal (P2O) of the microprocessor 14 is turned on, and the process further proceeds to process 203.

この処理203では、ソレノイド指令信号(NF)がO
Nになった後、時間と共に増加する磁束密度Biを磁電
変換素子9からの磁束信号(Bi)により読み込む(第
8図(C)−■工程)。
In this process 203, the solenoid command signal (NF) is
After reaching N, the magnetic flux density Bi, which increases with time, is read by the magnetic flux signal (Bi) from the magnetoelectric transducer 9 (FIG. 8(C)--step 2).

尚、実際にマイクロプロセッサ14に対して入力される
磁束信号は、増幅変換回路11により磁束信号(Bi)
を増幅させ、かつ、デジタル変換させた入力信号(P 
I O)である。
Note that the magnetic flux signal actually input to the microprocessor 14 is converted into a magnetic flux signal (Bi) by the amplification conversion circuit 11.
The input signal (P
IO).

次に、判断204によって、磁束信号(Bi)がソレノ
イドを作動させるために必要な最大磁束信号(BM)に
達したかどうかをチェックし、磁束信号(Bi)が最大
磁束信号(BM)に達していればソレノイドは駆動し終
えたと判断し、マイクロプロセッサ14の出力信号(P
2O)を処理205でOFFにする(第8図(C)−■
工程)。
Decision 204 then checks whether the flux signal (Bi) has reached the maximum flux signal (BM) required to actuate the solenoid and determines whether the flux signal (Bi) has reached the maximum flux signal (BM). If so, it is determined that the solenoid has finished driving, and the output signal (P
2O) is turned off in process 205 (Fig. 8(C)-■
process).

そして、処理206では、最大磁束信号(BM)に達し
た後の磁束信号(Bi)を読み込み(第8図(C)−■
工程)、判断207で磁束信号(Bi)が可動側プラン
ジャ8を現状態に保つために必要な保持磁束信号(B 
H)以上かどうかを判断する。
Then, in process 206, the magnetic flux signal (Bi) after reaching the maximum magnetic flux signal (BM) is read (Fig. 8(C)-■
step), and in judgment 207, the magnetic flux signal (Bi) is the holding magnetic flux signal (B
H) Determine whether or not it is greater than or equal to H).

そして、磁束信号(Bi)が保持磁束信号(BH)のレ
ベルまで落ると、ON10 F F制御部208に進み
、磁束信号(Bi)が保持磁束信号(B H)よりも大
きければ処理206に戻り、再度、磁束信号(Bi)の
読み込みを続ける。
Then, when the magnetic flux signal (Bi) falls to the level of the retained magnetic flux signal (BH), the process proceeds to the ON10 F F control unit 208, and if the magnetic flux signal (Bi) is larger than the retained magnetic flux signal (BH), the process proceeds to process 206. Go back and continue reading the magnetic flux signal (Bi) again.

そして、磁束信号(Bi)≦保持磁束信号(BH)とな
れば、ON10 F F制御部208で、ソレノイドの
ON10 F F制御を開始する。
Then, when the magnetic flux signal (Bi)≦the retained magnetic flux signal (BH), the ON10 FF control unit 208 starts the ON10 FF control of the solenoid.

尚、実施例では、ソレノイドのON時間を一定(tl)
とし、OFF時間の長さを制御して磁束4g号(Bi)
を保持磁束信号(B H)のレベルになるようにしてい
る(第9図参照)。
In the example, the ON time of the solenoid is constant (tl).
By controlling the length of the OFF time, the magnetic flux is 4g (Bi).
is set to the level of the holding magnetic flux signal (BH) (see Fig. 9).

以下、ON10 F F制御を第7図に沿って説明する
と、処理209は磁束信号(Bi)が保持磁束信号(B
H)まで下がったために、マイクロプロセッサ14の出
力信号(P 20)をONにして、磁束信号(Bi)を
高めるもので、マイクロプロセッサ14の出力信号(P
 20)のON時間をタイマ部210でタイマ管理し、
一定時間(tl)ON状態を保持し、次いで処理211
で出力信号(P2O)をOFFにする。
The ON10 F F control will be explained below with reference to FIG. 7. In process 209, the magnetic flux signal (Bi) is
H), the output signal (P20) of the microprocessor 14 is turned ON to increase the magnetic flux signal (Bi).
20) ON time is managed by a timer section 210,
The ON state is maintained for a certain period of time (tl), and then processing 211
to turn off the output signal (P2O).

さらに、処理212では、前記処理206と同様に磁束
信号(Bi)が保持磁束信号(BH)レベルに下がるま
で磁束信号(Bi)を読み続け、判断213において磁
束信号(Bi)が保持磁束信号(BH)まで下がったと
判断されると、判断214に進み、第8図(A)に示す
ソレノイド指令信号(N F)がONかどうかを判断し
、OFFになったら本ルーチンは終了する。
Furthermore, in process 212, similarly to process 206, the magnetic flux signal (Bi) continues to be read until the magnetic flux signal (Bi) falls to the level of the retained magnetic flux signal (BH), and in judgment 213, the magnetic flux signal (Bi) is determined to be the retained magnetic flux signal ( If it is determined that the solenoid command signal (NF) has fallen to BH), the process proceeds to decision 214, where it is determined whether the solenoid command signal (NF) shown in FIG. 8(A) is ON, and if it is OFF, this routine ends.

また、判断214でソレノイド指令信号(NF)がON
状態であれば、処理209に戻り、マイクロプロセッサ
14の出力信号(P 20)をONにする。
Also, in judgment 214, the solenoid command signal (NF) is turned on.
If it is, the process returns to step 209 and the output signal (P20) of the microprocessor 14 is turned on.

尚、前記判断201において、ツレ/イド指令信号(N
 F)がONでなければ、処理215に進み出力信号(
P2O)をOFFとし、本ルーチンを終了する。
Incidentally, in the judgment 201, the deviation/idle command signal (N
If F) is not ON, the process proceeds to step 215, where the output signal (
P2O) is turned off, and this routine ends.

従って、かかる実施例のソレノイド駆動電流制御装置に
あっては、上述のように磁束密度Biを直接検出する磁
電変換素子9からの磁束信号(Bi)によりソレノイド
部動電fftciを制御するものであるために、ソレノ
イド電源側からの駆動電流制御のようなソレノイドの温
度上昇による内部抵抗の影響や駆動電圧の電圧変動の影
響を受けること無く、常に保持電流を一定とすることが
でき、安定したソレノイドの動作制御を行なうことがで
きる。
Therefore, in the solenoid drive current control device of this embodiment, the solenoid part electrodynamic fftci is controlled by the magnetic flux signal (Bi) from the magnetoelectric conversion element 9 that directly detects the magnetic flux density Bi as described above. Therefore, the holding current can be kept constant at all times without being affected by internal resistance due to temperature rise of the solenoid or voltage fluctuations of the drive voltage, which is the case with drive current control from the solenoid power supply side, resulting in a stable solenoid. The operation can be controlled.

また、ソレノイドの作動完了の判断を、磁束がソレノイ
ドを作動させるために必要な基準値に達することで判断
し、その判断直後から駆動電流を保持電流まで低減させ
るものであるために、電力消費の無駄がなく、電力消費
量を大幅に低減させることができる。
In addition, the completion of solenoid operation is determined by the magnetic flux reaching the reference value required to operate the solenoid, and the drive current is reduced to the holding current immediately after that determination, which reduces power consumption. There is no waste, and power consumption can be significantly reduced.

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲において設計変更等がなされ
ても本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のソレノイド駆動電流制御装置を
適応したソレノイドバルブのソレノイド部を示す断面図
、第2図は該ソレノイド部の固定側プランジャを示す断
面図、第3図は該固定側プランジャの側面図、第4図は
励磁電流と空隙磁束密度との関係線図、第5図は空隙磁
束密度とホール電圧の関係線図、第6図は実施例の制御
装置を示す全体図、第7図は実施例装置のマイクロプロ
センサにおける作動フローチャート図、第8図(A)、
(B)、(C)はソレノイド指令信号と出力信号と磁束
信号との対比図、第9図(A)。 (B)は保持磁束信号の制御状態を示す対比図である。 S・・・ソレノイド部 2・・・励磁コイル M・・・磁路 Bi・・・磁束密度 (Bi)’・・・磁束信号 9・・・磁電変換素子(磁束密度センサ)14・・・マ
イクロプロセッサ (駆動電流制御手段) Ci・・・ソレノイド駆動電流 第1図 第2図 第3図 旦
FIG. 1 is a sectional view showing a solenoid part of a solenoid valve to which a solenoid drive current control device according to an embodiment of the present invention is applied, FIG. 2 is a sectional view showing a fixed-side plunger of the solenoid part, and FIG. 3 is a sectional view showing the fixed-side plunger of the solenoid part. A side view of the plunger, FIG. 4 is a relationship diagram between exciting current and air gap magnetic flux density, FIG. 5 is a relationship diagram between air gap magnetic flux density and Hall voltage, and FIG. 6 is an overall diagram showing the control device of the embodiment. FIG. 7 is an operation flowchart of the micropro sensor of the embodiment device; FIG. 8(A);
(B) and (C) are comparison diagrams of the solenoid command signal, output signal, and magnetic flux signal, and FIG. 9 (A). (B) is a comparison diagram showing the control state of the holding magnetic flux signal. S... Solenoid part 2... Excitation coil M... Magnetic path Bi... Magnetic flux density (Bi)'... Magnetic flux signal 9... Magnetoelectric conversion element (magnetic flux density sensor) 14... Micro Processor (drive current control means) Ci... Solenoid drive current Figure 1 Figure 2 Figure 3 Dan

Claims (1)

【特許請求の範囲】[Claims] 1)ツレ/イドの励磁コイルによって発生する磁路に配
設して磁束密度を直接検出させ、磁束信号を出力させる
磁束密度センサと、該磁束密度センサからの磁束信号を
入力し、磁束がソレノイドを作動させるために必要な基
準値に達したとき、磁束を所定の保持磁束まで低減させ
、この保持磁束が一定となるようにソレノイド駆動電流
を制御させる駆動電流制御手段と、を備えたことを特徴
とするソレノイド駆動電流制御装置。
1) A magnetic flux density sensor that is placed in the magnetic path generated by the excitation coil of the thread/id and directly detects the magnetic flux density and outputs a magnetic flux signal, and a magnetic flux density sensor that inputs the magnetic flux signal from the magnetic flux density sensor, and and drive current control means for reducing the magnetic flux to a predetermined holding magnetic flux when the reference value necessary for operating the solenoid is controlled, and controlling the solenoid drive current so that the holding magnetic flux is constant. Features a solenoid drive current control device.
JP7705084A 1984-04-17 1984-04-17 Control device for solenoid driving current Granted JPS60220911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7705084A JPS60220911A (en) 1984-04-17 1984-04-17 Control device for solenoid driving current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7705084A JPS60220911A (en) 1984-04-17 1984-04-17 Control device for solenoid driving current

Publications (2)

Publication Number Publication Date
JPS60220911A true JPS60220911A (en) 1985-11-05
JPS6253928B2 JPS6253928B2 (en) 1987-11-12

Family

ID=13622952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7705084A Granted JPS60220911A (en) 1984-04-17 1984-04-17 Control device for solenoid driving current

Country Status (1)

Country Link
JP (1) JPS60220911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289734A (en) * 1987-02-19 1988-11-28 イートン コーポレイション Electromagnetic contactor
JPH02295016A (en) * 1989-04-13 1990-12-05 Siemens Ag Control circuit equipment of at least one electromagnetic relay
JP2002517105A (en) * 1998-06-02 2002-06-11 エマーソン・エレクトリック・カンパニー Orbit control device
JP2008028083A (en) * 2006-07-20 2008-02-07 Shindengen Mechatronics Co Ltd Solenoid drive control circuit, and solenoid
CN112178213A (en) * 2020-09-30 2021-01-05 赵鑫 High-temperature high-pressure environment electromagnetic valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103708A (en) * 1979-02-05 1980-08-08 Ricoh Co Ltd Control of electromagnetic solenoid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103708A (en) * 1979-02-05 1980-08-08 Ricoh Co Ltd Control of electromagnetic solenoid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289734A (en) * 1987-02-19 1988-11-28 イートン コーポレイション Electromagnetic contactor
JPH02295016A (en) * 1989-04-13 1990-12-05 Siemens Ag Control circuit equipment of at least one electromagnetic relay
JP2002517105A (en) * 1998-06-02 2002-06-11 エマーソン・エレクトリック・カンパニー Orbit control device
JP2008028083A (en) * 2006-07-20 2008-02-07 Shindengen Mechatronics Co Ltd Solenoid drive control circuit, and solenoid
CN112178213A (en) * 2020-09-30 2021-01-05 赵鑫 High-temperature high-pressure environment electromagnetic valve
CN112178213B (en) * 2020-09-30 2022-05-06 扬州苏油油成商贸实业有限公司 High-temperature high-pressure environment electromagnetic valve

Also Published As

Publication number Publication date
JPS6253928B2 (en) 1987-11-12

Similar Documents

Publication Publication Date Title
US4522372A (en) Electromagnetic valve
JPH04211777A (en) Failure detecting device for solenoid valve
US4152637A (en) Saturable reactor limiter for current
JPS60220911A (en) Control device for solenoid driving current
JPS6220426B2 (en)
KR970012820A (en) A method of separating a transformer depending on whether or not the load connected to the transformer requires power,
JPS56156431A (en) Air/fuel ratio control device
JPH0997116A (en) Drive control method for solenoid valve and air pressure regulator
JPS55117050A (en) Revolution speed controlling device for engine generator
US5784246A (en) Safety system comprising magnetic logic circuits
JPS63231079A (en) Solenoid valve device
Milano Achieving Closed-Loop Accuracy in Open-Loop Current Sensors
JP2005351701A (en) Current detecting apparatus
JPS5556495A (en) A.c. motor controller
JPS6030880A (en) Solenoid valve
JPH0325908A (en) Transformer with built-in alarm circuit
JPH0227149Y2 (en)
JPS6275223A (en) Air pressure setter
SU916994A1 (en) Float-type level indicator
JPH06290692A (en) Temperature switch and temperature detection device
JPS6235239Y2 (en)
JPS6316113Y2 (en)
SU940132A1 (en) Device for control of regulating unit
JPH0240540Y2 (en)
JPS57130281A (en) Driving method for magnetic bubble memory device