EP0644386B1 - Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé - Google Patents

Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé Download PDF

Info

Publication number
EP0644386B1
EP0644386B1 EP19930115230 EP93115230A EP0644386B1 EP 0644386 B1 EP0644386 B1 EP 0644386B1 EP 19930115230 EP19930115230 EP 19930115230 EP 93115230 A EP93115230 A EP 93115230A EP 0644386 B1 EP0644386 B1 EP 0644386B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
refrigerator
temperature
cycle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930115230
Other languages
German (de)
English (en)
Other versions
EP0644386A1 (fr
Inventor
Daniele Whirlpool Italia s.r.l. Turetta
Enzo Whirlpool Italia S.R.L. Rivis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whirlpool Europe BV
Original Assignee
Whirlpool Europe BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whirlpool Europe BV filed Critical Whirlpool Europe BV
Priority to DE1993617115 priority Critical patent/DE69317115T2/de
Priority to EP19930115230 priority patent/EP0644386B1/fr
Publication of EP0644386A1 publication Critical patent/EP0644386A1/fr
Application granted granted Critical
Publication of EP0644386B1 publication Critical patent/EP0644386B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • This invention relates to a method for controlling frost formation on a refrigerator evaporator, with said evaporator there being associated capacitive sensor means connected to evaporator defrosting control means which activate a usual electrical resistance element associated with said evaporator.
  • This method is implemented by a device comprising at least one electrical conductor associated with the evaporator, means for powering this conductor and means for controlling an electrical signal generated by said conductor, said signal varying on the basis of the frost present on the evaporator, said control means comparing said signal with a reference value and acting on the heating element on the basis of this comparison.
  • the known device operates by comparing the signal from the conductor or capacitive sensor with a predetermined reference signal.
  • This reference signal is chosen on the basis of a particular distance between the sensor plates.
  • this device operates substantially well, it has proved too sensitive to even minimum variations in the distance between said plates, even though contained within tolerance limits.
  • even small differences between the distance between plates and an optimum value result in mistaken intervention of the defrosting control means on the heating element, this intervention occurring either when there is no need or only after the formation of a relatively thick layer of frost on the evaporator, according to the particular circumstances.
  • US-A-4 400 949 discloses a frost deposition detector for an air cooler disposed in a refrigerating chamber.
  • a signal, used to activate defrosting, is generated when the electric current flowing through the motor of the air blower for the air cooler reaches a threshold value which is proportional to the initial current value corresponding to the state of no frost deposition.
  • An object of the present invention is to provide a method and device for controlling frost formation on the evaporator and for implementing defrosting when necessary, which are totally independent of the conditions under which the capacitive sensors are positioned in relation to the evaporator, and which therefore do not require any presetting operation.
  • a further object is to provide a method and corresponding device of the aforesaid type which is able to compensate for the assembly tolerances of each capacitive sensor on the evaporator, which is not influenced by the temperature variations undergone by said sensor during measurement, and which is not sensitive to the transistors which switch the usual refrigerator compressor on and off.
  • the reference value (that memorized) is dynamic, ie is evaluated after each defrosting cycle and in any event after the initial starting of the refrigerator.
  • This value can also vary for the initial cycles following starting, but tends towards an optimum value which is unique for that refrigerator and can differ from that of other totally identical refrigerators. This therefore dispenses with the need for presetting to achieve acceptable evaporator defrosting, because in implementing the method an optimum evaporator defrosting cycle is automatically achieved.
  • the device of the invention comprises a control unit 1, preferably of microprocessor type (provided with its own memory cells, not shown), for controlling and operating a usual electrical defrosting resistance element 2 (positioned at an evaporator 3, for example of flat type provided in a preservation or refrigeration compartment 5 of an upright refrigerator 7 which also comprises a usual freezer compartment 8) and a usual motor-compressor unit 4.
  • a control unit 1 preferably of microprocessor type (provided with its own memory cells, not shown)
  • a usual electrical defrosting resistance element 2 positioned at an evaporator 3, for example of flat type provided in a preservation or refrigeration compartment 5 of an upright refrigerator 7 which also comprises a usual freezer compartment 8) and a usual motor-compressor unit 4.
  • a control unit 1 preferably of microprocessor type (provided with its own memory cells, not shown)
  • a usual electrical defrosting resistance element 2 positioned at an evaporator 3, for example of flat type provided in a preservation or refrigeration compartment 5 of an upright refrigerator 7 which also comprises a usual freezer compartment
  • the elements 10 and 11 and those portions of the evaporator 3 positioned in front of them define capacitive sensors connected to the unit 1, by means of which this latter senses and evaluates the presence of frost on the evaporator.
  • the frost is measured on both evaporator faces and provides greater accuracy in the control of this frost without the measurement being negatively affected by the transistors which switch the compressor 4 on and off.
  • NTC (negative temperature coefficient) temperature sensors 15 and 16 are also connected to the unit 1, the sensor 15 being positioned at the evaporator 3 to measure its temperature and the second sensor 16 being positioned in the freezer compartment 8.
  • the first sensor enables the unit 1 to measure the evaporator temperature and feeds this unit with a reference value to start or stop the compressor 4. This sensor also determines the end of the evaporator defrosting stage effected by the resistance element 2.
  • this stage is halted when the evaporator temperature reaches a value close to or slightly greater than 4°C.
  • the second NTC sensor 16 measures the temperature of the compartment 8 to ensure that the temperature in this compartment does not fall below a predetermined value, for example -21°C (preset by a usual potentiometer 17).
  • a predetermined value for example -21°C (preset by a usual potentiometer 17).
  • the unit 1 halts the motor-compressor unit 4 and operates the resistance element 2, which it maintains in operation until the evaporator temperature reaches a second predetermined maximum value of -5°C. On reaching this temperature the motor-compressor unit 4 is automatically returned to operation to again cool the compartment 8.
  • the signal from the sensor 16 which senses the "critical" temperature in the compartment 8 has precedence in the control of the compressor or motor-compressor unit 4. In this respect, when this temperature appears, the motor-compressor unit is in any event halted (and is not further caused to operate) as this signifies that the temperature in the refrigeration compartment 5 is definitely low and sufficient for food preservation.
  • the sensors 15 and 16 are represented in Figure 1 by symbols known to the expert of the art and are therefore not further described.
  • the device of Figure 1 operating by the method described hereinafter, is completely electronic and comprises a unit 1 which, as stated, is preferably a microprocessor comprising usual analog/digital converters (not shown) which receive the electrical signals in analog form from the sensors 15, 16 and from the potentiometer 17 and convert them into digital signals which can be processed by the unit 1.
  • a unit 1 which, as stated, is preferably a microprocessor comprising usual analog/digital converters (not shown) which receive the electrical signals in analog form from the sensors 15, 16 and from the potentiometer 17 and convert them into digital signals which can be processed by the unit 1.
  • the unit 1 is preferably a microprocessor circuit without analog/digital converters as it is no longer connected to a potentiometer or to NTC sensors (the function of which is performed by the unit 1 by presetting temperature data), it being connected instead to an electronic interface 30 of known type (from which the unit 1 receives signals at its input) based on a 14 stage binary counter 31 with an internal oscillator enabling a digital signal (V u ) to be generated as output; analog/digital conversion can be achieved with a standard internal timed event counter.
  • the unit 30 is connected to usual electrical components well known to the expert of the art and therefore not further described. It should be noted that the capacitive sensor for detecting frost on the evaporator is connected in parallel with a further capacitor.
  • the unit 1 is connected to two temperature sensors 33 and 34 for sensing the "critical" temperature of the freezer compartment and evaporator 3 respectively in order to recognize when the defrosting stage has terminated.
  • the sensors 33 and 34 are in the form of usual temperature-controlled relays (klixons).
  • the unit 1 controls a moving contactor 35 which enables power to be fed to either the compressor 4 (which is consequently operated) or to the electrical defrosting resistance element 2 via an electrical line 39.
  • a moving contactor 37 controlled in known manner by a usual thermostat for example of electromechanical type (not shown).
  • the method is implemented by the device of the invention (via its unit 1) in three main cycles, namely a procedure initiation cycle 40, a refrigeration cycles 41 in which the usual preservation and freezing temperatures are created in the refrigerator 7, and a defrosting cycle 42.
  • This cycle is however partly contained in the cycle 41, as will be described.
  • the cycles 41 and 42 alternate with each other.
  • the cycle 40 comprises, following initial starting of the refrigerator 43, a stage 44 in which the temperature of the evaporator 3 is measured by the sensor 15; during this stage the compressor 4 does not operate and remains in this state until the measured evaporator temperature reaches or exceeds a predetermined value (eg. 4.5°C) beyond which it is certain that no more frost is present on the evaporator.
  • a predetermined value eg. 4.5°C
  • the procedure passes to a stage 45 in which the voltage V d between the plates of the capacitive sensors 10 and 11 (in the form of an electrical signal therefrom) is measured and memorized; this voltage will be considered to be the reference voltage in defining a base value to be used for deciding on the need to defrost the evaporator after stage 41.
  • the unit 1 then activates the compressor (stage 46) and the (minimum) evaporator temperature is then checked (by the NTC sensor 15) to ascertain that it has not reached the "critical" temperature, equal to a predetermined value (preset the potentiometer 17), for example -24°C. This occurs in stage 47.
  • a predetermined value preset the potentiometer 17
  • stage 48 the compressor is halted, and then to stage 49 in which the evaporator is checked for (maximum acceptable) temperature.
  • the unit 1 evaluates (in stage 50) the temperature of the freezer compartment 8 (via the sensor 16). If this temperature is not less than a predetermined value (critical temperature), eg. -21°C, the compressor 4 is returned to operation and the procedure returns to stage 46. If it is less, then the procedure passes to the refrigeration cycle 41. It should be noted that the freezer critical temperature is normally never reached.
  • critical temperature eg. -21°C
  • the compressor is activated (stage 51), after which (stage 52) the temperature of the compartment 8 is again measured to determine if it is below a minimum acceptable value (-24°C). If it is not less than this critical temperature (-24°C), the compressor is maintained in operation. If it is less, the compressor is halted (stage 53) by the unit 1, which then evaluates whether the freezer temperature is less than the said -21°C (stage 54). If it is less, the unit 1 activates the electrical resistance element 2 for usual evaporator defrosting (stage 55), performed within the cycle 41 under examination (not to be confused with that performed within the cycle 42, which is of longer duration).
  • stage 56 the unit executes stage 56 in which it evaluates (via the sensor 15) whether the evaporator temperature exceeds a maximum acceptable value (-5°C) (ie it detects when the maximum acceptable evaporator temperature is reached). If this temperature is unacceptable it returns to stage 53.
  • a sufficiently long predetermined time eg. 2 minutes
  • the unit executes stage 56 in which it evaluates (via the sensor 15) whether the evaporator temperature exceeds a maximum acceptable value (-5°C) (ie it detects when the maximum acceptable evaporator temperature is reached). If this temperature is unacceptable it returns to stage 53.
  • a maximum acceptable value ie it detects when the maximum acceptable evaporator temperature is reached.
  • defrosting is halted by deactivating the element heating the evaporator (stage 57), and the voltage (V F ) across the capacitive sensors 10 and 11 is measured (by the electrical signals originating from them) (stage 59).
  • the unit 1 executes the defrosting cycle 42.
  • the reference value is preferably equal to the value V d increased by a percentage (or by a predefined coefficient); the measured value V F is compared with this value (by the unit 1, which contains usual comparison means such as comparators, logic gates or the like).
  • V F is less than V d (or a multiple thereof)
  • the unit 1 returns to stage 51.
  • the unit 1 activates the resistance element 2 in stage 60 and then checks the evaporator temperature (stage 61). When this exceeds the value at which all the frost is sure to have melted (4.5°C), the unit 1 deactivates the resistance element 2 (stage 62) and proceeds to measure the voltage across the plates of each capacitive sensor 10 and 11 (stage 63). In this manner a value V d is defined (then multiplied by the correction percentage coefficient, or not), which can also be different from the value V d previously defined in stage 45.
  • the unit 1 determines a delay in starting the compressor equal to a minimum time necessary to be certain that the evaporator 3 has been defrosted (stage 64) and then restarts the refrigeration cycle (ie the stage 51).
  • the unit 1 executes the aforesaid stages in continuation.
  • the determination of the temperature of the evaporator 3 and of the freezer compartment and the comparison of the signals (V F ) from the capacitive sensors (10, 11) with the memorized and corrected signal (V d ) can be performed continuously during each cycle 40, 41 or 42 of operation of the refrigerator 7 or during successive time periods at equal times apart.
  • the unit 1 executes a stage 70 in which it investigates whether the refrigeration cycle 41 has been underway continuously for more than a predetermined time period (for example 72 hours). If it has, then the unit 1 resets a counter (stage 71) which measures the duration of each cycle 41 and then executes the cycle 42 (ie the stage 60). If it has not, then it executes stage 51.
  • a predetermined time period for example 72 hours
  • frost formation on the evaporator 3 is evaluated by evaluating a dynamic reference value which varies for each particular refrigerator and according to the temperature of the environment in which the refrigerator is situated, this reference value, suitably corrected by a predefined factor (a percentage, eg. 10%, or a multiple) acting as the basis for comparison with an "actual" value corresponding to frost formation on the evaporator. It should be noted that this value can also vary in accordance with the constructional details of the refrigerator 7 and its use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Claims (15)

  1. Procédé de contrôle de la formation de givre sur un évaporateur de réfrigérateur, un moyen de capteur capacitif positionné au niveau de l'évaporateur du réfrigérateur et connecté à un moyen de commande de dégivrage d'évaporateur étant associé audit évaporateur, lequel active un élément de résistance électrique habituel associé audit évaporateur suite à l'arrêt du compresseur habituel, caractérisé par la mesure et la mémorisation, suite à un démarrage initial du réfrigérateur (7) et après chaque cycle de dégivrage (42) de l'évaporateur (3), d'un signal électrique (Vd) généré par le capteur capacitif (10, 11) et par la comparaison de ce signal mémorisé (Vd) avec des signaux électriques réels (VF) générés par ledit moyen de capteur (10, 11) pendant l'utilisation du réfrigérateur (7) suite à chaque cycle de dégivrage (42) ou au démarrage initial, le réfrigérateur (7) étant arrêté pendant un cycle de dégivrage suivant chaque fois que les signaux réels (VF) diffèrent des signaux mémorisés (Vd) de plus d'une certaine valeur prédéterminée.
  2. Procédé selon la revendication 1, caractérisé en ce que, pendant le cycle de démarrage (40) du réfrigérateur (7), la température de l'évaporateur est mesurée et est comparée à une température prédéterminée à laquelle le givre sur ledit évaporateur a au moins largement fondu et si la température mesurée s'avère être supérieure ou égale à la température prédéterminée, le signal électrique (Vd) généré par le moyen de capteur (10, 11) est mesuré et mémorisé suite à cette comparaison puis est comparé au signal réel (VF) émis par ce dernier.
  3. Procédé selon la revendication 1, caractérisé en ce que, pendant le cycle de démarrage (40), la température de l'évaporateur est vérifiée quant à une valeur minimum acceptable et une valeur maximum acceptable et lorsque cette dernière est atteinte et dépassée, la température du compartiment de congélation (8) est mesurée afin de décider si oui ou non il convient de démarrer le cycle de fonctionnement (41) du réfrigérateur (7), c'est-à-dire son cycle de réfrigération.
  4. Procédé selon la revendication 1, caractérisé en ce que, pendant le cycle de réfrigération (41), la température de l'évaporateur est vérifiée quant à une valeur acceptable minimum et si celle-ci est atteinte, la température du compartiment de congélation (8) est mesurée suite à l'arrêt du compresseur (4) et si celle-ci est inférieure à une valeur acceptable minimum, l'élément de chauffage d'évaporateur (2) est activé pendant une période limitée, ladite activation étant suivie par la mesure de la température de l'évaporateur quant à une valeur acceptable maximum dont l'atteinte et le dépassement aboutit à la désactivation dudit élément (2) et à la mesure du signal électrique réel (VF) émis par le moyen de capteur capacitif, ladite mesure étant suivie par une comparaison entre ledit signal réel et le signal mémorisé; le cycle de dégivrage d'évaporateur (42) étant alors exécuté si le rapport de ces signaux excède une certaine valeur prédéterminée.
  5. Procédé selon la revendication 1 ou 4, caractérisé en ce que la valeur prédéterminée est une valeur de correction pour le signal mémorisé (Vd) émis par le moyen de capteur capacitif (10, 11), ladite valeur de correction étant une valeur de pourcentage ou un multiplicateur numérique déterminé.
  6. Procédé selon la revendication 1, caractérisé en ce que le cycle de dégivrage (42) comprend l'activation de l'élément chauffant (2) jusqu'à ce que la température de l'évaporateur atteigne ou excède une valeur à laquelle on est sûr que le givre sur ledit évaporateur a fondu largement, après quoi ledit élément (2) est désactivé et le signal électrique provenant du moyen de capteur capacitif (10, 11) est évalué et mémorisé afin de remplacer le signal mémorisé préalablement correspondant (Vd), le cycle de réfrigération (41) étant alors redémarré après une période de retard pré-établie suffisamment longue.
  7. Procédé selon la revendication 1, caractérisé en ce que la comparaison entre le signal mémorisé (Vd) et les signaux réels (VF) est réalisée en continu.
  8. Procédé selon la revendication 1, caractérisé en ce que la comparaison entre le signal mémorisé (Vd) et les signaux réels (VF) est réalisée selon des intervalles temporels discrets.
  9. Procédé selon la revendication 2, 4 ou 6, caractérisé en ce que l'évaluation de la température de l'évaporateur (3) et du compartiment de congélation (8) est réalisée en continu.
  10. Procédé selon la revendication 2, 4 ou 6, caractérisé en ce que l'évaluation de la température de l'évaporateur (3) et du compartiment de congélation (8) est réalisée selon des intervalles temporels discrets.
  11. Procédé selon la revendication 1, caractérisé en ce que le cycle de dégivrage (42) est réalisé après une période temporelle prédéterminée pendant laquelle la présence de givre en une quantité excessive sur l'évaporateur n'est pas détectée.
  12. Réfrigérateur dans lequel le procédé de la revendication 1 est mis en oeuvre, comprenant un évaporateur, un moyen de capteur capacitif positionné au niveau de l'évaporateur, au moins un compartiment de conservation de nourriture, au moins un élément chauffant pour dégivrer ledit évaporateur et un moyen de commande d'élément chauffant connecté audit moyen de capteur, caractérisé en ce que ledit moyen de commande (1) comprend un moyen pour mémoriser un signal électrique (Vd) généré par ledit moyen de capteur (10, 11) suite à un démarrage initial (40) du réfrigérateur (7) et suite à chaque cycle de dégivrage d'évaporateur (42), un moyen de comparateur pour comparer ledit signal mémorisé (Vd) à des signaux réels (VF) générés par ledit moyen de capteur (10, 11) pendant une utilisation normale du réfrigérateur (7), c'est-à-dire pendant une exécution du cycle de réfrigération habituel (41) entre deux dégivrages successifs (42) ou après le démarrage (40) du réfrigérateur (7) et un moyen de fonctionnement pour arrêter le compresseur (4) et pour faire fonctionner l'élément chauffant (2) chaque fois que ledit moyen de comparateur détecte que le rapport dudit signal mémorisé (Vd) sur les signaux réels (VF) excède une valeur prédéterminée.
  13. Réfrigérateur selon la revendication 12, caractérisé en ce que le moyen de mémorisation, le moyen de comparateur et le moyen de fonctionnement sont une unité de microprocesseur (1).
  14. Réfrigérateur selon la revendication 13, caractérisé en ce que l'unité de microprocesseur (1) est connectée à des capteurs de température (15, 16) associés respectivement à l'évaporateur (3) et au compartiment de congélation (8), et à un moyen de régulateur (17) pour établir des valeurs de température en vue d'une comparaison avec des valeurs réelles correspondantes mesurées par lesdits capteurs (15, 16) pendant un fonctionnement de réfrigérateur.
  15. Réfrigérateur selon la revendication 13, caractérisé en ce que l'unité de microprocesseur (1) commande un moyen de contacteur mobile habituel (35) pour activer le compresseur (4) et l'élément chauffant (2).
EP19930115230 1993-09-22 1993-09-22 Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé Expired - Lifetime EP0644386B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1993617115 DE69317115T2 (de) 1993-09-22 1993-09-22 Verfahren zur dynamischen Kontrolle der Eisbildung an einem Kühlschrankverdampfer und Kühlschrank in dem das Verfahren angewandt ist
EP19930115230 EP0644386B1 (fr) 1993-09-22 1993-09-22 Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19930115230 EP0644386B1 (fr) 1993-09-22 1993-09-22 Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé

Publications (2)

Publication Number Publication Date
EP0644386A1 EP0644386A1 (fr) 1995-03-22
EP0644386B1 true EP0644386B1 (fr) 1998-02-25

Family

ID=8213287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930115230 Expired - Lifetime EP0644386B1 (fr) 1993-09-22 1993-09-22 Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé

Country Status (2)

Country Link
EP (1) EP0644386B1 (fr)
DE (1) DE69317115T2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178328A (ja) * 1995-12-28 1997-07-11 Ishizuka Denshi Kk 着霜検知装置
IT240417Y1 (it) * 1996-01-30 2001-04-02 Whirlpool Europ S R L Dispositivo per rilevare la formazione di brina e per eliminarlaper riscaldamento particolarmente per evaporatori di frigoriferi
US7836710B2 (en) 2002-05-16 2010-11-23 Bsh Bosch Und Siemens Hausgeraete Gmbh Freezer with defrosting indicator
DE10221903A1 (de) * 2002-05-16 2003-12-04 Bsh Bosch Siemens Hausgeraete Gefriergerät mit Abtauanzeige
US8813794B2 (en) 2007-04-27 2014-08-26 Whirpoll Corporation Hands free, controlled autofill for a dispenser
US7673661B2 (en) 2007-04-27 2010-03-09 Whirlpool Corporation Sensor system for a refrigerator dispenser
ITUD20130108A1 (it) 2013-08-13 2015-02-14 New Technology Consultants N T C Dispositivo di controllo del funzionamento di uno scambiatore di calore, scambiatore di calore comprendente detto dispositivo e relativo procedimento di controllo
CN108007050B (zh) * 2017-11-21 2020-04-03 合肥美的电冰箱有限公司 冰箱的化霜控制方法、冰箱及计算机可读存储介质
CN110793257B (zh) * 2018-08-03 2022-10-28 博西华电器(江苏)有限公司 制冷器具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282065A (en) * 1965-06-24 1966-11-01 Texas Instruments Inc Defroster control for refrigeration apparatus
US3681933A (en) * 1970-08-20 1972-08-08 Dynamics Corp America Defrost control
US4104888A (en) * 1977-01-31 1978-08-08 Carrier Corporation Defrost control for heat pumps
DE2842985A1 (de) * 1978-03-09 1979-09-13 Mallory & Co Inc P R Vereisungs- und temperatur-steuersystem
US4347709A (en) * 1981-01-19 1982-09-07 Honeywell Inc. Demand defrost sensor
JPS608431B2 (ja) * 1981-03-03 1985-03-02 三菱電機株式会社 着霜検出器
US4474024A (en) * 1983-01-20 1984-10-02 Carrier Corporation Defrost control apparatus and method
US4653285A (en) * 1985-09-20 1987-03-31 General Electric Company Self-calibrating control methods and systems for refrigeration systems
GB9100622D0 (en) * 1991-01-11 1991-02-27 Morris Michael Temperature control unit

Also Published As

Publication number Publication date
EP0644386A1 (fr) 1995-03-22
DE69317115D1 (de) 1998-04-02
DE69317115T2 (de) 1999-04-15

Similar Documents

Publication Publication Date Title
KR860002043B1 (ko) 제상장치
US6336593B1 (en) Multipoint digital temperature controller
CA1114038A (fr) Systeme et methode de commande a la demande du degivrage d'appareils de refrigeration
US5515692A (en) Power consumption determining device and method
CA1228139A (fr) Systeme regulateur pour appareils menagers
EP0927919B1 (fr) Thermostat électronique régulateur et utilisation comme contrôleur de température multi-point dans les systèmes de chauffage et de réfrigération
EP0644386B1 (fr) Procédé pour le contrÔle dynamique de la formation de givre sur un évaporateur d'une armoire frigorifique et armoire frigorifique sur laquelle ce procédé est réalisé
EP1030147B1 (fr) Dispositif et procédé de commande de la température dans un réfrigérateur
KR0170597B1 (ko) 냉장고 제상 휴지기의 제어방법
EP0484860B1 (fr) Appareil frigorifique à dispositif thermostatique unique de régulation de température
EP0563751B1 (fr) Dispositif pour capter et contrÔler la formation de givre sur l'évaporateur d'un réfrigérateur
EP0871002B1 (fr) Dispositif de detection de givre
CN212619639U (zh) 冷藏冷冻装置及其蒸发器化霜控制装置
EP1180652B1 (fr) Dispositif de commande et procédé pour commander l'opération de dégivrage dans un réfrigérateur
CN1653308A (zh) 具有除霜指示的冷冻装置
JPH08334285A (ja) 冷蔵庫
CN1771419A (zh) 除霜加热装置的功率调节方法和具有集成的除霜加热装置的致冷装置
EP1030137A1 (fr) Dispositif de commande et procédé pour commander l'opération de dégivrage dans un réfrigérateur
KR940002228B1 (ko) 냉장고의 제상시간 제어회로
KR0158014B1 (ko) 냉장고의 제상회로
KR910002714B1 (ko) 감습소자를 이용한 제상회로
KR100386495B1 (ko) 냉장고의운전제어방법및장치
KR0119032B1 (ko) 냉장고의 온도감지센서 불량검출방법
KR100577417B1 (ko) 냉장고 및 제어방법
KR19990013139A (ko) 냉장고의 이슬맺힘 방지장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950822

17Q First examination report despatched

Effective date: 19960705

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69317115

Country of ref document: DE

Date of ref document: 19980402

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011009

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST