EP0648997B1 - Dispositif de mise à feu à haute énergie - Google Patents

Dispositif de mise à feu à haute énergie Download PDF

Info

Publication number
EP0648997B1
EP0648997B1 EP19940402273 EP94402273A EP0648997B1 EP 0648997 B1 EP0648997 B1 EP 0648997B1 EP 19940402273 EP19940402273 EP 19940402273 EP 94402273 A EP94402273 A EP 94402273A EP 0648997 B1 EP0648997 B1 EP 0648997B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
detonator
firing device
energy
energy firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940402273
Other languages
German (de)
English (en)
Other versions
EP0648997A1 (fr
Inventor
Marc Coussens
Bruno Gamby
Christophe Riviere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP0648997A1 publication Critical patent/EP0648997A1/fr
Application granted granted Critical
Publication of EP0648997B1 publication Critical patent/EP0648997B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/008Power generation in electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition

Definitions

  • the present invention relates to a firing device of the high energy type.
  • a privileged field of application of the invention relates to high energy detonators grouping, on the one hand devices with projected element or DEP, and on the other hand, devices with exploded wire or EBW (EBW being the initials English- Saxons put for Exploding Bridge Wire).
  • EBW being the initials English- Saxons put for Exploding Bridge Wire.
  • Such devices can be used in particular as detonators to trigger the operation of military charges, rocket propellants, missiles, or even gas generators (in this case, we speak rather of igniters).
  • Figure 1 illustrates the electrical diagram of a conventional high energy firing device.
  • the means 2 are for example made up of: 'a spark gap.
  • the capacitor 1 is used to store the quantity of energy necessary for the operation of the ignition. It is charged under a high voltage V HT , and must have a relatively large capacity, typically around 0.15 ⁇ F.
  • V G is delivered on the trigger of the spark gap 2, so that the capacitor can discharge as quickly as possible.
  • the discharge of the capacitor will cause, in the case of a DEP, the cutting and the projection of a pellet on a secondary explosive, or, in the case of an detonator with exploded wire, the explosion of a placed wire in an explosive.
  • FIG. 2 briefly illustrates the coaxial structure of the DEP, without going into detail of the operation of the DEP itself:
  • the detonator 4 with a coaxial structure essentially comprises a cylindrical metallized anvil 40 carrying a fuse bridge 41, a socket of revolution 42 made of dielectric material, and a substantially cylindrical confinement 43 placed on the fuse bridge along the longitudinal axis of symmetry XX ′ of the detonator, and kept in contact with the internal walls of the sleeve 42.
  • This confinement 43 comprises in particular a secondary explosive and a barrel (not visible) positioned between the explosive and the fuse bridge 41 for cutting and guiding the element projected onto the explosive.
  • the socket 42 is connected to the anvil 40 by means of a cylindrical ring with flange 44.
  • a flexible cylindrical contact piece 45 comprising a cylindrical part 46 in contact with the ring 44, and folded flexible tabs 47.
  • These flexible tabs 47 perform the role of first electrical connection of the detonator. They are in fact electrically connected to one end of the fuse bridge 41 via the cylindrical ring 44 and a conductive surface not visible in FIG. 2 located on the periphery of the upper face of the anvil 40 in electrical contact with one end of the fuse bridge 41.
  • the other end of the fuse bridge is electrically connected to a second connection 48 of the detonator located on the opposite face of the anvil 40, by means of an electrical bushing 49 produced in the anvil.
  • the second connection 48 is for example a metal disc centered on the longitudinal axis XX 'of the detonator 4.
  • the structure of the detonator is said to be coaxial due to the position of the two connections 47 and 48 placed coaxially on the longitudinal axis XX 'of the detonator. From an electrical point of view, the only existing asymmetry comes from the electrical bushing 49 which is eccentric with respect to the longitudinal axis XX '. Thus, the coaxial structure by its connections, also behaves almost like a coaxial element, and therefore has a very low equivalent inductance.
  • the above coaxial structure is advantageous in that it has a reduced bulk.
  • a capacitor with armatures of parallelepiped shape having two connection tabs and mounted on an electronic card, is used.
  • the high-energy spark gap and detonator are located on this card as close as possible to the capacitor in order to reduce, as far as possible, the equivalent resistance R e and the equivalent inductance L e of the firing device, and be therefore best suited to the operation of the detonator.
  • a first drawback associated with this parallelepiped capacitor is that it makes the detonator with a coaxial structure as described above lose some interest. Indeed, to ensure the connection of the detonator with a coaxial structure with the parallelepiped capacitor, it is necessary to produce an electrical interface.
  • This interface is produced in the form of a box in which the detonator with a coaxial structure is placed. This box has at its bottom and on its internal lateral face conductive surfaces in contact respectively with the connections 48 and 47 of the detonator.
  • the housing must also have external connections in the form of two tabs located under the housing, which are connected to the capacitor and to the spark gap via conductive tracks made on the electronic card.
  • current firing devices using a capacitor of the aforementioned type have an equivalent resistance R e and an equivalent inductance L e respectively of the order of 150 m ⁇ and 30 nH, values which should be reduced to optimize firing of the detonator.
  • the volume occupied by the capacitor should be increased. There is therefore an incompatibility between on the one hand, the space constraints and on the other hand, the reliability criteria imposed.
  • the object of the present invention is to overcome the various aforementioned drawbacks by proposing a high energy firing device occupying a small volume and having connections between elements much simpler to produce than in the prior art, and therefore , more easily industrializable.
  • the device according to the invention does not require any electronic card for mounting the various elements, and has an equivalent impedance and inductance reduced compared to those obtained hitherto.
  • the present invention relates to a high energy firing device as defined in claims 1 to 10.
  • the high energy firing device corresponds to the electrical diagram of FIG. 1, and therefore results from the placing in series of a storage capacitor 1, of control means 2 for discharging the capacitor 1, and a high energy detonator 3.
  • the important innovation of the device proposed here lies in the choice of particular structural elements, in particular as regards the capacitor and the detonator, as well as in the relative positioning of these elements.
  • the capacitor 1 used is produced in the form of a cylinder with a longitudinal axis X 1 X ′ 1 , having a hole or axial recess of shape substantially cylindrical.
  • cylinders and “cylindrical” must be taken in the geometric sense of the term, that is to say as defining any solid generated by a straight line which moves parallel to itself in s' pressing on a directing curve, the latter being able to be circular (cylinder of revolution), or not.
  • the capacitor 1 is preferably a capacitor with armatures produced, in a known manner, by the winding of films on a mandrel having the shape and the dimensions of the desired axial recess.
  • the capacitor 1 has two metal electrodes which can advantageously be located respectively on the upper and lower bases of the cylinder.
  • the dimensions of the axial recess are chosen so that the control means 2 can be placed inside this recess.
  • These for example consist of a spark gap made in the form of a cylinder comprising at each end, a connection electrode and, on one of the two electrodes, a trigger receiving the electric pulse V G controlling the discharge of the capacitor.
  • the spark gap 2 is advantageously positioned so that the axis joining the two spark gap electrodes is aligned with the longitudinal axis X 1 X ' 1 of the capacitor, the trigger being able to come out slightly from the recess.
  • the detonator 3 used has a coaxial structure of axis XX ', as described with reference to FIG. 2, that is to say comprising a first connection 48 located at its base, and a second connection 47, in the form of flexible tongues positioned on the periphery of the detonator, that is to say in a plane substantially perpendicular to the longitudinal axis XX 'of the detonator. It is placed relative to the capacitor 1 so that its axis XX 'is substantially aligned with the longitudinal axis X 1 X' 1 of the capacitor, the first connection 48 being for example on the side of the capacitor.
  • the detonator 3 is then electrically connected to the control means by means of an electrical connection preferably passing partly or completely inside the recess, depending on whether the detonator is more or less distant from the capacitor.
  • the two electrodes of the capacitor 1 are metal rings placed respectively on the upper base and on the lower base of the cylinder.
  • the necessary connections between, on the one hand the capacitor 1 and the detonator 3, and, on the other hand the capacitor 1 and the spark gap 2 can be produced in the form of parts of revolution which are more easily industrializable.
  • the detonator 3 with a coaxial structure and the spark gap 2 are both located inside the axial recess 10 of the cylindrical capacitor 1 along the axis X 1 X ′ 1 of the capacitor 1.
  • the spark gap 2 is for example a cylinder provided at its two ends with electrodes 21 and 22, and with a trigger 23 on which an electric pulse V G is sent to control the discharge of the capacitor.
  • the detonator 3 with coaxial structure has, as we have seen with reference to FIG. 2, two connections 47 and 48 placed coaxially along the axis XX 'of the detonator. The necessary electrical connection between the detonator and the spark gap can therefore be achieved very simply by direct contact between the electrode 22 of the spark gap and the connection 48.
  • the electrodes of the capacitor 1 are preferably made on the upper and lower bases of the cylinder 1, for example by means of metal rings 11 and 12, each being connected to one of the two armatures (not visible ) of the capacitor 1. It is thus possible to optimize on the one hand, the electrical connection 5 between the electrode 11 of the capacitor and the electrode 21 of the spark gap, and on the other hand, the electrical connection 6 between l electrode 12 of the capacitor and the connection tabs 47 of the detonator.
  • the above-mentioned electrical connection 5 is for example a metal revolution part having a hole 50 to allow passage to the trigger 23 of the spark gap.
  • the electrical connection 6 shown in FIG. 3 is also a piece of metallic revolution, the shape of which is that of a hollow flared sleeve, consisting of a cylindrical part 60 which fits into the axial recess 10 over a length sufficient to be in contact with the tabs 47 of the detonator, and of a flared portion 61, substantially planar, which comes into contact with the electrode 12 of the capacitor.
  • the cylindrical part 60 simultaneously maintains the detonator and the necessary electrical contact.
  • the firing device in Figure 3 has many advantages:
  • the positioning of the spark gap inside the axial recess makes it possible to protect the spark gap against severe electromagnetic environments which risk unexpectedly triggering the ignition.
  • the device of Figure 3 has a coaxial structure whose equivalent resistance and inductance are reduced by 30 to 40 m ⁇ and 15 to 20 nanohenrys respectively compared to the devices of the prior art. It follows that the voltage V HT necessary for the operation of the device according to the invention can be lowered compared to that of a conventional device.
  • the device of FIG. 3 is particularly interesting in all systems where the initiation of a pyrotechnic element is carried out by the center.
  • the second possible embodiment of the device according to the invention illustrated in FIG. 4 is particularly advantageous in the case where the device is placed in a hermetic case 9, the detonator 3 being outside this case.
  • the device of FIG. 4 is almost identical to that of FIG. 3, except that the detonator 3 is located outside the axial recess 10 of the capacitor 1 and that the connection 7 between the electrode 22 of the 'spark gap 2 and the connection 48 of the detonator on the one hand and the connection 6' between the electrode 12 of the capacitor and the connection 47 of the detonator on the other hand form a hermetic coaxial connection, therefore of low inductance.
  • connection 6 ′ is a coaxial connection comprising a hollow cylindrical and metallic part 60 ′ into which the detonator 3 is inserted, so that the tabs 47 of the detonator are in contact with this part 60 ′, as well as a base in the form of a metal crown 61 which comes into contact with the electrode 12 of the capacitor.
  • the connection 7 is for example made up of an axial metal rod.
  • the connections 6 ′ and 7 are advantageously assembled together by a dielectric 8. This dielectric 8 also provides the connection between the hermetic connection and the housing 9.
  • the assembly thus produced according to FIG. 4 makes it possible to integrate the electronic part of the device in a hermetic housing, the detonator being outside and easily disconnected. It is then possible to easily test the electronic part.
  • the high energy firing device as just described in different embodiments is very flexible to use thanks to its modular nature.
  • the small volume of the firing module makes it possible to use a single central electronic module supplying in parallel, via high voltage cables, a plurality of firing devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Description

  • La présente invention concerne un dispositif de mise à feu du type haute énergie.
  • Un domaine privilégié d'application de l'invention concerne les détonateurs à haute énergie regroupant, d'une part les dispositifs à élément projeté ou DEP, et d'autre part, les dispositifs à fil explosé ou EBW (EBW étant les initiales anglo-saxonnes mises pour Exploding Bridge Wire). De tels dispositifs peuvent être utilisés notamment comme détonateurs pour déclencher le fonctionnement de charges militaires, de propulseurs de roquettes, de missiles, ou encore de générateurs de gaz (dans ce cas, on parle plutôt d'inflammateurs).
  • La figure 1 illustre le schéma électrique d'un dispositif de mise à feu haute énergie classique.
  • Il se présente comme la mise en série, dans un circuit rebouclé, d'un condensateur de stockage 1, de moyens 2 pour commander la décharge du condensateur 1, et d'un détonateur haute énergie 3. Les moyens 2 sont par exemple constitués d'un éclateur. Le condensateur 1 sert à stocker la quantité d'énergie nécessaire au fonctionnement de la mise à feu. Il est chargé sous une haute tension VHT, et doit posséder une capacité de valeur relativement importante, typiquement aux alentours de 0,15 µF. Pour déclencher la mise à feu proprement dite, une impulsion électrique VG est délivrée sur la gâchette de l'éclateur 2, de sorte que le condensateur puisse se décharger le plus rapidement possible. La décharge du condensateur va provoquer, dans le cas d'un DEP, la découpe et la projection d'une pastille sur un explosif secondaire, ou, dans le cas d'un détonateur à fil explosé, l'explosion d'un fil placé dans un explosif.
  • Un des problèmes majeurs rencontré dans la réalisation des dispositifs de mise à feu fonctionnant suivant le schéma de la figure 1, réside dans le faible volume alloué généralement à ces dispositifs.
  • La Demanderesse a déjà résolu partiellement ce problème d'encombrement en proposant un détonateur du type DEP, présentant une structure coaxiale. Ce détonateur a fait l'objet d'une demande de brevet français FR-A- 26 69725 et montre les caractéristiques du préambule de la revendication indépendante 1. La figure 2 annexée illustre sommairement la structure coaxiale du DEP, sans entrer dans le détail du fonctionnement du DEP lui-même :
  • Le détonateur 4 à structure coaxiale comprend essentiellement une enclume métallisée cylindrique 40 portant un pont fusible 41, une douille de révolution 42 en matériau diélectrique, et un confinement 43 sensiblement cylindrique, placé sur le pont fusible selon l'axe de symétrie longitudinal XX' du détonateur, et maintenu en contact des parois internes de la douille 42. Ce confinement 43 comporte notamment un explosif secondaire et un canon (non visible) positionné entre l'explosif et le pont fusible 41 pour découper et guider l'élément projeté sur l'explosif. La douille 42 est reliée à l'enclume 40 grâce à une bague cylindrique à collerette 44. Autour du corps de la douille 42 et de la bague cylindrique 44, on dispose une pièce de contact cylindrique souple 45 comportant une partie cylindrique 46 en contact avec la bague 44, et des languettes souples repliées 47. Ces languettes souples 47 assurent le rôle de première connexion électrique du détonateur. Elles sont en effet reliées électriquement à une extrémité du pont fusible 41 par l'intermédiaire de la bague cylindrique 44 et d'une surface conductrice non visible sur la figure 2 située à la périphérie de la face supérieure de l'enclume 40 en contact électrique avec une extrémité du pont fusible 41. L'autre extrémité du pont fusible est reliée électriquement à une deuxième connexion 48 du détonateur située sur la face opposée de l'enclume 40, par l'intermédiaire d'une traversée électrique 49 réalisée dans l'enclume. La deuxième connexion 48 est par exemple un disque métallique centré sur l'axe XX' longitudinal du détonateur 4.
  • La structure du détonateur, telle qu'elle vient d'être décrite, est dite coaxiale en raison de la position des deux connexions 47 et 48 placées coaxialement sur l'axe longitudinal XX' du détonateur. Du point de vue électrique, la seule dissymétrie existante provient de la traversée électrique 49 qui est excentrée par rapport à l'axe longitudinal XX'. Ainsi, la structure coaxiale de par ses connexions, se comporte également quasiment comme un élément coaxial, et possède donc une très faible inductance équivalente.
  • La structure coaxiale précédente est avantageuse en ce sens qu'elle présente un encombrement réduit.
  • Il n'en reste pas moins que, pour réaliser un dispositif de mise à feu, il faut ajouter au détonateur précédent, un éclateur et un condensateur de stockage, lequel condensateur, de par la valeur importante de sa capacité, reste volumineux.
  • A l'heure actuelle, on utilise un condensateur à armatures de forme parallélépipédique, présentant deux pattes de connexions et monté sur une carte électronique.
  • L'éclateur et le détonateur à haute énergie sont implantés sur cette carte au plus proche du condensateur afin de réduire, autant que faire se peut, la résistance équivalente Re et l'inductance équivalente Le du dispositif de mise à feu, et être de ce fait au mieux adapté au fonctionnement du détonateur.
  • Un premier inconvénient lié à ce condensateur parallélépipédique est qu'il fait perdre quelque peu l'intérêt du détonateur à structure coaxiale tel que décrit précédemment. En effet, pour assurer la connexion du détonateur à structure coaxiale avec le condensateur parallélépipédique, il est nécessaire de réaliser une interface électrique. Cette interface est réalisée sous forme d'un boîtier dans lequel on vient placer le détonateur à structure coaxiale. Ce boîtier comporte en son fond et sur sa face latérale interne des surfaces conductrices en contact respectivement avec les connexions 48 et 47 du détonateur. Le boîtier doit en outre posséder des connexions externes sous forme de deux pattes situées sous le boîtier, que l'on relie au condensateur et à l'éclateur par l'intermédiaire de pistes conductrices effectuées sur la carte électronique.
  • La réalisation d'un tel boîtier est lourde et coûteuse et les connexions électriques sont aussi plus difficilement réalisables. Il est en outre nécessaire de placer l'axe longitudinal du détonateur perpendiculairement au plan de la carte électronique. Il en résulte que le dispositif complet de mise à feu est volumineux et difficile à intégrer à proximité d'une chaîne pyrotechnique à initier.
  • Par ailleurs, les dispositifs de mise à feu actuels utilisant un condensateur du type précité ont une résistance équivalente Re et une inductance équivalente Le respectivement de l'ordre de 150 mΩ et de 30 nH, valeurs qu'il conviendrait de diminuer pour optimiser la mise à feu du détonateur.
  • Enfin, pour accroître le niveau de fiabilité, il faudrait augmenter le volume occupé par le condensateur. On se heurte donc à une incompatibilité entre d'une part, les contraintes d'encombrement et d'autre part, les critères de fiabilité imposés.
  • Le but de la présente invention est de pallier les différents inconvénients précités en proposant un dispositif de mise à feu à haute énergie occupant un faible volume et présentant des connexions entre éléments beaucoup plus simples à réaliser que dans l'art antérieur, et de ce fait, plus facilement industrialisables. Le dispositif selon l'invention ne nécessite aucune carte électronique pour le montage des différents éléments, et présente une impédance et une inductance équivalentes réduites par rapport à celles obtenues jusqu'alors.
  • Plus précisément, la présente invention a pour objet un dispositif de mise à feu à haute énergie tel que défini dans les revendications 1 à 10.
  • L'invention, ainsi que les différents avantages qu'elle procure, seront mieux compris au vu de la description ci-après, faite en référence aux figures annexées :
    • la figure 1 est un schéma électrique d'un dispositif de mise à feu ;
    • la figure 2 rappelle la constitution d'un détonateur type DEP à structure coaxiale de l'art antérieur ;
    • la figure 3 est une coupe d'un premier mode de réalisation possible du dispositif de mise à feu haute énergie selon l'invention ;
    • la figure 4 est une coupe d'un second mode de réalisation possible du dispositif de mise à feu haute énergie selon l'invention ;
  • Les figures 1 et 2 ont déjà été décrites précédemment.
  • Avant de décrire les différentes figures illustrant différents modes de réalisation particuliers du dispositif de mise à feu selon l'invention, il convient de décrire les caractéristiques générales communes à ces réalisations :
  • Le dispositif de mise à feu à haute énergie selon l'invention répond au schéma électrique de la figure 1, et résulte donc de la mise en série d'un condensateur de stockage 1, de moyens de commande 2 de la décharge du condensateur 1, et d'un détonateur à haute énergie 3. L'innovation importante du dispositif proposé ici réside dans le choix d'éléments de structure particulières, notamment en ce qui concerne le condensateur et le détonateur, ainsi que dans le positionnement relatif de ces éléments. En effet, selon une première caractéristique importante du dispositif selon l'invention, le condensateur 1 utilisé est réalisé sous la forme d'un cylindre d'axe longitudinal X1X'1, possédant un trou ou évidement axial de forme sensiblement cylindrique. Il convient ici de préciser que les termes "cylindres" et "cylindriques" doivent être pris au sens géométrique du terme, c'est-à-dire comme définissant tout solide engendré par une droite qui se déplace parallèlement à elle-même en s'appuyant sur une courbe directrice, cette dernière pouvant être circulaire (cylindre de révolution), ou non.
  • Le condensateur 1 est préférentiellement un condensateur à armatures réalisées, de façon connue, par l'enroulement de films sur un mandrin ayant la forme et les dimensions de l'évidement axial désiré. Le condensateur 1 dispose de deux électrodes métalliques qui peuvent être avantageusement situées respectivement sur les bases supérieure et inférieure du cylindre. Les dimensions de l'évidement axial sont choisies de telle sorte que l'on puisse placer, à l'intérieur de cet évidement, les moyens de commande 2. Ceux-ci sont par exemple constitués d'un éclateur réalisé sous forme d'un cylindre comportant à chaque extrémité, une électrode de connexion et, sur l'une des deux électrodes, une gâchette recevant l'impulsion électrique VG commandant la décharge du condensateur. L'éclateur 2 est avantageusement positionné de telle sorte que l'axe rejoignant les deux électrodes de l'éclateur soit aligné avec l'axe longitudinal X1X'1 du condensateur, la gâchette pouvant sortir légèrement de l'évidement.
  • En outre, selon une autre caractéristique importante du dispositif selon l'invention, le détonateur 3 utilisé est à structure coaxiale d'axe XX', telle que décrite en référence à la figure 2, c'est-à-dire comportant une première connexion 48 située à sa base, et une deuxième connexion 47, sous forme de languettes souples positionnées sur le pourtour du détonateur, c'est-à-dire dans un plan sensiblement perpendiculaire à l'axe longitudinal XX' du détonateur. Il est placé par rapport au condensateur 1 de telle sorte que son axe XX' soit sensiblement aligné avec l'axe longitudinal X1X'1 du condensateur, la première connexion 48 étant par exemple du côté du condensateur. Le détonateur 3 est alors relié électriquement aux moyens de commande par l'intermédiaire d'une liaison électrique passant préférentiellement en partie ou totalement à l'intérieur de l'évidement, selon que le détonateur est plus ou moins éloigné du condensateur. Une telle disposition des différents éléments les uns par rapport aux autres permet d'obtenir un dispositif dont l'impédance et l'inductance équivalentes sont très réduites par rapport à ce que l'on obtenait jusqu'alors.
  • Avantageusement, les deux électrodes du condensateur 1 sont des couronnes métalliques placées respectivement sur la base supérieure et sur la base inférieure du cylindre. De cette manière, les connexions nécessaires entre, d'une part le condensateur 1 et le détonateur 3, et, d'autre part le condensateur 1 et l'éclateur 2 peuvent être réalisées sous forme de pièces de révolution plus facilement industrialisables.
  • En outre, on peut prévoir de placer le détonateur 3 à l'intérieur même de l'évidement axial en vue d'obtenir un dispositif complet très compact.
  • Nous allons décrire à présent, en référence aux figures 3 et 4, deux modes de réalisation possibles particulièrement intéressants du dispositif selon l'invention :
  • Sur la figure 3, le détonateur 3 à structure coaxiale et l'éclateur 2 sont tous les deux situés à l'intérieur de l'évidement axial 10 du condensateur cylindrique 1 le long de l'axe X1X'1 du condensateur 1. L'éclateur 2 est par exemple un cylindre muni à ses deux extrémités d'électrodes 21 et 22, et d'une gâchette 23 sur laquelle on envoie une impulsion électrique VG pour commander la décharge du condensateur. Le détonateur 3 à structure coaxiale présente, comme nous l'avons vu en référence à la figure 2, deux connexions 47 et 48 placées coaxialement suivant l'axe XX' du détonateur. La liaison électrique nécessaire entre le détonateur et l'éclateur peut donc être réalisée très simplement par contact direct entre l'électrode 22 de l'éclateur et la connexion 48.
  • Comme nous l'avons dit précédemment, les électrodes du condensateur 1 sont préférentiellement réalisées sur les bases supérieure et inférieure du cylindre 1, par exemple au moyen de couronnes métalliques 11 et 12, chacune étant reliée à l'une des deux armatures (non visibles) du condensateur 1. Il est ainsi possible d'optimiser d'une part, la liaison électrique 5 entre l'électrode 11 du condensateur et l'électrode 21 de l'éclateur, et d'autre part, la liaison électrique 6 entre l'électrode 12 du condensateur et les languettes de connexion 47 du détonateur.
  • La liaison électrique 5 sus-mentionnée est par exemple une pièce de révolution métallique comportant un trou 50 pour laisser le passage à la gâchette 23 de l'éclateur.
  • La liaison électrique 6 représentée sur la figure 3 est également une pièce de révolution métallique dont la forme est celle d'un manchon évasé et creux, constitué d'une partie cylindrique 60 qui vient s'emmancher dans l'évidement axial 10 sur une longueur suffisante pour être en contact avec les languettes 47 du détonateur, et d'une partie évasée 61, sensiblement plane, qui vient en contact avec l'électrode 12 du condensateur. La partie cylindrique 60 assure simultanément le maintien du détonateur et le contact électrique nécessaire.
  • Le dispositif de mise à feu de la figure 3 présente de nombreux avantages :
  • Il est tout d'abord très compact et répond de manière satisfaisante aux contraintes d'encombrement. Typiquement, un cylindre d'environ 35 mm de diamètre externe, muni d'un trou axial d'environ 13 mm sur 14 mm de hauteur, permet de réaliser un condensateur d'environ 0,15µF de capacité, dans lequel peuvent venir se loger un détonateur et un éclateur. Avec ces valeurs, le volume occupé par le condensateur est d'environ 11,6 cm3 contre 13,5 cm3 de volume total occupé par le dispositif de mise à feu, ce qui permet d'accroître le niveau de fiabilité (bon coefficient de derating en tension).
  • De plus, le positionnement de l'éclateur à l'intérieur de l'évidement axial permet de protéger l'éclateur contre les environnements électromagnétiques sévères qui risquent de déclencher inopinément la mise à feu.
  • En outre, le dispositif de la figure 3 possède une structure coaxiale dont la résistance et l'inductance équivalentes sont réduites respectivement de 30 à 40 mΩ et de 15 à 20 nanohenrys par rapport aux dispositifs de l'art antérieur. Il s'ensuit que la tension VHT nécessaire au fonctionnement du dispositif selon l'invention peut être abaissée par rapport à celle d'un dispositif classique.
  • Par ailleurs, les différentes connexions supplémentaires 5 et 6 sont simples et facilement industrialisables.
  • En raison de la symétrie du dispositif avec détonateur à l'intérieur du condensateur, le dispositif de la figure 3 est particulièrement intéressant dans tous systèmes où l'initiation d'un élément pyrotechnique s'effectue par le centre.
  • Le second mode de réalisation possible du dispositif selon l'invention illustré à la figure 4 est particulièrement intéressant dans le cas où le dispositif est placé dans un boîtier hermétique 9, le détonateur 3 étant à l'extérieur de ce boîtier. Le dispositif de la figure 4 est quasiment identique à celui de la figure 3, à ceci près que le détonateur 3 est situé à l'extérieur de l'évidement axial 10 du condensateur 1 et que la liaison 7 entre l'électrode 22 de l'éclateur 2 et la connexion 48 du détonateur d'une part et la liaison 6' entre l'électrode 12 du condensateur et la connexion 47 du détonateur d'autre part forment une connexion hermétique coaxiale, donc de faible inductance.
  • Dans le mode de réalisation représenté sur la figure 4, la liaison 6' est une connexion coaxiale comportant une partie cylindrique creuse et métallique 60' dans laquelle est introduit le détonateur 3, de sorte que les languettes 47 du détonateur soient en contact avec cette partie 60', ainsi qu'une base en forme de couronne métallique 61 qui vient en contact avec l'électrode 12 du condensateur. La liaison 7 est par exemple constituée d'une tige métallique axiale. Les liaisons 6' et 7 sont avantageusement assemblées entre elles par un diélectrique 8. Ce diélectrique 8 assure également la liaison entre la connexion hermétique et le boîtier 9.
  • L'ensemble ainsi réalisé suivant la figure 4 permet d'intégrer la partie électronique du dispositif dans un boîtier hermétique, le détonateur étant à l'extérieur et aisément déconnectable. Il est alors possible de tester facilement la partie électronique.
  • Le dispositif de mise à feu haute énergie tel qu'il vient d'être décrit dans différentes formes de réalisation, est très souple d'utilisation grâce à son caractère modulaire.
  • Le faible volume du module de mise à feu permet d'utiliser un seul module électronique central alimentant en parallèle, par l'intermédiaire de câbles haute tension, une pluralité de dispositifs de mise à feu.

Claims (10)

  1. Dispositif de mise à feu à haute énergie comportant, connectés en série selon un circuit rebouclé, un condensateur (1) de stockage d'énergie sous une haute tension VHT, des moyens de commande (2) de la décharge du condensateur, et un détonateur (3) à haute énergie dont le déclenchement résulte de ladite décharge, le dispositif étant caractérisé en ce que le condensateur (1) est réalisé sous forme d'un cylindre d'axe longitudinal X1X'1 comportant un évidement axial (10) à l'intérieur duquel sont placés les moyens de commande (2), en ce que le détonateur (3) est réalisé sous forme d'une structure coaxiale d'axe XX' sensiblement aligné avec l'axe longitudinal X1X'1 du condensateur (1), et en ce que le détonateur (3) est relié aux moyens de commande (2) par l'intermédiaire d'une liaison électrique sensiblement parallèle à l'axe longitudinal X1X'1.
  2. Dispositif de mise à feu haute énergie selon la revendication 1, caractérisé en ce que le condensateur (1) possède deux électrodes métalliques (11, 12) placées respectivement sur les bases supérieure et inférieure du cylindre.
  3. Dispositif de mise à feu haute énergie selon la revendication 2, caractérisé en ce que les électrodes (11, 12) ont sensiblement la forme de couronnes.
  4. Dispositif de mise à feu haute énergie selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de commande sont constitués d'un éclateur de forme sensiblement cylindrique disposé axialement par rapport à l'axe X1X'1 du condensateur (1) et comportant, à chaque extrémité, une électrode de connexion (21, 22), et, sur l'électrode de connexion (21) placée au plus proche de la base supérieure du condensateur (1), une gâchette (23) qui reçoit une impulsion électrique VG commandant la décharge du condensateur (1).
  5. Dispositif de mise à feu haute énergie selon les revendications 3 et 4, caractérisé en ce que l'électrode (21) de l'éclateur située au plus proche de la base supérieure du condensateur (1) est connectée à l'électrode (11) en forme de couronne placée sur la base supérieure du condensateur, par l'intermédiaire d'une pièce de révolution métallique (5) comportant un trou (50) pour laisser le passage à la gâchette (23).
  6. Dispositif de mise à feu haute énergie selon l'une quelconque des revendications précédentes, caractérisé en ce que le détonateur (3) est placé à l'intérieur de l'évidement axial (10).
  7. Dispositif de mise à feu haute énergie selon la revendication 6, caractérisé en ce que le détonateur (3) possède une connexion (48) réalisée sous forme d'un disque métallique centré sur l'axe longitudinal du détonateur, et en ce que la liaison électrique reliant le détonateur (3) aux moyens de commande (2) se fait par contact direct du disque métallique avec une électrode (22) des moyens de commande.
  8. Dispositif de mise à feu haute énergie selon les revendications 3 et 7, caractérisé en ce que le détonateur (3) comporte une connexion (47) comprenant des languettes souples repliées, et en ce que la liaison électrique reliant le détonateur (3) au condensateur (1) est une pièce de révolution ayant la forme d'un manchon évasé creux, constitué d'une partie cylindrique (60) qui vient s'emmancher dans l'évidement axial (10) sur une longueur suffisante pour être en contact avec les languettes (47), et d'une partie évasée (61) sensiblement plane qui vient en contact avec la couronne métallique (12) du condensateur (1) placée sur la base inférieure du condensateur.
  9. Dispositif de mise à feu haute énergie selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le détonateur est placé à l'extérieur de l'évidement axial (10).
  10. Dispositif de mise à feu haute énergie selon la revendication 9, caractérisé en ce que la liaison électrique entre le détonateur (3) et les moyens de commande (2) est constituée d'une tige métallique (7).
EP19940402273 1993-10-13 1994-10-11 Dispositif de mise à feu à haute énergie Expired - Lifetime EP0648997B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9312180A FR2711237B1 (fr) 1993-10-13 1993-10-13 Dispositif de mise à feu à haute énergie.
FR9312180 1993-10-13

Publications (2)

Publication Number Publication Date
EP0648997A1 EP0648997A1 (fr) 1995-04-19
EP0648997B1 true EP0648997B1 (fr) 1997-11-19

Family

ID=9451784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940402273 Expired - Lifetime EP0648997B1 (fr) 1993-10-13 1994-10-11 Dispositif de mise à feu à haute énergie

Country Status (3)

Country Link
EP (1) EP0648997B1 (fr)
DE (1) DE69406892T2 (fr)
FR (1) FR2711237B1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735705A (en) * 1971-07-15 1973-05-29 Amp Inc Filtered electro-explosive device
DE3637988A1 (de) * 1986-11-07 1988-05-11 Diehl Gmbh & Co Anzuendbauteil
FR2669725B1 (fr) * 1990-11-27 1994-10-07 Thomson Brandt Armements Detonateur pyrotechnique a connexions coaxiales.

Also Published As

Publication number Publication date
FR2711237B1 (fr) 1995-12-15
DE69406892T2 (de) 1998-03-26
EP0648997A1 (fr) 1995-04-19
FR2711237A1 (fr) 1995-04-21
DE69406892D1 (de) 1998-01-02

Similar Documents

Publication Publication Date Title
EP0488863B1 (fr) Détonateur pyrotechnique à connexions coaxiales
EP0086136B1 (fr) Générateur d'impulsions électromagnétiques de haute tension
CA2715060C (fr) Supercondensateur multibobines
EP0162766B1 (fr) Dispositif de stockage à haute tension et à haute énergie et générateur d'impulsions en comportant application
FR3099287A1 (fr) Dispositif de coupure pyrotechnique
EP2073229B1 (fr) Court-circuiteur pyrotechnique à contacts électrique auto-serrant et ensemble de protection contre les arcs internes comportant un tel court-circuiteur
FR3071659B1 (fr) Dispositif de coupure pyrotechnique
EP0648997B1 (fr) Dispositif de mise à feu à haute énergie
EP1672308B1 (fr) Disposition d'initiation pour charge explosive ou composition pyrotechnique
EP0499500B1 (fr) Conteneur muni de moyens de liaison électrique
FR2811749A1 (fr) Initiateur electro-pyrotechnique securise a haute energie
EP1629577B1 (fr) Eclateur, et notamment eclateur a haute tension
EP2073235B1 (fr) Court-circuiteur électrique comprenant un actionneur pyrotechnique autonome et ensemble de protection contre les arcs internes comportant un tel court-circuiteur
EP0058389A2 (fr) Laser à gaz excité par décharge de condensateurs
WO2018115644A1 (fr) Court-circuiteur pyrotechnique
EP0526315B1 (fr) Contacteur électrique à commande pyrotechnique
EP3311200B1 (fr) Outil de génération d'ondes sismiques tel un éclateur d'un dispositif de génération d'arcs électriques
FR2617277A1 (fr) Inflammateur pour generateur pyrotechnique
FR2648223A1 (fr) Inflammateur pyrotechnique pour charges militaires ou propulseur ou generateur de gaz
FR2560983A1 (fr) Systeme electrique pour l'initiation de charges pyrotechniques et munition ou fusee perfectionnee incorporant un tel systeme
FR2612706A1 (fr) Source impulsionnelle de courant electrique et canon electromagnetique en faisant application
EP4260354A1 (fr) Dispositif de coupure a accroissement dielectrique
FR3060834A1 (fr) Court-circuiteur pyrotechnique
FR2671427A1 (fr) Contacteur d'impact notamment pour projectiles a charge explosive .
CH520317A (fr) Projectile à mise à feu électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19951018

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970313

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TDA ARMEMENTS S.A.S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 69406892

Country of ref document: DE

Date of ref document: 19980102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131009

Year of fee payment: 20

Ref country code: FR

Payment date: 20131009

Year of fee payment: 20

Ref country code: GB

Payment date: 20131009

Year of fee payment: 20

Ref country code: SE

Payment date: 20131011

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69406892

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141010

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141010