EP0205806B1 - Process and circuit for the control of a valve - Google Patents

Process and circuit for the control of a valve Download PDF

Info

Publication number
EP0205806B1
EP0205806B1 EP86105473A EP86105473A EP0205806B1 EP 0205806 B1 EP0205806 B1 EP 0205806B1 EP 86105473 A EP86105473 A EP 86105473A EP 86105473 A EP86105473 A EP 86105473A EP 0205806 B1 EP0205806 B1 EP 0205806B1
Authority
EP
European Patent Office
Prior art keywords
current
thyristor
transistor
circuit
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86105473A
Other languages
German (de)
French (fr)
Other versions
EP0205806A1 (en
Inventor
Josef Büchl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CESSIONE;AUDI AG
Original Assignee
Klockner Wolfgang Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klockner Wolfgang Dr filed Critical Klockner Wolfgang Dr
Publication of EP0205806A1 publication Critical patent/EP0205806A1/en
Application granted granted Critical
Publication of EP0205806B1 publication Critical patent/EP0205806B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation

Definitions

  • the invention relates to an internal combustion engine with gas exchange valves according to the preamble of claim 1.
  • Such an internal combustion engine is described in DE-A-3 024 109.
  • the gas exchange valves are pressed into the middle position by a spring system.
  • the gas exchange valves can be held by energized electromagnets.
  • a gas exchange valve that is open during operation is held by excitation of the electromagnet causing the open position, while the spring system acts on this gas exchange valve in the direction of its closed position.
  • the anchor plate of the gas exchange valve on the electromagnet falls off and the gas exchange valve is moved by the spring force in the direction of its central position between the open and closed positions.
  • the harmonic causes the armature plate to come close to the electromagnet that holds the gas exchange valve in its closed position.
  • this electromagnet In order to close the gas exchange valve, this electromagnet must be energized so that the electromagnet catches the armature plate and holds the gas exchange valve in its closed position, the spring system now acting on the gas exchange valve in the direction of the open position.
  • the object of the invention is to provide a generic internal combustion engine in which the energy consumption is reduced by the current applied to the electromagnets.
  • the electromagnets receive a higher inrush current only when the armature plate is switched on and when the armature plate is caught, and that during the subsequent holding phase the current flow through the electromagnet is essentially achieved by a freewheeling circuit, the energy losses being replaced by clocked activation of the freewheeling circuit .
  • the current strengths required for this are considerably lower, so that energy is saved.
  • the principle of such a power supply for an electromagnetic consumer with a freewheeling circuit is known from DE-A-2 828 678.
  • the current strength of the receive current is typically less than 20% of the maximum current that must be used when switching on.
  • DE-A-2 828 678 proposes a transistor that can withstand high currents, but which is also correspondingly expensive.
  • the inrush current is supplied via a current switching element, while the subsequent clocking takes place via a transistor.
  • the current switching element for the one-time inrush current can be, for example, a relay that can cope with high currents and yet, as a component, is priced below the price of a transistor that is designed for similarly high currents.
  • the current switching element is also designed as a semiconductor, specifically as a thyristor.
  • the thyristor can be opened by a control command, but can only be switched into its blocking state if the current flowing through the thyristor is briefly drawn off, so that the thyristor is extinguished.
  • the transistor which is connected in parallel to the thyristor, can temporarily take over this current. It must only be ensured by suitable measures that the resistance when the thyristor is fired in the thyristor branch is higher than in the transistor branch when the transistor is switched on, so that the current flows briefly through the transistor branch and the thyristor is extinguished.
  • this can be achieved by means of an element in the thyristor circuit which increases the resistance, such as a diode, an ohmic resistor or a PTC resistor.
  • the invention makes use of the knowledge that a transistor can withstand a much higher current than the current which it can switch in continuous operation without damage when subjected to a short-term load.
  • the inrush current for the electromagnetic consumer is thus supplied via the thyristor, but for switching off, for a few milliseconds, which are necessary to extinguish the thyristor, the entire current is taken over by the transistor, which can cope with this brief current surge.
  • the subsequent clocking at a current that is only about 10 to 20% of the inrush current can take place solely via the transistor, which is thereby dimensioned lower.
  • the current branch of the thyristor can be increased in resistance compared to the current branch of the transistor.
  • the transistor's collector-emitter saturation voltage is usually lower than the thyristor, such an increase in the resistance value of the thyristor branch is not absolutely necessary.
  • an ohmic resistor is provided for safety, its resistance value can be on the order of ⁇ 1 ohm.
  • Another option is to connect a diode upstream or downstream of the thyristor, which, when implemented as a silicon diode, ensures a voltage drop of approximately 0.7 volts, which means that the thyristor is de-energized when the transistor is switched on.
  • FIGS. 1 and 2 A circuit is provided in FIGS. 1 and 2, which is supplied with a positive voltage at point 10 and is grounded at point 12. Between the positive voltage 10 and the negative voltage pole 12 is an electromagnetic consumer 14, which is shown as a coil. A freewheel is arranged parallel to the electromagnetic consumer 14 and is represented by a diode 16. The freewheel 16 ensures that when the current flow through the coil 14 is switched off from the positive voltage 10 to the ground connection 12, a freewheeling current through the coil 14 is maintained, which decreases in time with a predetermined drop rate.
  • One connection of the coil 14 is connected to the ground connection 12 at point 42 via two branches 28 and 40 which are brought together at point 44.
  • the branch 40 has a thyristor 34 as the current switching element, the anode of which is connected to the coil 14 and the cathode 32 of which is connected to ground 12.
  • Gate 36 of thyristor 34 is driven externally from point 38.
  • the other branch 28 has a transistor 18, the collector 20 and emitter 22 of which provide the connection from the coil 14 to the ground 12.
  • the base 24 is controlled from an external point 26.
  • FIG. 2 differs from the structure according to FIG. 1 by an element 46 which is connected in series with the thyristor 34 within the branch 40.
  • This element 46 can be an ohmic resistor, a diode or a PTC element. Other components can also be used, provided they ensure the desired effect, which is described below.
  • FIG. 3a shows the current profile at point 38
  • FIG. 3b shows the current profile at point 26
  • FIG. 3c shows the current profile through the coil.
  • FIGS. 3a and 3b show the pulses to be applied to the control connections of the semiconductors, and FIG. 3c accordingly shows the influence of these control pulses on the current profile.
  • the thyristor 34 ignites and current flows through the coil 14. Depending on the inductance of the coil 14 and on the applied voltage, the current increases more or less quickly, it would asymptotically approach a saturation current. 3c shows this current increase. When a predetermined current I max is reached, however, the necessary inrush current is reached, and the current is now to be reduced to the holding current I halt . For this purpose, however, it is necessary to bring the thyristor 34 into its blocking state, but this is not possible by influencing the gate 36.
  • the thyristor 34 must be de-energized for a brief moment, a task which the transistor 18 takes over.
  • a short signal is sent from the point 26 to the base 24 of the transistor, which switches the transistor 18 from its blocking state to the saturation state, so that the current flows briefly through the transistor 18.
  • the collector-emitter saturation voltage of the transistor is lower than the saturation voltage of the thyristor, or because there are elements 46 in the thyristor branch which provide additional resistance, the current for this brief switching on of the transistor 18 actually flows through the Transistor branch 28, the thyristor 34 therefore blocks. As soon as the thyristor 34 blocks, the transistor 18 can also be switched off again, the current flow through the coil 14 then decreases in accordance with the freewheeling constant.
  • the transistor 18 can only withstand a current which corresponds approximately to the holding current (taking into account a safety tolerance), but is not destroyed by a short-term, much stronger peak current. Accordingly, a relatively inexpensive type can be used as transistor 18, which would not be able to control the entire inrush current by its design.
  • 3b shows the switch-on pulse at the base 24 of the transistor 18 at the time T2, in the time from T2 to T3 the current I through the coil gradually drops to the value I halt .
  • the transistor switches on until time T4, in order to then repeat this square-wave signal at time T5.
  • the pulse duty factor between the switch-on and switch-off times then determines the holding current I halt .
  • FIG. 4 If the element denoted by reference numeral 46 in FIG. 2 is formed by a PTC, a somewhat different current profile results, which is shown in FIG. 4.
  • a pulse is applied to gate 36 of thyristor 34, which is shown in FIG. 4a.
  • the thyristor 34 thus ignites and an inrush current builds up, which is shown in FIG. 4c.
  • the current rises until time T2, and then drops again due to the heating of the PTC and the increasing ohmic resistance.
  • the inrush current curve is thus not predetermined in its starting point by the firing of the thyristor 34 and in its end point by the brief switching on of the transistor 18, but by the switching on of the thyristor 34 to the switching on point and then by the influence of the current profile by the PTC element.
  • the current through thyristor 34 has dropped to a value which approximately corresponds to the holding current.
  • the base 24 of the transistor 18 is now supplied with a signal, shown in FIG. 4b, which opens the collector-emitter path of the transistor 18 and thus enables a current to flow through the electromagnetic consumer 14.
  • transistor 18 opens at time T3 the current flows through transistor 18, thyristor 34 is de-energized and thus changes to its blocking state. This now also results in a holding current I halt , the level of which is formed by the pulse duty factor, similar to the illustration in FIG. 3c.
  • FIG. 5 shows a control unit 52 which receives all information about the current flowing through the electromagnetic consumer 14.
  • a resistor 50 which has a relatively low value (clearly ⁇ 1 ohm) is provided in the branch leading to the ground connection 12.
  • the control unit 52 measures the voltage drop across this resistor 50 and can thus measure the current.
  • the control unit 52 delivers a switch-on pulse for switching on the electromagnetic consumer 14 via its one output and the line 54 to the gate connection 38 of the thyristor 34, so that the thyristor 34 ignites and the current increases up to its value I max .
  • the transistor 18 is periodically switched on and off via the control device 52, in order to thereby clock the current.
  • the current increases due to the current flow through the electromagnetic consumer 14 and the transistor 18, in the switch-off phases it slowly drops with the constant of the freewheel, in the simplest case formed from the electromagnetic consumer 14 and the diode 16.
  • the current I halt is set accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Die Erfindung betrifft eine Brennkraftmaschine mit Gaswechselventilen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to an internal combustion engine with gas exchange valves according to the preamble of claim 1.

Eine derartige Brennkraftmaschine ist in der DE-A-3 024 109 beschrieben. Im Betriebszustand der Brennkraftmaschine werden die Gaswechselventile durch ein Federsystem in die Mittelstellung gedrückt. In den Endstellungen lassen sich die Gaswechselventile durch erregte Elektromagnete halten. So wird ein im Betrieb geöffnetes Gaswechselventil durch eine Erregung des die Öffnungsstellung bewirkenden Elektromagneten gehalten, während das Federsystem dieses Gaswechselventil in Richtung seiner Schließstellung beaufschlagt. Durch Abschalten des Elektromagneten fällt die Ankerplatte des Gaswechselventils am Elektromagneten ab und das Gaswechselventil wird durch die Federkraft bewegt in Richtung seiner mittigen Stellung zwischen Öffnungs- und Schließstellung. Durch die Oberschwingung gerät die Ankerplatte bis nahe an den Elektromagneten, der das Gaswechselventil in seiner Schließstellung hält. Um das Gaswechselventil zu schließen, ist dieser Elektromagnet zu erregen, damit der Elektromagnet die Ankerplatte einfängt und das Gaswechselventil in seiner Schließstellung hält, wobei das Federsystem nunmehr das Gaswechselventil in Richtung der Öffnungsstellung beaufschlagt.Such an internal combustion engine is described in DE-A-3 024 109. In the operating state of the internal combustion engine, the gas exchange valves are pressed into the middle position by a spring system. In the end positions, the gas exchange valves can be held by energized electromagnets. For example, a gas exchange valve that is open during operation is held by excitation of the electromagnet causing the open position, while the spring system acts on this gas exchange valve in the direction of its closed position. When the electromagnet is switched off, the anchor plate of the gas exchange valve on the electromagnet falls off and the gas exchange valve is moved by the spring force in the direction of its central position between the open and closed positions. The harmonic causes the armature plate to come close to the electromagnet that holds the gas exchange valve in its closed position. In order to close the gas exchange valve, this electromagnet must be energized so that the electromagnet catches the armature plate and holds the gas exchange valve in its closed position, the spring system now acting on the gas exchange valve in the direction of the open position.

Aufgabe der Erfindung ist es, eine gattungsgemäße Brennkraftmaschine zu schaffen, bei der der Energieverbrauch durch die Strombeaufschlagung der Elektromagneten abgesenkt wird.The object of the invention is to provide a generic internal combustion engine in which the energy consumption is reduced by the current applied to the electromagnets.

Die Aufgabe wird gelöst durch die in Hauptanspruch angegebenen Merkmale.The object is achieved by the features specified in the main claim.

Erfindungsgemäß ist vorgesehen, daß die Elektromagnete nur beim Einschalten und beim Einfangen der Ankerplatte einen höheren Einschaltstrom erhalten, und daß während der anschließenden Haltephase der Stromdurchfluß durch den Elektromagneten im wesentlichen durch eine Freilaufschaltung erzielt wird, wobei die Energieverluste durch eine getaktete Ansteuerung der Freilaufschaltung ersetzt werden. Die dafür notwendigen Stromstärken sind erheblich niedriger, so daß Energie eingespart wird.According to the invention, it is provided that the electromagnets receive a higher inrush current only when the armature plate is switched on and when the armature plate is caught, and that during the subsequent holding phase the current flow through the electromagnet is essentially achieved by a freewheeling circuit, the energy losses being replaced by clocked activation of the freewheeling circuit . The current strengths required for this are considerably lower, so that energy is saved.

Das Prinzip einer derartigen Stromversorgung eines elektromagnetischen Verbrauchers mit einer Freilaufschaltung ist aus der DE-A-2 828 678 bekannt. Die Stromstärke des Erhaltestromes beträgt typischerweise weniger als 20 % des maximalen Stromes, der beim Einschalten aufgewendet werden muß.The principle of such a power supply for an electromagnetic consumer with a freewheeling circuit is known from DE-A-2 828 678. The current strength of the receive current is typically less than 20% of the maximum current that must be used when switching on.

Zum schnellen Einschalten des Stromes und zur anschließenden Taktung ist ein Schaltelement notwendig, das in seinen Eigenschaften ausgelegt ist auf den maximal zu verkraftenden Strom. So schlägt die DE-A-2 828 678 dementsprechend einen Transistor vor, der hohe Stromstärken verkraften kann, der jedoch auch dementsprechend teuer ist.In order to quickly switch on the current and for subsequent clocking, a switching element is required, which is designed in terms of its properties for the maximum current that can be absorbed. Accordingly, DE-A-2 828 678 proposes a transistor that can withstand high currents, but which is also correspondingly expensive.

Es ist jedoch wünschenswert, eine derartige Schaltung, wie sie aus der DE-A-2 828 678 bekannt ist, mit geringerem Kostenaufwand zu erstellen.However, it is desirable to create such a circuit, as is known from DE-A-2 828 678, at a lower cost.

Dazu wird erfindungsgemäß vorgeschlagen, daß der Einschaltstrom über ein Stromschaltelement zugeführt wird, während die anschließende Taktung über einen Transistor erfolgt. Das Stromschaltelement für den einmaligen Einschaltstrom kann beispielsweise ein Relais sein, das hohe Stromstärken verkraften kann und dennoch als Bauteil preislich unter dem Preis eines Transistors liegt, der für ähnlich hohe Stromstärken ausgelegt ist.For this purpose, it is proposed according to the invention that the inrush current is supplied via a current switching element, while the subsequent clocking takes place via a transistor. The current switching element for the one-time inrush current can be, for example, a relay that can cope with high currents and yet, as a component, is priced below the price of a transistor that is designed for similarly high currents.

Die anschließende Taktung erfolgt über den Transistor, wobei der nunmehr deutlich geringere Strom, der der Freilaufschaltung zugeführt werden muß, einen vom Bauaufwand kleineren Transistor ermöglicht.The subsequent clocking takes place via the transistor, the now significantly lower current that must be supplied to the freewheeling circuit enables a transistor that is smaller in terms of construction costs.

In einer bevorzugten Ausführungsform wird vorgeschlagen, daß das Stromschaltelement ebenfalls als Halbleiter, und zwar als Thyristor ausgebildet ist. Hierbei ergibt sich jedoch die Schwierigkeit, daß der Thyristor zwar durch einen Ansteuerungsbefehl geöffnet werden kann, jedoch nur dann in seinen Sperrzustand geschaltet werden kann, wenn der durch den Thyristor fließende Strom kurzzeitig abgezogen wird, so daß der Thyristor gelöscht wird.In a preferred embodiment it is proposed that the current switching element is also designed as a semiconductor, specifically as a thyristor. Here, however, there is the difficulty that the thyristor can be opened by a control command, but can only be switched into its blocking state if the current flowing through the thyristor is briefly drawn off, so that the thyristor is extinguished.

Diesen Strom kann kurzzeitig der Transistor übernehmen, der dem Thyristor parallel geschaltet ist. Es muß nur durch geeignete Maßnahmen sichergestellt werden, daß der Widerstand bei gezündetem Thyristor im Thyristorzweig höher ist als in dem Transistorzweig bei durchgeschaltetem Transistor, damit der Strom kurzzeitig über den Transistorzweig fließt und der Thyristor löscht.The transistor, which is connected in parallel to the thyristor, can temporarily take over this current. It must only be ensured by suitable measures that the resistance when the thyristor is fired in the thyristor branch is higher than in the transistor branch when the transistor is switched on, so that the current flows briefly through the transistor branch and the thyristor is extinguished.

Um hier zusätzliche Sicherheit zu erreichen, läßt sich dies durch ein in dem Thyristorkreis vorgesehenes, den Widerstand erhöhendes Element wie eine Diode, einen ohmschen Widerstand oder einen PTC-Widerstand erreichen.In order to achieve additional security here, this can be achieved by means of an element in the thyristor circuit which increases the resistance, such as a diode, an ohmic resistor or a PTC resistor.

Die Erfindung macht sich bei dieser Ausführungsform die Erkenntnis zunutze, daß ein Transistor bei kurzzeitiger Belastung einen sehr viel höheren Strom verkraften kann als den Strom, den er im Dauerbetrieb ohne Schaden schalten kann. Somit wird der Einschaltstrom für den elektromagnetischen Verbraucher über den Thyristor geliefert, zum Abschalten jedoch wird für einige Millisekunden, die zum Löschen des Thyristors notwendig sind, der gesamte Strom vom Transistor übernommen, der diesen kurzzeitigen Stromstoß verkraftet. Die anschließende Taktung bei einem Strom, der etwa nur 10 bis 20 % des Einschaltstromes beträgt, kann allein über den Transistor erfolgen, der dadurch niedriger dimensioniert wird.In this embodiment, the invention makes use of the knowledge that a transistor can withstand a much higher current than the current which it can switch in continuous operation without damage when subjected to a short-term load. The inrush current for the electromagnetic consumer is thus supplied via the thyristor, but for switching off, for a few milliseconds, which are necessary to extinguish the thyristor, the entire current is taken over by the transistor, which can cope with this brief current surge. The subsequent clocking at a current that is only about 10 to 20% of the inrush current can take place solely via the transistor, which is thereby dimensioned lower.

Weitere Ausführungsformen sind in den Unteransprüchen beschrieben. Um sicherzustellen, daß bei dem kurzzeitigen Einschalten des Transistors der Thyristor auch weitestgehend stromlos ist, kann der Stromzweig des Thyristors in seinem Widerstand erhöht werden gegenüber dem Stromzweig des Transistors.Further embodiments are described in the subclaims. In order to ensure that the thyristor is largely de-energized when the transistor is switched on for a short time, the current branch of the thyristor can be increased in resistance compared to the current branch of the transistor.

Da jedoch bereits in der Regel der Transistor in seiner Kollektor-Emittersättigungsspannung niederiger liegt als der Thyristor, ist eine derartige Erhöhung des Widerstandswertes des Thyristorzweiges nicht unbedingt notwendig. Wenn jedoch zur Sicherheit ein ohmscher Widerstand vorgesehen wird, kann sein Widerstandswert in der Größenordnung < 1 Ohm liegen.However, since the transistor's collector-emitter saturation voltage is usually lower than the thyristor, such an increase in the resistance value of the thyristor branch is not absolutely necessary. However, if an ohmic resistor is provided for safety, its resistance value can be on the order of <1 ohm.

Eine andere Möglichkeit ist, dem Thyristor eine Diode vor- oder nachzuschalten, die bei Ausführung als Siliziumdiode mit einem Spannungsabfall von ca. 0,7 Volt sicherstellt, das bei durchgeschaltetem Transistor der Thyristor stromlos wird.Another option is to connect a diode upstream or downstream of the thyristor, which, when implemented as a silicon diode, ensures a voltage drop of approximately 0.7 volts, which means that the thyristor is de-energized when the transistor is switched on.

Weiterhin wird vorgeschlagen, zu dem Thyristor in Serie ein PTC-Element zu schalten, das den durch den Thyristor fließenden Strom in seinem Verlauf beeinflussen soll. Das vorgeschaltete PTC-Element führt dazu, daß mit dem Einschalten ein verhältnismäßig hoher Strom durch den Thyristor fließt, da das PTC-Element sich in kaltem Zustand befindet. Durch den Stromdurchfluß jedoch steigt der Widerstand des PTC-Elementes an, so daß nach einem kurzen Einschaltstrom der Stromverlauf durch den Thyristor allein durch den wachsenden Widerstand des PTC-Elementes abfällt. Nach Beendigung der Einschaltstromphase ist somit der Stromwert bereits wieder abgesunken, und wenn der Transistor durchgeschaltet wird, hat er nicht mehr den maximalen Einschaltstrom an dem Thyristor vorbeizuleiten, sondern einen bereits deutlich geringeren.It is also proposed to connect a PTC element in series with the thyristor, which is to influence the course of the current flowing through the thyristor. The upstream PTC element causes a relatively high current to flow through the thyristor when the device is switched on, since the PTC element is in the cold state. Due to the current flow, however, the resistance of the PTC element increases, so that after a short inrush current, the current profile through the thyristor drops solely due to the increasing resistance of the PTC element. After the inrush current phase has ended, the current value has already dropped again, and when the transistor is switched on, it no longer has to pass the maximum inrush current past the thyristor, but rather a much lower one.

Im folgenden wird die Erfindung anhand der Figuren erläutert. Es zeigen:

  • Fig. 1 eine erste Ausführungsform der Erfindung;
  • Fig. 2 eine zweite Ausführungsform der Erfindung;
  • Fig. 3 Stromverlaufsdiagramme zur Erläuterung der Schaltung nach Fig. 1; und
  • Fig. 4 Stromverlaufsdiagramme zur Erläuterung der Schaltung nach Fig. 2;
  • Fig. 5 eine Ausführungsform der Erfindung mit Ansteuerung der Halbleiterbauelemente.
The invention is explained below with reference to the figures. Show it:
  • 1 shows a first embodiment of the invention;
  • Fig. 2 shows a second embodiment of the invention;
  • 3 shows current flow diagrams for explaining the circuit according to FIG. 1; and
  • 4 shows current flow diagrams for explaining the circuit according to FIG. 2;
  • 5 shows an embodiment of the invention with control of the semiconductor components.

In den Figuren 1 und 2 ist eine Schaltung vorgesehen, die im Punkt 10 mit einer positiven Spannung versorgt wird und in Punkt 12 geerdet ist. Zwischen der positiven Spannung 10 und dem negativen Spannungspol 12 liegt ein elektromagnetischer Verbraucher 14, der als Spule dargestellt ist. Parallel zum elektromagnetischen Verbraucher 14 ist ein Freilauf angeordnet, der durch eine Diode 16 dargestellt wird. Der Freilauf 16 sorgt dafür, daß bei einem Abschalten des Stromdurchflusses durch die Spule 14 von der positiven Spannung 10 zum Masseanschluß 12 ein Freilaufstrom durch die Spule 14 erhalten bleibt, der sich zeitlich mit einer vorgegebenen Abfallrate verringert.A circuit is provided in FIGS. 1 and 2, which is supplied with a positive voltage at point 10 and is grounded at point 12. Between the positive voltage 10 and the negative voltage pole 12 is an electromagnetic consumer 14, which is shown as a coil. A freewheel is arranged parallel to the electromagnetic consumer 14 and is represented by a diode 16. The freewheel 16 ensures that when the current flow through the coil 14 is switched off from the positive voltage 10 to the ground connection 12, a freewheeling current through the coil 14 is maintained, which decreases in time with a predetermined drop rate.

Der eine Anschluß der Spule 14 ist im Punkt 42 über zwei Zweige 28 und 40, die im Punkt 44 zusammengeführt werden, mit dem Masseanschluß 12 verbunden. Der Zweig 40 weist als Stromschaltelement einen Thyristor 34 auf, dessen Anode mit der Spule 14 verbunden ist und dessen Kathode 32 an Masse 12 gelegt ist. Das Gate 36 des Thyristors 34 wird extern vom Punkt 38 aus angesteuert.One connection of the coil 14 is connected to the ground connection 12 at point 42 via two branches 28 and 40 which are brought together at point 44. The branch 40 has a thyristor 34 as the current switching element, the anode of which is connected to the coil 14 and the cathode 32 of which is connected to ground 12. Gate 36 of thyristor 34 is driven externally from point 38.

Der andere Zweig 28 weist einen Transistor 18 auf, dessen Kollektor 20 und Emitter 22 die Verbindung von der Spule 14 zur Masse 12 liefern. Die Basis 24 wird von einem externen Punkt 26 aus angesteuert.The other branch 28 has a transistor 18, the collector 20 and emitter 22 of which provide the connection from the coil 14 to the ground 12. The base 24 is controlled from an external point 26.

Fig. 2 unterscheidet sich von dem Aufbau nach Fig. 1 durch ein Element 46, das in Serie zum Thyristor 34 innerhalb des Zweiges 40 geschaltet ist. Dieses Element 46 kann ein ohmscher Widerstand, eine Diode oder ein PTC-Element sein. Auch andere Bauteile sind einsetzbar, sofern sie die erwünschte Wirkung, die weiter unten beschrieben wird, sicherstellen.FIG. 2 differs from the structure according to FIG. 1 by an element 46 which is connected in series with the thyristor 34 within the branch 40. This element 46 can be an ohmic resistor, a diode or a PTC element. Other components can also be used, provided they ensure the desired effect, which is described below.

Die Funktion der erfindungsgemäßen Schaltung soll anhand der Stromverlaufsdiagramme in den Figuren 3 und 4 dargestellt werden.The function of the circuit according to the invention is to be illustrated using the current flow diagrams in FIGS. 3 and 4.

Fig. 3a zeigt den Stromverlauf am Punkt 38, Fig. 3b zeigt den Stromverlauf am Punkt 26 und Fig. 3c zeigt den Stromverlauf durch die Spule. In Fig. 3a und 3b sind die an die Steueranschlüsse der Halbleiter anzulegenden Impulse dargestellt, Fig. 3c zeigt dementsprechend den Einfluß dieser Steuerimpulse auf den Stromverlauf.3a shows the current profile at point 38, FIG. 3b shows the current profile at point 26 and FIG. 3c shows the current profile through the coil. FIGS. 3a and 3b show the pulses to be applied to the control connections of the semiconductors, and FIG. 3c accordingly shows the influence of these control pulses on the current profile.

Zur Funktionserläuterung wird angenommen, daß im Punkt 10 positive Spannung angelegt ist, beide Halbleiter, der Thyristor 34 und der Transistor 18 befinden sich im Sperrzustand.To explain the function, it is assumed that positive voltage is applied at point 10, both semiconductors, thyristor 34 and transistor 18 are in the blocking state.

Wird nun am Gate 38 des Thyristors 34 ein Impuls angelegt, wie er in Fig. 3a dargestellt ist, zündet der Thyristor 34 und es fließt Strom durch die Spule 14. Abhängig von der Induktivität der Spule 14 sowie von der anliegenden Spannung steigt der Strom mehr oder minder schnell an, er würde sich asymptotisch einem Sättigungsstrom annähern. Fig. 3c zeigt diesen Stromanstieg. Mit Erreichen eines vorgegebenen Stromes Imax jedoch ist der notwendige Einschaltstrom erreicht, und nunmehr soll der Strom reduziert werden auf den Haltestrom Ihalt. Dazu jedoch ist es notwendig, den Thyristor 34 in seinen Sperrzustand zu bringen, was jedoch nicht möglich ist durch die Beeinflussung des Gates 36. Vielmehr muß dazu für einen kurzen Augenblick der Thyristor 34 stromlos gemacht werden, eine Aufgabe, die der Transitor 18 übernimmt. An die Basis 24 des Transitors wird vom Punkt 26 ein kurzes Signal geliefert, das den Transistor 18 von seinem Sperrzustand in den Sättigungszustand schaltet, so daß kurzzeitig der Strom durch den Transistor 18 fließt. Dadurch, daß die Kollektor-EmitterSättigungsspannung des Transistors niedriger ist als die Sättigungsspannung des Thyristors, oder aber dadurch, daß sich in dem Thyristorzweig Elemente 46 befinden, die für einen zusätzlichen Widerstand sorgen, fließt der Strom für dieses kurze Einschalten des Transistors 18 tatsächlich durch den Transistorzweig 28, der Thyristor 34 sperrt demzufolge. Sobald der Thyristor 34 sperrt, kann der Transistor 18 auch wieder ausgeschaltet werden, der Stromdurchfluß durch die Spule 14 nimmt dann entsprechend der Freilaufkonstanten ab.If a pulse is now applied to the gate 38 of the thyristor 34, as shown in FIG. 3a, the thyristor 34 ignites and current flows through the coil 14. Depending on the inductance of the coil 14 and on the applied voltage, the current increases more or less quickly, it would asymptotically approach a saturation current. 3c shows this current increase. When a predetermined current I max is reached, however, the necessary inrush current is reached, and the current is now to be reduced to the holding current I halt . For this purpose, however, it is necessary to bring the thyristor 34 into its blocking state, but this is not possible by influencing the gate 36. Rather, the thyristor 34 must be de-energized for a brief moment, a task which the transistor 18 takes over. A short signal is sent from the point 26 to the base 24 of the transistor, which switches the transistor 18 from its blocking state to the saturation state, so that the current flows briefly through the transistor 18. Because the collector-emitter saturation voltage of the transistor is lower than the saturation voltage of the thyristor, or because there are elements 46 in the thyristor branch which provide additional resistance, the current for this brief switching on of the transistor 18 actually flows through the Transistor branch 28, the thyristor 34 therefore blocks. As soon as the thyristor 34 blocks, the transistor 18 can also be switched off again, the current flow through the coil 14 then decreases in accordance with the freewheeling constant.

Wesentlich für die Verwirklichung der Erfindung ist, daß der Transistor 18 längerdauernd nur einen Strom verkraftet, der in etwa dem Haltestrom (unter Berücksichtigung einer Sicherheitstoleranz) entspricht, verkraftet, jedoch durch einen kurzzeitigen, sehr viel stärkeren Spitzenstrom nicht zerstört wird. Dementsprechend ist als Transistor 18 ein verhältnismäßig preiswerter Typ einsetzbar, der von seiner Auslegung her nicht in der Lage wäre, den gesamten Einschaltstrom zu steuern.It is essential for the implementation of the invention that the transistor 18 can only withstand a current which corresponds approximately to the holding current (taking into account a safety tolerance), but is not destroyed by a short-term, much stronger peak current. Accordingly, a relatively inexpensive type can be used as transistor 18, which would not be able to control the entire inrush current by its design.

In Fig. 3b ist der Einschaltimpuls an der Basis 24 des Transistors 18 zum Zeitpunkt T2 dargestellt, in der Zeit von T2 bis T3 fällt der Strom I durch die Spule allmählich bis zu dem Wert Ihalt ab.3b shows the switch-on pulse at the base 24 of the transistor 18 at the time T2, in the time from T2 to T3 the current I through the coil gradually drops to the value I halt .

Zum Zeitpunkt T3 schaltet der Transistor bis zum Zeitpunkt T4 ein, um dann zum Zeitpunkt T5 dieses Rechtecksignal zu wiederholen. Das Tastverhältnis zwischen Einschalt- und Ausschaltzeit bestimmt dann den Haltestrom Ihalt.At time T3, the transistor switches on until time T4, in order to then repeat this square-wave signal at time T5. The pulse duty factor between the switch-on and switch-off times then determines the holding current I halt .

Wenn das in Fig. 2 mit dem Bezugszeichen 46 bezeichnete Element durch einen PTC gebildet wird, ergibt sich ein etwas abweichender Stromverlauf, der in Fig. 4 dargestellt ist. Zum Zeitpunkt T1 wird an das Gate 36 des Thyristors 34 ein Impuls angelegt, der in Fig. 4a dargestellt ist. Damit zündet der Thyristor 34, und es baut sich ein Einschaltstrom auf, der in Fig. 4c dargestellt ist. Bis zum Zeitpunkt T2 steigt der Strom an, um dann durch die Erwärmung des PTC und des damit zunehmenden ohmschen Widerstandes wieder abzufallen. Die Einschaltstromkurve wird somit nicht vorgegeben in ihrem Anfangspunkt durch das Zünden des Thyristors 34 und in ihrem Endpunkt durch das kurzzeitige Einschalten des Transistors 18, sondern durch das Einschalten des Thyristors 34 zum Einschaltpunkt und anschließend durch die Beeinflussung des Stromverlaufes durch das PTC-Element.If the element denoted by reference numeral 46 in FIG. 2 is formed by a PTC, a somewhat different current profile results, which is shown in FIG. 4. At time T1, a pulse is applied to gate 36 of thyristor 34, which is shown in FIG. 4a. The thyristor 34 thus ignites and an inrush current builds up, which is shown in FIG. 4c. The current rises until time T2, and then drops again due to the heating of the PTC and the increasing ohmic resistance. The inrush current curve is thus not predetermined in its starting point by the firing of the thyristor 34 and in its end point by the brief switching on of the transistor 18, but by the switching on of the thyristor 34 to the switching on point and then by the influence of the current profile by the PTC element.

Zum Zeitpunkt T3 ist der Strom durch den Thyristor 34 auf einen Wert abgesunken, der in etwa dem Haltestrom entspricht. Um den definierten Haltestrom aufrecht zu erhalten, wird nun der Basis 24 des Transistors 18 ein Signal, dargestellt in Fig. 4b, zugeführt, das die Kollektor-Emitter-Strecke des Transistors 18 öffnet und somit einen Stromdurchfluß durch den elektromagnetischen Verbraucher 14 ermöglicht. Mit dem Öffnen des Transistors 18 zum Zeitpunkt T3 fließt der Strom über den Transistor 18, der Thyristor 34 wird stromlos und geht somit in seinen Sperrzustand über. Damit stellt sich auch jetzt ein Haltestrom Ihalt ein, dessen Höhe von dem Tastverhältnis gebildet wird ähnlich der Darstellung in Fig. 3c.At time T3, the current through thyristor 34 has dropped to a value which approximately corresponds to the holding current. In order to maintain the defined holding current, the base 24 of the transistor 18 is now supplied with a signal, shown in FIG. 4b, which opens the collector-emitter path of the transistor 18 and thus enables a current to flow through the electromagnetic consumer 14. When transistor 18 opens at time T3, the current flows through transistor 18, thyristor 34 is de-energized and thus changes to its blocking state. This now also results in a holding current I halt , the level of which is formed by the pulse duty factor, similar to the illustration in FIG. 3c.

In Fig. 5 ist ein Steuergerät 52 dargestellt, das alle Information des Stromes, der durch den elektromagnetischen Verbraucher 14 fließt, empfängt. Dazu ist in dem zum Masseanschluß 12 führenden Zweig ein Widerstand 50 vorgesehen, der einen verhältnismäßig niedrigen Wert (deutlich < 1 Ohm) aufweist, eingefügt. Das Steuergerät 52 mißt den Spannungsabfall über diesen Widerstand 50 und kann somit den Strom messen. Das Steuergerät 52 liefert zum Einschalten des elektromagnetischen Verbrauchers 14 über seinen einen Ausgang und die Leitung 54 an den Gateanschluß 38 des Thyristors 34 einen Einschaltimpuls, so daß der Thyristor 34 zündet und der Strom ansteigt bis auf seinen Wert Imax. Mißt nun das Steuergerät 52 das Erreichen des Stromes Imax, wird über den anderen Ausgang 56 des Steuergerätes 52 an den Basisanschlußpunkt 26 des Transistors 18 ein kurzes Signal gelegt, so daß der Transistor 18 öffnet und den gesamten Strom kurzzeitig übernimmt. Damit löscht der Thyristor 34, und sofort nach Löschen des Thyristors wird der Transistor 18 wieder gesperrt, so daß nun der Strom durch den elektromagnetischen Verbraucher 14 über den Freilauf 16 abfallen kann.FIG. 5 shows a control unit 52 which receives all information about the current flowing through the electromagnetic consumer 14. For this purpose, a resistor 50, which has a relatively low value (clearly <1 ohm), is provided in the branch leading to the ground connection 12. The control unit 52 measures the voltage drop across this resistor 50 and can thus measure the current. The control unit 52 delivers a switch-on pulse for switching on the electromagnetic consumer 14 via its one output and the line 54 to the gate connection 38 of the thyristor 34, so that the thyristor 34 ignites and the current increases up to its value I max . If the control device 52 now measures the reaching of the current I max , a short signal is applied to the base connection point 26 of the transistor 18 via the other output 56 of the control device 52, so that the transistor 18 opens and briefly accepts the entire current. Thus, the thyristor 34 clears, and immediately after the thyristor is cleared, the transistor 18 is blocked again, so that the current through the electromagnetic consumer 14 can drop via the freewheel 16.

Sollte nun der Strom auf dem Wert des Haltestromes Ihalt gehalten werden, wird über das Steuergerät 52 der Transistor 18 periodisch ein- und ausgeschaltet, um somit den Strom zu takten. Während der Einschaltphase steigt der Strom aufgrund des Stromdurchflusses durch den elektromagnetischen Verbraucher 14 und den Transistor 18 an, in den Abschaltphasen fällt er langsam mit der Konstante des Freilaufes, im einfachsten Falle gebildet aus dem elektromagnetischen Verbraucher 14 und der Diode 16, ab. Abhängig von dem Taktverhältnis des Transistors, wie er durch das Steuergerät 52 geschaltet wird, stellt sich dementsprechend der Strom Ihalt ein.If the current is now held at the value of the holding current I halt , the transistor 18 is periodically switched on and off via the control device 52, in order to thereby clock the current. During the switch-on phase, the current increases due to the current flow through the electromagnetic consumer 14 and the transistor 18, in the switch-off phases it slowly drops with the constant of the freewheel, in the simplest case formed from the electromagnetic consumer 14 and the diode 16. Depending on the clock ratio of the transistor, as it is switched by the control unit 52, the current I halt is set accordingly.

Es ist auch möglich, dem Transistor 18 eine Strombegrenzung zuzuordnen, so daß der Transistor auch während der Stromphase bis zum Strom Imax getaktet werden kann, jedoch aufgrund der Strombegrenzung kein Strom fließt, sondern dieser erst dann zu fließen beginnt, sobald der Strom auf den Wert von Ihalt abgefallen ist.It is also possible to assign a current limitation to the transistor 18, so that the transistor can be clocked up to the current I max even during the current phase, but due to the current limitation no current flows, but rather only begins to flow as soon as the current reaches the Value of I just dropped.

Claims (8)

1. An internal combustion engine, comprising gas reversing valves, electromagnets which, by being energized, retain the gas reversing valves in their respective end positions, and further comprising a spring system which pressurizes the gas reversing valves into a position centrally between the opening and closing positions when the internal combustion engine is in operative condition, characterized by a freewheeling circuit which feeds the electromagnets and with which a clocked holding current of lower intensity is maintained subsequent to a high starting current, a current switching element (34) having its one pole (30) connected to the freewheeling circuit (14, 16) and its other pole (32) connected to a pole (12) of the voltage supply, and a transistor (18) which is connected in parallel with the current switching element (34) and by which the current flow through the electromagnetic load (14) with freewheeler (16) is controllable when the current switching element (34) is blocking.
2. The circuit as claimed in claim 1, characterized in that the current switching element is a thyristor (34), the resistance of the transistor branch (28) being lower, when the the transistor (18) is conducting, than that of the current switching element branch (40), when the thyristor (34) is conducting.
3. The circuit as claimed in claim 2, characterized by an element (46) which raises the resistance of the thyristor branch (40) and which is connected in series with the anode-cathode path of the thyristor (34).
4. The circuit as claimed in claim 3, characterized in that the element (46) is an Ohmic resistor.
5. The circuit as claimed in claim 3, characterized in that the element (46) is a diode.
6. The circuit as claimed in claim 3, characterized in that the element (46) is a PTC element.
7. The circuit as claimed in any one of claims 1 to 5, characterized in that a control circuit is provided to the input of which a signal is applied that corresponds to the current intensity in the electromagnetic load and the output of which is applied to the base of the transistor.
8. A method of operating the circuit as claimed in any one of claims 1 to 7, characterized in that the transistor briefly takes over the full current to turn off the thyristor.
EP86105473A 1985-04-25 1986-04-21 Process and circuit for the control of a valve Expired EP0205806B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3515041 1985-04-25
DE3515041 1985-04-25

Publications (2)

Publication Number Publication Date
EP0205806A1 EP0205806A1 (en) 1986-12-30
EP0205806B1 true EP0205806B1 (en) 1989-10-25

Family

ID=6269147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105473A Expired EP0205806B1 (en) 1985-04-25 1986-04-21 Process and circuit for the control of a valve

Country Status (5)

Country Link
US (1) US4885658A (en)
EP (1) EP0205806B1 (en)
JP (1) JPH0666187B2 (en)
DE (1) DE3666647D1 (en)
ES (1) ES8703214A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159522A (en) * 1990-02-27 1992-10-27 Dana Corporation Electric clutch actuator
DE4414609B4 (en) * 1994-04-27 2005-12-22 Robert Bosch Gmbh Device for controlling a consumer
DE4434684A1 (en) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Electromagnetic circuit armature movement control method e.g. for IC engine positioning element
JP3134724B2 (en) * 1995-02-15 2001-02-13 トヨタ自動車株式会社 Valve drive for internal combustion engine
GB2300306B (en) * 1995-04-25 2000-02-09 Pectel Control Systems Ltd Fluid injector systems
JP3828239B2 (en) * 1997-05-22 2006-10-04 三菱電機株式会社 Control device for injector for fuel injection
US5910890A (en) * 1998-02-12 1999-06-08 Eaton Corporation Circuit for controlling application of electricity to a coil of and electric current switching apparatus
US6631067B2 (en) 2001-12-28 2003-10-07 Visteon Global Technologies, Inc. Electromagnetic actuator for engine valves
WO2010146529A1 (en) * 2009-06-18 2010-12-23 Koninklijke Philips Electronics N.V. Power interface with leds for a triac dimmer
EP2461342B1 (en) * 2010-12-06 2015-01-28 Siemens Aktiengesellschaft Error-proof switching module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439189A (en) * 1965-12-28 1969-04-15 Teletype Corp Gated switching circuit comprising parallel combination of latching and shunt switches series-connected with input-output control means
AU1309970A (en) * 1969-04-25 1971-09-30 Rca Corporation Solid state latching circuit
US3549955A (en) * 1969-08-19 1970-12-22 T O Paine Drive circuit for minimizing power consumption in inductive load
DE2402083A1 (en) * 1974-01-17 1975-07-31 Boge Kompressoren Otto Boge Starting system for a compressor solenoid valve - delays pressures build up until motor runs at full speed
DE3024109A1 (en) * 1980-06-27 1982-01-21 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen ELECTROMAGNETIC OPERATING DEVICE
JPS609024A (en) * 1983-06-29 1985-01-18 富士電機株式会社 Coil drive circuit of electromagenetic unit
DE3328309A1 (en) * 1983-08-05 1985-02-14 Papst-Motoren GmbH & Co KG, 7742 St Georgen Response circuit for electromagnets
DE3515039A1 (en) * 1985-04-25 1986-10-30 Klöckner, Wolfgang, Dr., 8033 Krailling METHOD AND CIRCUIT FOR OPERATING A GAS EXCHANGE VALVE
DE3611221A1 (en) * 1985-04-25 1986-11-06 Klöckner, Wolfgang, Dr., 8033 Krailling Internal combustion engine having inlet and outlet valves

Also Published As

Publication number Publication date
JPH0666187B2 (en) 1994-08-24
EP0205806A1 (en) 1986-12-30
ES553844A0 (en) 1987-02-16
ES8703214A1 (en) 1987-02-16
US4885658A (en) 1989-12-05
JPS61248506A (en) 1986-11-05
DE3666647D1 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
EP0203354B1 (en) Process and circuit for the control of a valve
EP0704097B1 (en) Process and device for controlling electromagnetic consumers
DE2828678C2 (en)
EP0006843B1 (en) Electronically controlled magnetic valve
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
WO2005103469A9 (en) Method for operating a solenoid valve for quantity control
DE4322199C2 (en) Method and device for controlling an electromagnetic consumer
EP0205806B1 (en) Process and circuit for the control of a valve
DE3543055C1 (en) Circuit arrangement for driving an electromagnet
DE19963154B4 (en) Method for specifying the current through an inductive component
DE10315282B4 (en) Circuit arrangement and method for driving a bistable solenoid valve
DE2050219A1 (en) Device for controlling an electromagnet
EP0650177B1 (en) Method of driving parallel arranged relays
DE2015589A1 (en) Control device for the fuel supply of internal combustion engines
DE3611221A1 (en) Internal combustion engine having inlet and outlet valves
EP2994929A1 (en) Relay
EP0829123B1 (en) Free-wheel circuit with an adjustable off delay time
DE2922521C2 (en) Circuit arrangement for the control of magnets in recording devices for teletyping technology
DE102004032721A1 (en) Device and method for controlling an inductance
DE3231083A1 (en) CIRCUIT FOR AUTOMATICALLY REDUCING THE POWER SUPPLIED TO A LOAD
DE3734415A1 (en) CIRCUIT ARRANGEMENT FOR ACCELERATING THE SUPPLY OF AN ELECTROMAGNETIC CONSUMER
DE2347714A1 (en) CONTROL SYSTEM FOR SEQUENTIAL OPERATION OF SEVERAL ENERGY CONSUMING LOADS
DE102018122269A1 (en) Relay module
BE1026605B1 (en) Relay module
DE19725317B4 (en) Circuit arrangement for controlling a solenoid operated with DC voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19870212

17Q First examination report despatched

Effective date: 19890404

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3666647

Country of ref document: DE

Date of ref document: 19891130

ET Fr: translation filed
ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;AUDI AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86105473.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030325

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030405

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030417

Year of fee payment: 18

Ref country code: FR

Payment date: 20030417

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050421