EP0641029A2 - Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell - Google Patents
Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell Download PDFInfo
- Publication number
- EP0641029A2 EP0641029A2 EP94113324A EP94113324A EP0641029A2 EP 0641029 A2 EP0641029 A2 EP 0641029A2 EP 94113324 A EP94113324 A EP 94113324A EP 94113324 A EP94113324 A EP 94113324A EP 0641029 A2 EP0641029 A2 EP 0641029A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- electrode
- solar cell
- photovoltaic
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000576 coating method Methods 0.000 claims abstract description 51
- 239000011248 coating agent Substances 0.000 claims abstract description 49
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 15
- 239000004020 conductor Substances 0.000 claims abstract description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000009503 electrostatic coating Methods 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 229910000077 silane Inorganic materials 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000011149 active material Substances 0.000 abstract description 2
- 238000001125 extrusion Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 239000010410 layer Substances 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical group [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- OACODUCFPHHCIH-SANMLTNESA-N tert-butyl (2s)-2-[[4-amino-3-[2-(4-hydroxyphenyl)ethyl]benzoyl]amino]-4-phenylbutanoate Chemical compound C([C@@H](C(=O)OC(C)(C)C)NC(=O)C=1C=C(CCC=2C=CC(O)=CC=2)C(N)=CC=1)CC1=CC=CC=C1 OACODUCFPHHCIH-SANMLTNESA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/035281—Shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S205/00—Electrolysis: processes, compositions used therein, and methods of preparing the compositions
- Y10S205/915—Electrolytic deposition of semiconductor
Definitions
- the invention relates to an element of a photovoltaic solar cell with at least one elongated or rod or wire (or thread) or ribbon-shaped electrode, which has at least one photovoltaically effective coating on its surface, and to a method for its production and its arrangement in a photovoltaic Solar cell.
- the object of the invention is to provide an element for photovoltaic solar cells which is improved in terms of its production costs and its efficiency, and a correspondingly improved solar cell.
- the invention consists in that the electrode made of an electrically highly conductive material, in particular impure silicon with a multi- or polycrystalline, preferably monocrystalline structure, and the coating of a photovoltaically active material, in particular silicon with a, on the surface of the electrode certain doping (p- or n-doping).
- both the current-conducting electrode and its coating are made of silicon, but with different structures, namely the electrode of impure, good current-conducting and the coating of the purest possible, but for the purpose Optimally effective photovoltaic effectiveness Doped silicon with a higher degree of purity.
- a single coating of this kind on a silicon electrode would suffice in that the charge field (p- or n) formed in the coating forms the photovoltaic voltage field or the two opposite charge fields with the opposite charge carriers within the electrode, while the excess, i.e. Compared to the charge potential formed quantitatively in the coating, the freely movable charge carriers given in the electrode also serve the improved electrical conductivity of the Si electrode.
- the edge region in the electrode can have a positive or negative charge field with a corresponding composition of the silicon and the coating can be doped accordingly in opposite directions (p- or n).
- the electrode structure can be constructed in a multicrystalline manner, so that the coating can have a correspondingly coarse-crystalline, in particular also monocrystalline, structure due to its epitaxial effect.
- the invention can be modified with the features of claims 2 and 3 and consists of a solar cell arrangement according to claims 4 to 11 and also includes the manufacturing method according to the other claims.
- an elongated or shaped elongated, for example wire and ribbon-shaped electrode 2 is provided with a photovoltaically active coating 3 in longitudinal section and in cross section, which consists of a radially inner layer 5 and an outer layer attached thereon 6 can exist, the layers 5 and 6 being doped in opposite directions (p- or n).
- an electrode 2 is shown analogously, but with only one coating 3 consisting of only a single layer of specific doping (p- or n - here p).
- a charge field separation of electrons 12 (-) and - in the coating 3 - of "holes" (p) or + can form on both sides of the coating limit on the surface of the electrode, while an excess of electrons 13 serve to increase the electrical conductivity of the silicon can.
- a doping layer 14 can also be shifted into the surface of the electrode 2, for example by the action of diffusion (or other effects) after prior diffusion cleaning or influencing just below the surface of the electrode material.
- a photovoltaic solar cell is formed between electrodes 2 or as an arrangement of two electrodes 2 and counterelectrode 7, each with opposite doping of their coating surfaces, so that the current flows radially through the electrodes Coatings 3 flows between the electrodes 2 and 7.
- two elements 1 with opposite doping on the surface of their coating 3 can be attached on a metallic surface (which may also be reflective) either at a distance of 8 or also connected to one another (analogously to FIGS. 5 and 6) in an electrically conductive manner.
- the surface 9 as a photovoltaic element on the side facing the elements 1 can also be provided with a photovoltaically active coating 3 on which the elements 1 are attached in an electrically conductive manner.
- the photovoltaically coated surface 10 acts as a counterelectrode, while the elements 1 are electrically conductively connected to the surface of the photovoltaic coating with a coating surface doped opposite to the surface of the photovoltaic coating at a lateral distance (8 analogous to FIG. 7).
- Fig. 9 shows an application method by applying the coating material by continuous drawing e.g. an electrode wire 2 made of different materials such as metals (eg copper, aluminum, tungsten, V2A steel), on which in the direction 25 in front of the drawing dies 24 the coating material 27 is applied, which is also in front of each drawing die of the individual drawing stations 21-13 can jam.
- an electrode wire 2 made of different materials such as metals (eg copper, aluminum, tungsten, V2A steel), on which in the direction 25 in front of the drawing dies 24 the coating material 27 is applied, which is also in front of each drawing die of the individual drawing stations 21-13 can jam.
- the structure and the cross section of the electrode wire itself can also be influenced.
- a controlled microstructure an optimally close and contamination-free connection of several layers to one another or on the surface of the electrode can be achieved with optimal uniformity and a thin layer thickness under the pressure conditions within the drawing nozzle.
- the elongated wire, rod (or filament) or ribbon-shaped electrode can be coated most simply by means of liquid phase epitaxy (LPE), in which a particularly macro-crystalline, preferably very largely monocrystalline, silicon coating is formed in the following way:
- LPE liquid phase epitaxy
- silicon is also dissolved together with the required doping in liquid INDIUM or GALLIUM or bismuth or alloys, preferably saturated or supersaturated, of the surface to be coated into the melt under a reducing atmosphere, such as in hydrogen gas introduced in such a way that, when the temperature on the wire surface is reduced, the silicon is deposited in largely monocrystalline form together with the dopant in the desired doping concentration.
- an AsIn melt is preferred as the solvent for the silicon including the dopant.
- the temperature range used for crystal growth can be between 250 ° to 940 ° C, with a cooling rate of 5 ° to 16 ° C / h.
- the crystal orientation of the substrate can be [100] or [111] or in other lengths.
- Ga, GaGe or Ga-Si alloys are used as solvents for the deposition of gallium arsenide layers, the layer growth temperature range being 300 ° to 750 ° C with the same or similar cooling rate and the preferred substrate orientation [100] or [111].
- the surface of the substrate can also initially be used chemically modified or doped by diffusion or converted into a first integrated photovoltaic layer (p or n) before - if necessary after cleaning the surface, for example in a drawing nozzle or a drawing or scraper - the silicon layers are applied in the above manner .
- Profiled or textured surfaces can also be formed, for example wire or elongated profiles with longitudinal grooves.
- a wire for example a silicon wire
- a wire is cleaned on the surface (also, for example, by drawing in a drawing die or drawing profile or by means of etching) and then drawn through successively arranged deposition baths in which - with a choice of speed and exposure or immersion length - the silicon coating with - depending on the sequence of the deposition baths - optional layer thickness and sequence of the n and p layers.
- the shaped wire coated in this way can then be solidified by drawing through a drawing die.
- a particularly advantageous layer sequence lies in a silicon coating of a wire-shaped or elongated substrate (also made of C-fiber) that is chrome-plated or galvanized or cadmium-coated on its surface, and at the same time a radially inner rear-view mirroring of the photovoltaic layers with a correspondingly high degree of efficiency.
- an elongated electrode serving as a carrier can also be chemically treated from the outside to its surface, so that the outer area of its cross section, depending on the material of the electrode, in the sense of a photovoltaically active edge area or its photovoltaic effect Edge area is converted.
- Examples include zinc oxide for an electrode made of zinc, copper oxide (CuO) or copper oxide (CuO2) for an electrode made of copper, or also e.g. Magnesium oxide with an electrode made of magnesium.
- the metallic electrode material can also be alloyed or structured in such a way that its chemical treatment results in a photovoltaically favorable mixed connection, possibly also at the same time with a doping effect.
- the surface area can be one of those between the photovoltaic cells located on the circumference Material and the surface of the electrode provided thin SiO2 layer are converted to tunnel the electrons to the electrode.
- all of the thread-like or elongate electrodes described are each provided with at least one photoactive p-doped and one surface-n-doped - or vice versa - or vice versa - they can also be provided in an identical arrangement, with all electrodes on their outer surface having the same charge polarity ( have p+ or e ⁇ ), and also side by side or with each other, also with each other on an electrically conductive support as a counter electrode, for example can be arranged as a surface and are thus directly in electrically conductive contact. All electrode wires form the one (+ or -) pole, to which the electrically conductive carrier for all electrode wires is the counter electrode. In this case, electrically conductive adhesive can be used for the contact connection of all electrode wires to one another and / or for fastening on the carrier surface.
- the adhesive can also be applied in a line for the smallest possible thickness by means of the drawing process in a simultaneous, combined process, similar to and following that of FIG. 9.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Die Erfindung betrifft ein Element einer photovoltaischen Solarzelle mit mindestens einer langgestreckten bzw. stab- oder draht (bzw. faden-) oder bandförmigen Elektrode, welche auf ihrer Oberfläche mindestens eine photovoltaisch wirksame Beschichtung aufweist sowie ein Verfahren zu seiner Herstellung sowie deren Anordnung in einer photovoltaischen Solarzelle.The invention relates to an element of a photovoltaic solar cell with at least one elongated or rod or wire (or thread) or ribbon-shaped electrode, which has at least one photovoltaically effective coating on its surface, and to a method for its production and its arrangement in a photovoltaic Solar cell.
Aufgabe der Erfindung ist es, eine bezüglich seiner Herstellungskosten und seines Wirkungsgrades verbessertes Element für photovoltaische Solarzellen sowie eine dementsprechend verbesserte Solarzelle zu schaffen.The object of the invention is to provide an element for photovoltaic solar cells which is improved in terms of its production costs and its efficiency, and a correspondingly improved solar cell.
Demgemäß besteht die Erfindung darin, daß die Elektrode aus einem elektrisch gut leitenden Material, insbesondere unreinem Silizium mit multi- oder polykristallinem, vorzugsweise monokristallinem Gefüge und die Beschichtung aus einem auf der Oberfläche der Elektrode mono- oder multikristallinem photovoltaisch wirksamen Material, insbesondere Silizium mit einer bestimmten Dotierung (p- oder n-Dotierung) besteht.Accordingly, the invention consists in that the electrode made of an electrically highly conductive material, in particular impure silicon with a multi- or polycrystalline, preferably monocrystalline structure, and the coating of a photovoltaically active material, in particular silicon with a, on the surface of the electrode certain doping (p- or n-doping).
In bevorzugter Ausführungsform besteht also sowohl die den Strom leitende Elektrode als auch deren Beschichtung aus Silizium, jedoch mit unterschiedlichem Aufbau, nämlich der Elektrode aus unreinem, gut Strom leitendem und der Beschichtung aus möglichst reinem, aber zwecks photovoltaisch optimaler Wirksamkeit gezielt dotiertem Silizium höheren Reinheitsgrades.In a preferred embodiment, both the current-conducting electrode and its coating are made of silicon, but with different structures, namely the electrode of impure, good current-conducting and the coating of the purest possible, but for the purpose Optimally effective photovoltaic effectiveness Doped silicon with a higher degree of purity.
Grundsätzlich würde eine einzige solche Beschichtung auf einer Siliziumelektrode ausreichen, indem das in der Beschichtung gebildete Ladungsfeld (p- oder n) mit den entgegengesetzten Ladungsträgern innerhalb der Elektrode das photovoltaische Spannungsfeld bzw. die zwei entgegengesetzten Ladungsfelder bildet, während die demgegenüber überschüssigen, d.h. gegenüber dem quantitativ in der Beschichtung gebildeten Ladungspotential zusätzlich in der Elektrode gegebenen frei beweglichen Ladungsträger der verbesserten elektrischen Leitfähigkeit der Si-Elektrode dienen.Basically, a single coating of this kind on a silicon electrode would suffice in that the charge field (p- or n) formed in the coating forms the photovoltaic voltage field or the two opposite charge fields with the opposite charge carriers within the electrode, while the excess, i.e. Compared to the charge potential formed quantitatively in the coating, the freely movable charge carriers given in the electrode also serve the improved electrical conductivity of the Si electrode.
Sinngemäß kann der Randbereich in der Elektrode bei entsprechender Zusammensetzung des Siliziums ein positives oder negatives Ladungsfeld aufweisen und die Beschichtung entsprechend entgegengesetzt (p- oder n) dotiert sein.Analogously, the edge region in the electrode can have a positive or negative charge field with a corresponding composition of the silicon and the coating can be doped accordingly in opposite directions (p- or n).
Bei der Verwendung von Silizium als Elektrodenmaterial kann das Elektrodengefüge multikristallin aufgebaut sein, so daß die Beschichtung aufgrund epitaktischer Wirkung entsprechend grob-kristallin, insbesondere auch monokristallin aufgebaut sein kann.When silicon is used as the electrode material, the electrode structure can be constructed in a multicrystalline manner, so that the coating can have a correspondingly coarse-crystalline, in particular also monocrystalline, structure due to its epitaxial effect.
Analoge Effekte können auch mit anderen Materialien zum Einsatz gebracht werden, auch z.B. Siliziumcarbid.Analogous effects can also be used with other materials, including silicon carbide.
Die Erfindung ist mit den Merkmalen der Patentansprüche 2 und 3 modifizierbar und besteht in einer Solarzellenanordnung gemäß den Patentansprüchen 4 bis 11 und umfaßt auch das Herstellungsverfahren gemäß den weiteren Patentansprüchen.The invention can be modified with the features of
Die Erfindung ist nachstehend anhand von Figuren 1 bis 9 näher erläutert:
Gemäß Fig. 1 und 2 ist im Längsschnitt und im Querschnitt eine aus Silizium gezogene langgestreckte bzw. geformte langgestreckte, z.B. draht- und bandförmige Elektrode 2 mit einer photovoltaisch wirksamen Beschichtung 3 versehen, welche aus einer radial inneren Lage 5 und einer darauf angebrachten äußeren Lage 6 bestehen kann, wobei die Lagen 5 und 6 entgegengesetzt dotiert sind (p- bzw. n).The invention is explained in more detail below with reference to FIGS. 1 to 9:
1 and 2, an elongated or shaped elongated, for example wire and ribbon-
In den Fig. 3 und 4 ist analog eine Elektrode 2 jedoch mit nur einer Beschichtung 3 aus nur einer einzelnen Lage bestimmter Dotierung (p- oder n - hier p) dargestellt. Dabei kann sich beidseits der Beschichtungsgrenze auf der Oberfläche der Elektrode eine Ladungsfeldtrennung aus Elektronen 12 (-) und - in der Beschichtung 3 - aus "Löchern" (p) bzw. + bilden, während ein Elektronenüberschuß 13 einer Erhöhung der elektrischen Leitfähigkeit des Siliziums dienen kann.3 and 4, an
Auch kann z.B. durch Diffusionseinwirkung (oder andere Effekte) eine Dotierungsschicht 14 in die Oberfläche der Elektrode 2 hineinverlagert werden, insbesondere nach vorheriger Diffusionsreinigung bzw. Beeinflussung dicht unter der Oberfläche des Elektrodenmaterials.A doping layer 14 can also be shifted into the surface of the
Beim Aneinanderfügen zweier Elemente aus beschichteten Elektroden 2 gemäß den Fig. 5 und 6 bildet sich zwischen den Elektroden 2 bzw. als Anordnung zweier jeweils als Elektrode 2 und Gegenelektrode 7 mit jeweils entgegengesetzter Dotierung ihrer Beschichtungsoberflächen eine photovoltaische Solarzelle, so daß der Strom radial durch die Beschichtungen 3 zwischen den Elektroden 2 und 7 fließt.5 and 6, a photovoltaic solar cell is formed between
Gemäß Fig. 7 können jeweils zwei auf der Oberfläche ihrer Beschichtung 3 entgegengesetzt dotierte Elemente 1 auf einer metalischen Fläche (die auch reflektierend ausgeführt sein kann) entweder auf Abstand 8 oder auch aneinander (analog Fig. 5 und 6) elektrisch leitend verbunden angebracht sein.According to FIG. 7, two elements 1 with opposite doping on the surface of their
Gemäß Fig. 8 kann die Fläche 9 als photovoltaisches Element auf der den Elementen 1 zugewandten Seite ebenfalls mit einer photovoltaisch wirksamen Beschichtung 3 versehen sein, auf der die Elemente 1 elektrisch leitend angebracht sind. Dabei wirkt die photovoltaisch beschichtete Fläche 10 als Gegenelektrode, während die Elemente 1 mit zur Oberfläche der photovoltaischenen Beschichtung entgegengesetzt dotierter Beschichtungsoberfläche auf lateralen Abstand (8 analog Fig. 7) auf der Oberfläche der photovoltaischen Beschichtung elektrisch leitend verbunden sind.8, the
Fig. 9 zeigt ein Auftragungsverfahren mittels Aufbringung des Beschichtungsmaterials durch kontinuierliches Hindurchziehen z.B. eines Elektrodendrahtes 2 aus unterschiedlichen Materialien wie Metallen (z.B. Kupfer, Aluminium, Wolfram, V₂A-Stahl), auf dem in Laufrichtung 25 vor den Ziehsteinen 24 das Auftragen 26 des Beschichtungsmaterials 27 erfolgt, das sich auch vor jeder Ziehdüse der einzelnen Ziehstationen 21-13 stauen kann.Fig. 9 shows an application method by applying the coating material by continuous drawing e.g. an
Mit diesem Verfahren kann auch das Gefüge und der Querschnitt des Elektrodendrahtes selbst beeinflußt werden. Jedenfalls läßt sich unter den Druckverhältnissen innerhalb der Ziehdüse eine gesteuerte Gefügeausbildung, eine optimal enge und verunreinigungsfreie Verbindung mehrerer Schichten miteinander bzw. auf der Oberfläche der Elektrode mit optimaler Gleichmäßigkeit und dünnschichtiger Schichtdicke erreichen.With this method, the structure and the cross section of the electrode wire itself can also be influenced. In any case, a controlled microstructure, an optimally close and contamination-free connection of several layers to one another or on the surface of the electrode can be achieved with optimal uniformity and a thin layer thickness under the pressure conditions within the drawing nozzle.
Unter den Druckverhältnissen innerhalb der Ziehdüse sind auch chemische Veränderungen (z.B. Oxidation bei Kupfer) der Elektrodenoberfläche oder der Auftragsmaterialien wie auch z.B. interkristalline Verbindungen möglich.Under the pressure conditions within the drawing nozzle there are also chemical changes (e.g. oxidation with copper) of the electrode surface or the application materials as well as e.g. intercrystalline compounds possible.
Die Beschichtung der langgestreckten draht-, stab- (bzw. faden-) oder bandförmigen Elektrode kann am einfachsten mittels liquid phase epitaxy (LPE) erfolgen, bei dem eine insbesondere makrokristalline, vorzugsweise sehr weitgehend monokristalline Siliziumbeschichtung auf folgende Weise gebildet wird:
Für p-Siliziumschichten wird Silizium auch gleich zusammen mit der benötigten Dotierung in flüssigem INDIUM oder GALLIUM oder auch Wismut oder Legierungen aus dieser gelöst, und zwar vorzugsweise gesättigt oder übersättigt, die zu beschichtende Oberfläche unter reduzierender Atmosphäre, wie z.B. in Wasserstoffgas, in die Schmelze derart eingebracht, daß bei Senkung der Temperatur an der Drahtoberfläche das Silizium in weitgehend monokristalliner Form mitsamt des Dotierungsmittels in gewünschter Dotierungskonzentration abgeschieden wird.The elongated wire, rod (or filament) or ribbon-shaped electrode can be coated most simply by means of liquid phase epitaxy (LPE), in which a particularly macro-crystalline, preferably very largely monocrystalline, silicon coating is formed in the following way:
For p-silicon layers, silicon is also dissolved together with the required doping in liquid INDIUM or GALLIUM or bismuth or alloys, preferably saturated or supersaturated, of the surface to be coated into the melt under a reducing atmosphere, such as in hydrogen gas introduced in such a way that, when the temperature on the wire surface is reduced, the silicon is deposited in largely monocrystalline form together with the dopant in the desired doping concentration.
Für eine Beschichtung in n-dotierter Form wird eine AsIn Schmelze als Lösungsmittel für das Silizium samt Dotierungsmittel bevorzugt.For a coating in n-doped form, an AsIn melt is preferred as the solvent for the silicon including the dopant.
Der für das Kristallwachstum verwendete Temperaturbereich kann zwischen 250° bis 940°C liegen, bei mit einer Abkühlungsrate von 5° bis 16° C/h. Die Kristallorientierung des Substrats kann bei [100] oder [111] oder in anderen Längen liegen.The temperature range used for crystal growth can be between 250 ° to 940 ° C, with a cooling rate of 5 ° to 16 ° C / h. The crystal orientation of the substrate can be [100] or [111] or in other lengths.
Für die Abscheidung von Gallium-Arsenide Schichten werden analog Ga, GaGe oder Ga-Si-Legierungen als Lösungsmittel eingesetzt, wobei der Schichtwachstums-Temperaturbereich bei 300° bis 750°C bei gleicher oder ähnlicher Abkühlungsgeschindigkeit liegt und die bevorzugte Substrat-Orientierung [100] oder [111]. Auf diese Weise können auch mehrere Schichten nacheinander übereinander auf die Drahtoberfläche aufgetragen werden. Auch kann erfindungsgemäß zunächst die Oberfläche des Substrats chemisch verändert oder diffusionsmäßig dotiert bzw. zu einer ersten integrierten photovoltaischen Schicht (p oder n) umgewandelt werden, bevor - ggf. nach Reinigung der Oberfläche z B. in einer Ziehdüse bzw. einem Zieh- odern Abstreifstein - die Siliziumschichten in vorstehender Weise aufgebracht werden.Analogously, Ga, GaGe or Ga-Si alloys are used as solvents for the deposition of gallium arsenide layers, the layer growth temperature range being 300 ° to 750 ° C with the same or similar cooling rate and the preferred substrate orientation [100] or [111]. In this way, several layers can be applied one after the other on the wire surface. According to the invention, the surface of the substrate can also initially be used chemically modified or doped by diffusion or converted into a first integrated photovoltaic layer (p or n) before - if necessary after cleaning the surface, for example in a drawing nozzle or a drawing or scraper - the silicon layers are applied in the above manner .
Auch können dabei profilierte bzw. texturierte Oberflächen gebildet werden, beispielsweise Draht- oder langgestreckte Profile mit längsverlaufenden Rillen.Profiled or textured surfaces can also be formed, for example wire or elongated profiles with longitudinal grooves.
Mit dem genannten Verfahren können z.B. Schichtdicken zwischen 0,5 µ und 100 µ abgeschieden werden. Verfahrensgemäß wird ein Draht, beispielsweise ein Siliziumdraht oberflächenmäßig gereinigt (auch z.B. durch Ziehen in einem Ziehstein bzw. Ziehprofil oder mittels Ätzen) und dann durch nacheinander geschaltete Abscheidebäder durchgezogen, in denen - bei wahlweiser Geschwindigkeit und Einwirkungs- bzw. Eintauchlänge - die Siliziumbeschichtung mit - je nach Folge der Abscheidebäder - wahlweiser Schichtdicke und Aufeinanderfolge der n- und der p-Schicht erfolgt. Der auf diese Weise beschichtete Formdraht kann anschließend mittels Ziehen durch einen Ziehstein gefügeverfestigt werden.With the method mentioned, e.g. Layer thicknesses between 0.5 µ and 100 µ can be deposited. According to the method, a wire, for example a silicon wire, is cleaned on the surface (also, for example, by drawing in a drawing die or drawing profile or by means of etching) and then drawn through successively arranged deposition baths in which - with a choice of speed and exposure or immersion length - the silicon coating with - depending on the sequence of the deposition baths - optional layer thickness and sequence of the n and p layers. The shaped wire coated in this way can then be solidified by drawing through a drawing die.
Eine besonders vorteilhafte Schichtfolge liegt in einer Siliziumbeschichtung eines auf seiner Oberfläche verchromten oder auch verzinkten oder cadmierten drahtförmigen bzw. langgestreckten Substrats (auch aus C-Faser), wobei zugleich eine radialinnere Hinterspiegelung der photovoltaischen Schichten mit entsprechend hohem Wirkungsgrad gegeben ist.A particularly advantageous layer sequence lies in a silicon coating of a wire-shaped or elongated substrate (also made of C-fiber) that is chrome-plated or galvanized or cadmium-coated on its surface, and at the same time a radially inner rear-view mirroring of the photovoltaic layers with a correspondingly high degree of efficiency.
Ähnliche photovoltaische Beschichtungen sind mit Molekularstrahl Epitaxy-Verfahren erzielbar.Similar photovoltaic coatings can be achieved using the molecular beam epitaxy process.
Analog zu der vorbeschriebenen Form und bevorzugten Ausführungsform kann zugleich eine als Träger dienende langgestreckte Elektrode von außen bis in ihre Oberfläche hinein chemisch behandelt sein, so daß der äußere Bereich ihres Querschnitts je nach Material der Elektrode im Sinne eines photovoltaisch wirksamen Randbereiches oder dessen photovoltaische Wirkung begünstigenden Randbereich umgewandelt wird.Analogous to the form and preferred embodiment described above, an elongated electrode serving as a carrier can also be chemically treated from the outside to its surface, so that the outer area of its cross section, depending on the material of the electrode, in the sense of a photovoltaically active edge area or its photovoltaic effect Edge area is converted.
Beispiele dafür sind Zinkoxid bei einer aus Zink bestehenden Elektrode, Kupferoxid (CuO) oder Kupferoxidul (CuO₂) bei einer aus Kupfer bestehenden Elektrode, oder auch z.B. Magnesiumoxid bei einer aus Magnesium bestehenden Elektrode.Examples include zinc oxide for an electrode made of zinc, copper oxide (CuO) or copper oxide (CuO₂) for an electrode made of copper, or also e.g. Magnesium oxide with an electrode made of magnesium.
Auch kann das metallische Elektrodenmaterial derart legiert oder gefügemäßig ausgebildet sein, daß dessen chemische Behandlung eine photovoltaisch günstige Mischverbindung ergibt, auch eventuell zugleich mit Dotierungseffekt.The metallic electrode material can also be alloyed or structured in such a way that its chemical treatment results in a photovoltaically favorable mixed connection, possibly also at the same time with a doping effect.
Bei Silizium als Elektrodenmaterial kann für den Fall einer Beschichtung mit z.B. Silizium nach Art der MIS-Zellen (Feldladungsstrang) der Oberflächenbereich zu einer der zwischen der auf dem Umfang befindlichen photovoltaischen Material und der Oberfläche der Elektrode vorgesehenen dünnen SiO₂-Schicht umgewandelt werden, um die Elektronen zur Elektrode zu tunneln.With silicon as the electrode material, in the case of a coating with, for example, silicon in the manner of the MIS cells (field charge strand), the surface area can be one of those between the photovoltaic cells located on the circumference Material and the surface of the electrode provided thin SiO₂ layer are converted to tunnel the electrons to the electrode.
Wenn sämtliche beschriebenen fadenförmigen bzw. langgestreckten Elektroden jeweils mit mindestens einer photoaktiven p-dotierten und einer darüber n-dotierten - oder umgekehrt - Oberflächenschicht versehen sind, können sie auch in identischer Anordnung vorgesehen sein, wobei alle Elektroden auf ihrer äußeren Oberfläche die gleiche Ladungspolarität (also p⁺ oder e⁻) aufweisen, und auch nebeneinander bzw. miteinander, auch aneinander auf einem elektrisch leitenden Träger als Gegenelektrode, z.B. als Fläche angeordnet sein können und damit unmittelbar in elektrisch leitenden Kontakt stehen. Dabei bilden jeweils alle Elektrodendrähte den einen (+ oder -) Pol, zu dem der elektrisch leitende Träger für alle Elektrodendrähte die Gegenelektrode ist. Dabei kann elektrisch leitender Klebstoff zur Kontaktverbindung aller Elektrodendrähte aneinander und/oder zur Befestigung auf der Trägeroberfläche verwendet werden.If all of the thread-like or elongate electrodes described are each provided with at least one photoactive p-doped and one surface-n-doped - or vice versa - or vice versa - they can also be provided in an identical arrangement, with all electrodes on their outer surface having the same charge polarity ( have p⁺ or e⁻), and also side by side or with each other, also with each other on an electrically conductive support as a counter electrode, for example can be arranged as a surface and are thus directly in electrically conductive contact. All electrode wires form the one (+ or -) pole, to which the electrically conductive carrier for all electrode wires is the counter electrode. In this case, electrically conductive adhesive can be used for the contact connection of all electrode wires to one another and / or for fastening on the carrier surface.
Auch die Aufbringung des Klebstoffs kann zwecks geringstmöglicher Dicke in einer Linie mittels des Ziehverfahrens in einem gleichzeitigen, kombinierten Verfahrenszug, ähnlich dem und folgend auf den der Fig. 9, erfolgen.The adhesive can also be applied in a line for the smallest possible thickness by means of the drawing process in a simultaneous, combined process, similar to and following that of FIG. 9.
Claims (21)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4328868 | 1993-08-27 | ||
DE4328868A DE4328868A1 (en) | 1993-08-27 | 1993-08-27 | Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell |
DE4336825A DE4336825A1 (en) | 1993-06-14 | 1993-10-28 | Element of a photovoltaic solar cell and method for its production as well as arrangement thereof in a solar cell |
DE4336825 | 1993-10-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0641029A2 true EP0641029A2 (en) | 1995-03-01 |
EP0641029A3 EP0641029A3 (en) | 1998-01-07 |
Family
ID=25928986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94113324A Withdrawn EP0641029A3 (en) | 1993-08-27 | 1994-08-25 | Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell |
Country Status (3)
Country | Link |
---|---|
US (1) | US5902416A (en) |
EP (1) | EP0641029A3 (en) |
JP (1) | JPH07221332A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19732876A1 (en) * | 1997-07-30 | 1999-02-04 | Reitstall Icking Gmbh | Photovoltaic solar energy module |
EP2065947A1 (en) * | 2006-08-07 | 2009-06-03 | Kyosemi Corporation | Semiconductor module for power generation or light emission |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11162859A (en) * | 1997-11-28 | 1999-06-18 | Canon Inc | Liquid phase growth of silicon crystal and manufacture of solar battery using the same |
US6913713B2 (en) | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
US6706963B2 (en) * | 2002-01-25 | 2004-03-16 | Konarka Technologies, Inc. | Photovoltaic cell interconnection |
US6900382B2 (en) | 2002-01-25 | 2005-05-31 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US7205473B2 (en) * | 2002-01-25 | 2007-04-17 | Konarka Technologies, Inc. | Photovoltaic powered multimedia greeting cards and smart cards |
US6858158B2 (en) * | 2002-01-25 | 2005-02-22 | Konarka Technologies, Inc. | Low temperature interconnection of nanoparticles |
US7414188B2 (en) * | 2002-01-25 | 2008-08-19 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US20030192584A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Flexible photovoltaic cells and modules formed using foils |
US6949400B2 (en) * | 2002-01-25 | 2005-09-27 | Konarka Technologies, Inc. | Ultrasonic slitting of photovoltaic cells and modules |
US20030192585A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Photovoltaic cells incorporating rigid substrates |
US7186911B2 (en) | 2002-01-25 | 2007-03-06 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US20050284513A1 (en) * | 2002-08-08 | 2005-12-29 | Christoph Brabec | Chip card comprising an integrated energy converter |
US7351907B2 (en) * | 2002-01-25 | 2008-04-01 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US6919119B2 (en) * | 2000-05-30 | 2005-07-19 | The Penn State Research Foundation | Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films |
US6355873B1 (en) * | 2000-06-21 | 2002-03-12 | Ball Semiconductor, Inc. | Spherical shaped solar cell fabrication and panel assembly |
WO2003010143A1 (en) * | 2001-07-26 | 2003-02-06 | Samsung Electronics Co., Ltd. | Dialkylhydroxybenzoic acid derivatives containing metal chelating groups and their therapeutic uses |
CN100539200C (en) * | 2002-01-25 | 2009-09-09 | 科纳卡科技有限公司 | The structure and material of DSSC |
US7535019B1 (en) | 2003-02-18 | 2009-05-19 | Nanosolar, Inc. | Optoelectronic fiber |
US20070240757A1 (en) * | 2004-10-15 | 2007-10-18 | The Trustees Of Boston College | Solar cells using arrays of optical rectennas |
US7394016B2 (en) * | 2005-10-11 | 2008-07-01 | Solyndra, Inc. | Bifacial elongated solar cell devices with internal reflectors |
US7196262B2 (en) * | 2005-06-20 | 2007-03-27 | Solyndra, Inc. | Bifacial elongated solar cell devices |
US8344238B2 (en) * | 2005-07-19 | 2013-01-01 | Solyndra Llc | Self-cleaning protective coatings for use with photovoltaic cells |
KR20080044233A (en) * | 2005-08-22 | 2008-05-20 | 코나르카 테크놀로지, 인코포레이티드 | Displays with integrated photovoltaic cells |
US7589880B2 (en) * | 2005-08-24 | 2009-09-15 | The Trustees Of Boston College | Apparatus and methods for manipulating light using nanoscale cometal structures |
US7754964B2 (en) * | 2005-08-24 | 2010-07-13 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanocoax structures |
WO2007025023A2 (en) * | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Apparatus and methods for optical switching using nanoscale optics |
WO2007025004A2 (en) * | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Apparatus and methods for nanolithography using nanoscale optics |
JP2009506546A (en) * | 2005-08-24 | 2009-02-12 | ザ トラスティーズ オブ ボストン カレッジ | Apparatus and method for solar energy conversion using nanoscale co-metallic structures |
US20070079867A1 (en) * | 2005-10-12 | 2007-04-12 | Kethinni Chittibabu | Photovoltaic fibers |
US7259322B2 (en) * | 2006-01-09 | 2007-08-21 | Solyndra, Inc. | Interconnects for solar cell devices |
US8183458B2 (en) | 2007-03-13 | 2012-05-22 | Solyndra Llc | Photovoltaic apparatus having a filler layer and method for making the same |
US20070215197A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in casings |
US20080302418A1 (en) * | 2006-03-18 | 2008-12-11 | Benyamin Buller | Elongated Photovoltaic Devices in Casings |
US20090014055A1 (en) * | 2006-03-18 | 2009-01-15 | Solyndra, Inc. | Photovoltaic Modules Having a Filling Material |
US20070215195A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in tubular casings |
US7879685B2 (en) * | 2006-08-04 | 2011-02-01 | Solyndra, Inc. | System and method for creating electric isolation between layers comprising solar cells |
US20080029152A1 (en) * | 2006-08-04 | 2008-02-07 | Erel Milshtein | Laser scribing apparatus, systems, and methods |
JP4825697B2 (en) * | 2007-01-25 | 2011-11-30 | 株式会社ミツトヨ | Digital displacement measuring instrument |
KR20090117881A (en) * | 2007-01-30 | 2009-11-13 | 솔라스타, 인코포레이티드 | Photovoltaic cell and method of making thereof |
US20080178927A1 (en) * | 2007-01-30 | 2008-07-31 | Thomas Brezoczky | Photovoltaic apparatus having an elongated photovoltaic device using an involute-based concentrator |
WO2008143721A2 (en) * | 2007-02-12 | 2008-11-27 | Solasta, Inc. | Photovoltaic cell with reduced hot-carrier cooling |
US20080196759A1 (en) * | 2007-02-16 | 2008-08-21 | Thomas Brezoczky | Photovoltaic assembly with elongated photovoltaic devices and integrated involute-based reflectors |
US8106292B2 (en) | 2007-04-30 | 2012-01-31 | Solyndra Llc | Volume compensation within a photovoltaic device |
US8093493B2 (en) * | 2007-04-30 | 2012-01-10 | Solyndra Llc | Volume compensation within a photovoltaic device |
US20100147367A1 (en) * | 2007-04-30 | 2010-06-17 | Cumpston Brian H | Volume Compensation Within a Photovoltaic Device |
WO2009005805A2 (en) * | 2007-07-03 | 2009-01-08 | Solasta, Inc. | Distributed coax photovoltaic device |
US20090078303A1 (en) * | 2007-09-24 | 2009-03-26 | Solyndra, Inc. | Encapsulated Photovoltaic Device Used With A Reflector And A Method of Use for the Same |
US9287430B1 (en) * | 2007-11-01 | 2016-03-15 | Sandia Corporation | Photovoltaic solar concentrator |
US20100108133A1 (en) * | 2008-11-03 | 2010-05-06 | Venkata Adiseshaiah Bhagavatula | Thin Film Semiconductor Photovoltaic Device |
US20100159242A1 (en) * | 2008-12-18 | 2010-06-24 | Venkata Adiseshaiah Bhagavatula | Semiconductor Core, Integrated Fibrous Photovoltaic Device |
US20100154877A1 (en) * | 2008-12-18 | 2010-06-24 | Venkata Adiseshaiah Bhagavatula | Semiconductor Core, Integrated Fibrous Photovoltaic Device |
US20140042407A1 (en) * | 2012-08-08 | 2014-02-13 | Vanderbilt University | Biohybrid photoelectrochemical energy conversion device |
US9391557B2 (en) | 2013-03-15 | 2016-07-12 | Sandia Corporation | Solar tracking system |
DE102016110464A1 (en) * | 2016-06-07 | 2017-12-07 | Gunter Erfurt | Solar cell structure and process for producing a solar cell structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004949A (en) * | 1975-01-06 | 1977-01-25 | Motorola, Inc. | Method of making silicon solar cells |
FR2327643A1 (en) * | 1975-10-09 | 1977-05-06 | Commissariat Energie Atomique | Solar photoelectric converter using silicon photodiode rod - has cylindrical PN:junction between cylindrical lens and reflector |
US4052782A (en) * | 1974-09-03 | 1977-10-11 | Sensor Technology, Inc. | Tubular solar cell and method of making same |
WO1984004425A1 (en) * | 1983-04-25 | 1984-11-08 | Inst Microtechnique De L Unive | Large surface photovoltaic cell and production method thereof |
EP0275006A2 (en) * | 1987-01-13 | 1988-07-20 | Helmut Dr. Hoegl | Solar cell around a lengthened electrode, arrangement and process for manufacturing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL270665A (en) * | 1960-10-31 | 1900-01-01 | ||
US3969163A (en) * | 1974-09-19 | 1976-07-13 | Texas Instruments Incorporated | Vapor deposition method of forming low cost semiconductor solar cells including reconstitution of the reacted gases |
US3984256A (en) * | 1975-04-25 | 1976-10-05 | Nasa | Photovoltaic cell array |
FR2386359A1 (en) * | 1977-04-07 | 1978-11-03 | Labo Electronique Physique | Continuously coating carbon strip with polycrystalline silicon - by feeding strip through molten silicon, esp. used in mfr. of semiconductors such as solar batteries |
JPS59125670A (en) * | 1983-01-06 | 1984-07-20 | Toppan Printing Co Ltd | Solar battery |
JPS59144177A (en) * | 1983-02-07 | 1984-08-18 | Seiko Epson Corp | Solar battery |
US4564398A (en) * | 1985-01-11 | 1986-01-14 | Standard Oil Company (Indiana) | Optimized photovoltaic effect |
US4642140A (en) * | 1985-04-30 | 1987-02-10 | The United States Of America As Represented By The United States Department Of Energy | Process for producing chalcogenide semiconductors |
-
1994
- 1994-08-25 EP EP94113324A patent/EP0641029A3/en not_active Withdrawn
- 1994-08-26 US US08/296,770 patent/US5902416A/en not_active Expired - Fee Related
- 1994-08-29 JP JP6226061A patent/JPH07221332A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052782A (en) * | 1974-09-03 | 1977-10-11 | Sensor Technology, Inc. | Tubular solar cell and method of making same |
US4004949A (en) * | 1975-01-06 | 1977-01-25 | Motorola, Inc. | Method of making silicon solar cells |
FR2327643A1 (en) * | 1975-10-09 | 1977-05-06 | Commissariat Energie Atomique | Solar photoelectric converter using silicon photodiode rod - has cylindrical PN:junction between cylindrical lens and reflector |
WO1984004425A1 (en) * | 1983-04-25 | 1984-11-08 | Inst Microtechnique De L Unive | Large surface photovoltaic cell and production method thereof |
EP0275006A2 (en) * | 1987-01-13 | 1988-07-20 | Helmut Dr. Hoegl | Solar cell around a lengthened electrode, arrangement and process for manufacturing the same |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 008, no. 250 (E-279), 16.November 1984 & JP 59 125670 A (TOPPAN INSATSU KK), 20.Juli 1984, * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19732876A1 (en) * | 1997-07-30 | 1999-02-04 | Reitstall Icking Gmbh | Photovoltaic solar energy module |
EP2065947A1 (en) * | 2006-08-07 | 2009-06-03 | Kyosemi Corporation | Semiconductor module for power generation or light emission |
EP2065947A4 (en) * | 2006-08-07 | 2012-09-19 | Kyosemi Corp | Semiconductor module for power generation or light emission |
Also Published As
Publication number | Publication date |
---|---|
EP0641029A3 (en) | 1998-01-07 |
JPH07221332A (en) | 1995-08-18 |
US5902416A (en) | 1999-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0641029A2 (en) | Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell | |
DE3602124C2 (en) | ||
DE3153270C2 (en) | Process for the production of doped semiconductor material by glow discharge | |
DE4205733C2 (en) | Semiconductor device | |
DE2148132C3 (en) | Method of making a thin piezoelectric film | |
DE19741832A1 (en) | Method of manufacturing a solar cell and solar cell | |
DE2523307C2 (en) | Semiconductor component | |
DE2919114A1 (en) | FIELD ARRANGEMENT PHOTOVOLTAIC CELLS AND METHOD OF MANUFACTURING THE SAME | |
DE2805910A1 (en) | SEMICONDUCTOR SYSTEM AND METHOD FOR THE PRODUCTION THEREOF | |
DE2711365A1 (en) | SEMI-CONDUCTOR ARRANGEMENT WITH SCHOTTKY BORDER LAYER | |
DE2300813C3 (en) | Method of making an improved thin film capacitor | |
DE3815512C2 (en) | Solar cell and process for its manufacture | |
DE68925684T2 (en) | Superconducting radiation sensitive device with tunnel junction and Josephson element | |
DE3790981B4 (en) | Method for producing a photovoltaic solar cell | |
DE3712589A1 (en) | METHOD FOR THE PRODUCTION OF SERIES LAYERED SOLAR CELLS | |
DE2259682A1 (en) | METHOD FOR PRODUCING AN ELECTRICALLY SWITCHABLE BISTABLE RESISTANCE ELEMENT | |
DE3209548A1 (en) | Solar cell arrangement in thin-layer construction made from semiconductor material, and process for the fabrication thereof | |
DE102019123785A1 (en) | Rear-side emitter solar cell structure with a heterojunction, as well as method and apparatus for producing the same | |
DE2654946C2 (en) | ||
DE102016116192B3 (en) | Photovoltaic module with integrated series-connected stacked solar cells and process for its production | |
DE1150456B (en) | Esaki diode and process for its manufacture | |
DE2325555A1 (en) | SOLID COMPONENT AS STORAGE WITH INDEPENDENT STORAGE CONDITIONS | |
DE2654476B2 (en) | Method of making a Schottky barrier | |
WO1995009443A1 (en) | Process for producing luminescent elemental structures | |
DE1696607B2 (en) | PROCESS FOR PRODUCING AN INSULATING LAYER MAJORLY COMPOSED OF SILICON AND NITROGEN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE ES FR GB IT LI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE ES FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19980707 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KERN, RALF M. Owner name: HOEGL, HELMUT DR. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040302 |