DE19732876A1 - Photovoltaic solar energy module - Google Patents

Photovoltaic solar energy module

Info

Publication number
DE19732876A1
DE19732876A1 DE19732876A DE19732876A DE19732876A1 DE 19732876 A1 DE19732876 A1 DE 19732876A1 DE 19732876 A DE19732876 A DE 19732876A DE 19732876 A DE19732876 A DE 19732876A DE 19732876 A1 DE19732876 A1 DE 19732876A1
Authority
DE
Germany
Prior art keywords
electrodes
solar cell
photovoltaic solar
cell arrangement
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19732876A
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REITSTALL ICKING GmbH
Original Assignee
REITSTALL ICKING GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REITSTALL ICKING GmbH filed Critical REITSTALL ICKING GmbH
Priority to DE19732876A priority Critical patent/DE19732876A1/en
Publication of DE19732876A1 publication Critical patent/DE19732876A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The photo voltaic solar module (1) has wire electrodes (2) spaced at intervals from each other and are located on a conducting mirrored surface (4) with contacts (26). The spacing and diameter of the electrodes is such that light traps are formed for the incident rays of the sun A flexible foil (15) is used to enclose the electrodes and is installed by applying a vacuum.

Description

Durch den Aufbau bekannter photovoltaischer Solarzellen ergibt sich ein vergleichsweise Gewicht mit hohem Kosten­ aufwand bei auch auf die elektrische Leistung der photo­ voltaischen Schichten beschränktem Wirkungsgrad.By building known photovoltaic solar cells this results in a comparatively high cost also spent on the electrical performance of the photo voltaic layers of limited efficiency.

Aufgabe der Erfindung ist es, eine photovoltaische Solar­ zellenanordnung mit langgestreckten und mit mindestens jeweils einer photovoltaischen Schicht beschichteten Elektroden zu schaffen, welche parallel zueinander ge­ meinsam auf einer spiegelnden und elektrisch leitfähigen Oberfläche einer Tragschicht auf Abstand voneinander und in einem elektrisch leitendem Kontakt angeordnet sind, bei der einerseits die Herstellung der Träger der photo­ voltaischen Schichten in kontinuierlicher Massenfertigung erfolgen kann und diese andererseits zu Modulen angeord­ net sind, welche eine sparsame Anwendung des photovol­ taischen Schichtmaterials erlauben und zugleich auch biegsame und leichtgewichtige Module mit verbesserter Ausnutzung des eingestrahlten Sonnenlichts ermöglicht.The object of the invention is a photovoltaic solar cell arrangement with elongated and with at least each coated with a photovoltaic layer To create electrodes which ge parallel to each other together on a reflective and electrically conductive Surface of a base layer at a distance from one another and are arranged in an electrically conductive contact, on the one hand the production of the carrier of the photo voltaic layers in continuous mass production can be done and arranged on the other hand to modules net, which is an economical application of photovol allow and layer material flexible and lightweight modules with improved Exploitation of the sunlight is possible.

Diese Aufgabe wird gelöst durch eine photovoltaische So­ larzellenanordnung mit langgestreckten und mit mindestens jeweils einer photovoltaischen Schicht beschichteten Elektroden, welche parallel zueinander gemeinsam auf ei­ ner spiegelnden und elektrisch leitfähigen Oberfläche ei­ ner Tragschicht auf Abstand voneinander und in einem elektrisch leitendem Kontakt angeordnet sind.This task is solved by a photovoltaic So lar cell arrangement with elongated and with at least each coated with a photovoltaic layer  Electrodes, which are parallel to each other on egg ner reflective and electrically conductive surface ner base layer at a distance from each other and in one electrically conductive contact are arranged.

Dabei kann vorzugsweise zwischen der Elektrode und ihrer photovoltaischen Beschichtung eine Verspiegelung vorgese­ hen sein.It can preferably be between the electrode and its a mirroring is provided for the photovoltaic coating hen.

Obwohl das Material der die photovoltaischen Beschichtung tragenden Elektrode vorzugsweise aus gut elektrisch lei­ tendem Metall, wie z. B. Kupfer oder auch Stahl besteht, kann dieses auch einen Innenkern aus Kunststoff (auch elektrisch leitendem) und eine elektrisch gut leitende Beschichtung bestehen, welche auch die Verspiegelung ge­ währleisten kann und der verstärkten Biegsamkeit des Mo­ duls dient.Although the material of the photovoltaic coating carrying electrode preferably from good electrical lei metal, such as. B. copper or steel, this can also have an inner core made of plastic (also electrically conductive) and an electrically highly conductive Coating exist, which also the mirroring ge can guarantee and the increased flexibility of the Mo duls serves.

Dabei sollen vorzugsweise die langgestreckten Elektroden draht- oder fadenförmig ausgebildet sein und insbesondere der Abstand der parallel zueinander verlaufenden be­ schichteten Elektroden zwischen dem einfachen und sechs­ fachen Wert des Radius der Elektroden betragen und in be­ vorzugter Ausführung den einfachen und doppelten Betrag des Durchmessers der Elektroden betragen.The elongated electrodes should preferably be used be wire or thread-shaped and in particular the distance between the parallel be layered electrodes between the simple and six times the radius of the electrodes and be preferred execution the single and double amount of the diameter of the electrodes.

Durch den weiteren Aufbau der mit den vorgenannten Elek­ troden aufgebauten Solarzellenmodule nach den Ansprüchen 5-15 wird sowohl die vereinfachte und billige Herstellung als auch die Leichtgewichtigkeit und Biegsamkeit und Fle­ xibilität der Module gewährleistet. Due to the further structure of the elec troden built solar cell modules according to the claims 5-15 will be both the simplified and cheap manufacture as well as the lightweight and pliability and fle module flexibility guaranteed.  

Die Erfindung ist nachstehend in mehreren bevorzugten Ausführungsbeispielen näher dargestellt. Es zeigtThe invention is in several preferred below Embodiments shown in more detail. It shows

Fig. 1 eine Querschnittsdarstellung durch die erfindungsgemäße Anordnung mit dem Variationen a bis c, Fig. 1 is a cross sectional view through the arrangement according to the invention with the variations a to c,

Fig. 2 eine querschnittsmäßige Darstellung der Erfindung einer abgewandelten Ausführungsform mit den Variationen a und b, Fig. 2 is a cross-sectional representation of the moderate b invention a modified embodiment with the variations A and,

Fig. 3 einen vergrößerten Querschnitt durch eine photovoltaisch beschichtete Elektrode, Fig. 3 is an enlarged cross-sectional view of a photovoltaic coated electrode,

Fig. 4 eine doppelseitige Ausführungsform der Erfindung, Fig. 4 is a double-sided embodiment of the invention,

Fig. 5 eine flächige Draufsicht auf ein Solar­ zellenmodul, und Fig. 5 is a plan view of a solar cell module, and

Fig. 6 eine Querschnittsdarstellung ähnlich Fig. 1 und 2, bei der die spiegelnde und elektrisch leitfähige Schicht oberhalb der Oberfläche der Tragschicht eine reflexions­ begünstigende Profilierung bzw. Tektur aufweist. Fig. 6 is a cross-sectional view similar to Fig. 1 and 2, in which the reflective and electrically conductive layer above the surface of the base layer has a reflection-promoting profile or architecture.

Gemäß Fig. 1 sind die mit einer photovoltaischen Schicht 3 ummantelten im Querschnitt faden- oder drahtförmigen Elektroden 2 im Querschnitt durch ein Solarmodul 1 auf der spiegelnden Oberfläche 4 einer Tragschicht 5 wieder­ gegeben. Dabei sind die zueinander parallel nebeneinander angeordneten Elektroden 2 in einem Abstand 7 voneinander angeordnet, der z. B. einen Durchmesser der Elektroden 2 entspricht, so daß das einfallende Sonnenlicht über einen Winkel 2a sowohl auf die photovoltaische Schicht 3 als auch teilweise auf die im Abstand 7 zugänglichen Bereiche der spiegelnden Oberfläche 4, an der sie praktisch rundum gegen die photovoltaischen Schichten (3) gespiegelt wird.Are shown in FIG. 1, a photovoltaic layer 3 in cross-section sheathed thread-like or wire-like electrodes 2 in cross section through a solar module 1 on the specular surface 4 of a support layer 5, where again. The mutually parallel electrodes 2 are arranged at a distance 7 from each other, the z. B. corresponds to a diameter of the electrodes 2 , so that the incident sunlight over an angle 2 a both on the photovoltaic layer 3 and partly on the accessible areas 7 of the reflecting surface 4 at which they practically all around against the photovoltaic layers ( 3 ) is mirrored.

Der Abstand 7 bildet mit den beschichteten Elektroden 2 insofern eine Licht falle (light trap), welche sogar bei Schrägstellung des Sonnenlichteinfalls wirksam ist (Fig. 1c).The distance 7 forms a light trap with the coated electrodes 2 , which is effective even when the incidence of sunlight is inclined ( FIG. 1c).

Außerdem erfolgt in dieser Anordnung auch keine Abschal­ tung der Elektroden gegeneinander. Durch den Abstand 7 wird die photovoltaische Schicht 3 durch die spiegelnde Oberfläche 4 auch im unteren Umfangsbereich beleuchtet. Die spiegelnde Oberfläche 4 ist selbst an der Auflageflä­ che der Schicht 3 auf der Oberfläche 4 wirksam, auch be­ züglich der innerhalb von deren Ringbereich umlaufenden Photonen. Damit ist praktisch der volle Umfang 11 (Fig. 3) der Schicht 3 wirksam. Das entspricht im Vergleich zu plattenförmigen Solarzellen der 3, 14-fachen Oberfläche (Fig. 3). Die Spiegelflächen in den Abständen 7 ergeben nochmals eine Lichtausbeute von 60-100% einer photovol­ taischen Fläche, wobei eine Spiegelfläche in der Herstel­ lung weit billiger und leichter als eine photovoltaische Schicht ist. In addition, in this arrangement there is also no switching off of the electrodes against one another. Due to the distance 7 , the photovoltaic layer 3 is also illuminated in the lower circumferential area by the reflecting surface 4 . The reflecting surface 4 is effective even on the support surface of the layer 3 on the surface 4 , also with respect to the photons circulating within its ring region. Thus practically the full extent 11 ( FIG. 3) of the layer 3 is effective. In comparison to plate-shaped solar cells, this corresponds to the 3, 14 times the surface ( FIG. 3). The mirror surfaces in the distances 7 again give a luminous efficacy of 60-100% of a photovoltaic surface, a mirror surface in the manufacture being much cheaper and lighter than a photovoltaic layer.

Durch Verwendung einer Spiegelschicht mit kleinen Löchern 9 wird das Modul 1 sogar teilweise lichtdurchlässig.By using a mirror layer with small holes 9 , the module 1 is even partially translucent.

In der in Fig. 1 linken Elektrode ist ihr Querschnitt in Schnittdarstellung wiedergegeben, auch um ihren faden- oder drahtförmigen Querschnitt zu zeigen. In der Quer­ schnittsfläche der übrigen Elektroden 2 ist die Polung mit (-) angegeben, so daß der einheitliche Aufbau der aus einer P- und einer n-Schicht aufgebauten photovoltaischen Schicht 3 beschrieben ist, wobei der p-/n-Übergang 10 aus einer P- und einer n-Schicht gestrichelt angedeutet ist.In the left electrode in FIG. 1, its cross section is shown in a sectional view, also to show its filiform or wire-shaped cross section. In the cross-sectional area of the remaining electrodes 2 , the polarity is indicated by (-), so that the uniform structure of the photovoltaic layer 3 composed of a P and an n layer is described, the p / n transition 10 being composed of a P- and an n-layer is indicated by dashed lines.

Dementsprechend ist die Tragschicht 5 mit ihrer spiegeln­ den Oberfläche 4, welche mit der Umfangsfläche 11 der um­ mantelten Elektroden 2 in festem elektrischen Kontakt steht, als +-Pol mit der elektrischen Abnahmeschaltung 12 verbunden, während die --geladenen Elektroden 2 den Gegen­ pol bilden.Accordingly, the base layer 5 with its mirror surface 4 , which is in firm electrical contact with the peripheral surface 11 of the coated electrodes 2 , is connected as a + pole to the electrical removal circuit 12 , while the - charged electrodes 2 form the opposite pole .

Der elektrisch leitende Kontakt kann mittels eines elek­ trisch leitenden Klebers - auch Kontaktklebers - 13 oder Laser- bzw. HF-Verschweißen gewährleistet sein oder durch eine Glas- oder Kunststoffscheibe 14 als Schutzschicht 15 (siehe Fig. 1a) mit der die Elektroden 2 gegen die Trag­ schicht 5 beidseitig gepreßt gehalten werden, beispiels­ weise durch ein Vakuum im Bereich der Abstände 7.The electrically conductive contact can be ensured by means of an electrically conductive adhesive - also contact adhesive - 13 or laser or RF welding or by a glass or plastic pane 14 as a protective layer 15 (see FIG. 1a) with which the electrodes 2 against the Support layer 5 are held pressed on both sides, for example by a vacuum in the region of the spacings 7 .

Bei Verwendung einer flexiblen, biegsamen Folie als Schutzschicht 15 kann diese gemäß Fig. 1a beispielsweise durch ein Vakuum in den Raum zwischen den Elektroden tiefgezogen werden, wodurch die Elektroden 2 auf ihrer Oberseite nur durch die Spannung der Folien-Schutzschicht 15 gehalten werden, womit aber der Vorteil verbunden ist, daß eine seitliche Gleitbewegung die Biegsamkeit des Mo­ duls 1 unterstützt.When using a flexible, but flexible sheet as the protective layer 15 may be those shown in Fig. 1a are deep-drawn, for example, by a vacuum in the space between the electrodes, whereby the electrodes are kept 2 on its upper side only by the tension of film protective layer 15, thus the advantage is connected that a lateral sliding movement supports the flexibility of the module 1 Mo.

Gemäß Fig. 2b kann eine Folie als Schutzschicht 15 mit­ tels mechanischen Druck durch ein Rillenrad 16 gegen die Mitte des Abstands 7 der spiegelnden Oberfläche 4 gepreßt und damit fest verbunden werden. Damit ergibt sich insbe­ sondere dann eine starke Verbesserung der Biegsamkeit des Moduls 1 um die Achsen der Elektroden, wenn auch die Tragschicht 5 mit großer Biegsamkeit gewählt wird.According to FIG. 2b, a film can be pressed as a protective layer 15 by means of mechanical pressure by means of a grooved wheel 16 against the center of the distance 7 of the reflecting surface 4 and thus firmly connected. This results in a special improvement in the flexibility of the module 1 about the axes of the electrodes, in particular if the support layer 5 is chosen with great flexibility.

Gemäß Fig. 3 besitzt eine mit einer photovoltaischen Schicht 3 ummantelte Elektrode 2 eine innere P-(oder n-) dotierte Schicht 17 und außerhalb eines P-/n-Übergangs 19 eine n-(oder P-) dotierte Schicht 18, an deren Umfang 11 sie in der einen Ausführungsform mit der spiegelnden Oberfläche 4 in elektrisch leitendem Kontakt steht, wäh­ rend die Elektrode 2 den Gegenpol bildet. Wenn die Dicke der Schicht 20 der spiegelnden Oberfläche 4 zur Leitung der Ladungen groß genug ist, kann die Elektrode 2 auch aus einem flexiblen Kunststoffkern mit elektrisch leiten­ der Ummantelung mit spiegelnder Oberfläche 21 bestehen.According to FIG. 3, an electrode 2 encased with a photovoltaic layer 3 has an inner P- (or n-) doped layer 17 and outside a P- / n junction 19 an n- (or P-) doped layer 18 , on the latter Scope 11 in one embodiment it is in electrically conductive contact with the reflecting surface 4 , while the electrode 2 forms the opposite pole. If the thickness of the layer 20 of the reflecting surface 4 is large enough to conduct the charges, the electrode 2 can also consist of a flexible plastic core with an electrically conductive sheath with a reflecting surface 21 .

In Fig. 2 sind die Elektroden 2 mit unterschiedlicher Polung dargestellt. Dabei kann die photovoltaische Schicht 3 entweder abwechselnd aus n-dotiertem und P-do­ tiertem Material bestehen, wobei beide Polungen an ihrer Umfangsfläche 11 miteinander verbunden sind und die Stromabnahme 22 jeweils von den gegenpoligen Elektroden 2 erfolgt.In Fig. 2 the electrodes 2 are shown with different polarity. The photovoltaic layer 3 can either consist alternately of n-doped and P-doped material, both polarities being connected to one another on their peripheral surface 11 and the current drain 22 taking place in each case from the opposite-pole electrodes 2 .

Dabei bildet die spiegelnde Oberfläche 4 keine Elektrode des Moduls 1, sondern nur den elektrisch leitenden Kon­ takt der Umfangsflächen 11 der nebeneinander liegenden beschichteten Elektroden 2.The reflecting surface 4 does not form an electrode of the module 1 , but only the electrically conductive contact of the peripheral surfaces 11 of the adjacent coated electrodes 2 .

Dasselbe gilt, wenn die photovoltaische Schicht 3 zweier nebeneinander liegenden beschichteten Elektroden 3 in in­ vers aufgebaut ist (18 = P, 17 = n/18 = n, 17 = P).The same applies if the photovoltaic layer 3 of two adjacent coated electrodes 3 is constructed in inverse (18 = P, 17 = n / 18 = n, 17 = P).

Gemäß Fig. 4 sind zwei Lagen von beschichteten Elektro­ den vorgesehen, und zwar eine an der Vorderseite und eine auf der Rückseite der Tragschicht 5, die jeweils auf Lücke zum gegenüberliegenden Abstand 7 angeordnet sind: Dabei besitzt die Tragschicht 5 beidseits eine spiegelnde Oberfläche 4. Wenn sie biegsam-elastisch ausgebildet ist, können die Elektroden 2 jeweils teilweise in den gegen­ überliegenden Abstandsbereich hineingepreßt sein, so daß sich eine stark biegsame Ausbildung mit beidseitiger Lichtausbeute ergeben kann.Referring to FIG. 4, two sheets of coated electric to provided, one at the front and one on the back of the support layer 5, which are respectively arranged with a gap to the opposite spacing 7: In this case 5 has the supporting layer on either side of a reflecting surface 4. If it is designed to be flexible and elastic, the electrodes 2 can each be pressed partially into the opposite spacing area, so that a highly flexible design with light output on both sides can result.

Wenn auch - wie mit 24 angedeutet - die äußeren Schutz­ schichten 15 als Folie und zwischen die Elektroden 2 ein­ prägbar ausgebildet sind, läßt sich eine noch verbesserte Biegbarkeit erzielen.If - as indicated by 24 - the outer protective layers 15 are formed as a film and between the electrodes 2 an embossable, an even better bendability can be achieved.

Wenn gemäß Fig. 4 die Länge der Elektroden 2 bis an beide Enden angeschlossenen Sammelstromleitungen 25 kür­ zer ist als die quer dazu liegende Länge des Moduls 1, dann ergibt sich bei den geringsten Ohm'schen Verlusten dessen größte Fläche.If according to FIG. 4, the length of the electrodes 2 to both ends connected to collecting power lines 25 is shorter than a kür transverse to the length of the module 1, is then obtained at the lowest ohmic losses its largest surface.

Bei der in Fig. 6 dargestellten Ausführungsform besitzt die spiegelnde und elektrisch leitfähige Schicht 4 auf oder oberhalb der Tragschicht 5 eine Profilierung 4' mittels der eine Reflexion des Lichteinfalls 5' in Richtung der Elektroden bzw. auf deren Schicht 3 begünstigt ist, die beispielsweise auch gekrümmt sein kann. Die Profilierung 4' soll jedenfalls derart sein, daß eine ungenutzte Zurückspiegelung mindestens teilweise vermieden wird, beispielsweise auch durch Berechnung in diffuses Licht innerhalb des Abstands 7.In the embodiment shown in FIG. 6, the reflective and electrically conductive layer 4 on or above the support layer 5 has a profile 4 'by means of which reflection of the incidence of light 5 ' in the direction of the electrodes or on their layer 3 is favored, which, for example, also can be curved. In any case, the profiling 4 'should be such that an unused rear-view reflection is at least partially avoided, for example also by calculation into diffuse light within the distance 7 .

Mit der Profilierung 4' kann auch der Kontakt zwischen der ummantelten Elektrode und der spiegelnden Oberfläche 4 durch Anordnung der Elektroden in einer Vertiefung vergrößert bzw. zuverlässiger gestaltet werden. Die spiegelnde und elektrisch leitfähige Oberfläche 4 oder profilierte Schicht 4' kann mit der Tragschicht verbunden oder zwecks verbesserter Biegsamkeit als spiegelnde Oberfläche der Tragschicht 5 ausgeführt sein.With the profiling 4 ′, the contact between the covered electrode and the reflecting surface 4 can also be increased or made more reliable by arranging the electrodes in a recess. The reflective and electrically conductive surface 4 or profiled layer 4 ′ can be connected to the support layer or, for improved flexibility, can be designed as a reflective surface of the support layer 5 .

Claims (16)

1. Photovoltaische Solarzellenanordnung (1) mit langgestreckten und mit mindestens jeweils einer photo­ voltaischen Schicht (3) beschichteten Elektroden, welche parallel zueinander gemeinsam auf einer spiegelnden und elektrisch leitfähigen Oberfläche (4) einer Tragschicht (5) auf Abstand (7) voneinander mit in einem elektrisch leitenden Kontakt (26) angeordnet sind.1. Photovoltaic solar cell arrangement ( 1 ) with elongated and with at least one photovoltaic layer ( 3 ) coated electrodes, which parallel to each other together on a reflective and electrically conductive surface ( 4 ) of a support layer ( 5 ) at a distance ( 7 ) from each other in an electrically conductive contact ( 26 ) are arranged. 2. Photovoltaische Solarzellenanordnung (1) nach An­ spruch 1, dadurch gekennzeichnet, daß die langgestreckten Elektroden (2) draht- oder fadenförmig ausgebildet sind.2. Photovoltaic solar cell arrangement ( 1 ) according to claim 1, characterized in that the elongated electrodes ( 2 ) are wire or thread-shaped. 3. Photovoltaische Solarzellenanordnung (1) nach An­ spruch 1 oder 2, bei der der Abstand (7) der parallel zu­ einander verlaufenden beschichteten Elektroden (2) zwi­ schen dem einfachen und sechsfachen Wert des Radius der Elektroden (2) beträgt.3. Photovoltaic solar cell arrangement ( 1 ) according to claim 1 or 2, in which the distance ( 7 ) of the parallel to each other coated electrodes ( 2 ) between the single and six times the value of the radius of the electrodes ( 2 ). 4. Photovoltaische Solarzellenanordnung (1) nach An­ spruch 3, bei der der Abstand (7) zwischen den Elektroden (2) den einfachen und doppelten Betrag des Durchmessers der Elektroden (2) beträgt.4. Photovoltaic solar cell assembly ( 1 ) according to claim 3, in which the distance ( 7 ) between the electrodes ( 2 ) is the single and double the amount of the diameter of the electrodes ( 2 ). 5. Photovoltaische Solarzellenanordnung (1) nach ei­ nem der vorherigen Ansprüche, bei der die Elektroden (2) an der spiegelnden Oberfläche (4) durch Verschweißen oder Verkleben elektrisch leitend festigt sind. 5. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the electrodes ( 2 ) on the reflecting surface ( 4 ) are electrically conductively fixed by welding or gluing. 6. Photovoltaische Solarzellenanordnung (1) nach ei­ nem der vorhergehenden Ansprüche, bei der die Tragschicht (5) flexibel und biegsam verformbar ist.6. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the base layer ( 5 ) is flexible and pliable. 7. Photovoltaische Solarzellenanordnung (1) nach ei­ nem der vorhergehenden Ansprüche, bei der die Tragschicht (5) elektrisch gut leitend ist.7. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the support layer ( 5 ) is electrically highly conductive. 8. Photovoltaische Solarzellenanordnung (1) nach ei­ nem der vorhergehenden Ansprüche, bei der die Elektroden (2) zur Lichteinfalls-Seite hin mit einer voll licht­ durchlässigen Schutzschicht bedeckt sind.8. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the electrodes ( 2 ) are covered to the light incidence side with a fully light-permeable protective layer. 9. Photovoltaische Solarzellenanordnung (1) nach ei­ nem der vorhergehenden Ansprüche, welche als ganzes zur Lichteinfalls-Seite hin mit einer voll lichtdurchlässigen Schutzschicht bedeckt sind.9. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, which are covered as a whole towards the light incidence side with a fully transparent protective layer. 10. Photovoltaische Solarzellenanordnung (1) nach Anspruch 9, bei der die Schutzschicht (15) eine Glas­ platte ist.10. Photovoltaic solar cell arrangement ( 1 ) according to claim 9, wherein the protective layer ( 15 ) is a glass plate. 11. Photovoltaische Solarzellenanordnung (1) nach Anspruch 9, bei der die Schutzschicht (15) eine flexible Folie ( ) ist.11. Photovoltaic solar cell arrangement ( 1 ) according to claim 9, wherein the protective layer ( 15 ) is a flexible film (). 12. Photovoltaische Solarzellenanordnung (1) nach Anspruch 11, bei der die Schutzschicht (15) in mindestens teilweise die Abstände (7) zwischen den Elektroden (2) hineingeprägt ist. 12. Photovoltaic solar cell arrangement ( 1 ) according to claim 11, wherein the protective layer ( 15 ) is at least partially embossed in the distances ( 7 ) between the electrodes ( 2 ). 13. Photovoltaische Solarzellenanordnung (1) nach einem der vorhergehenden Ansprüche, bei der die Elektro­ den (2) beidseits auf einer auf beiden Seiten fit einer spiegelnden Oberfläche (4) versehenen Tragschicht ange­ ordnet sind.13. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the electrodes ( 2 ) are arranged on both sides of a support layer provided on both sides with a reflective surface ( 4 ). 14. Photovoltaische Solarzellenanordnung (1) nach einem der vorhergehenden Ansprüche, bei der die beidsei­ tig der Tragschicht (5) angeordneten Elektroden (2) auf Lücke gegeneinander angeordnet sind.14. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the two-sided tig of the base layer ( 5 ) arranged electrodes ( 2 ) are arranged against each other on a gap. 15. Photovoltaische Solarzellenanordnung (1) nach einem der vorhergehenden Ansprüche, bei der die beschich­ teten Elektroden (2) zwischen Tragschicht (5) und Schutz­ schicht (15) zusammengepreßt sind.15. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, in which the coated electrodes ( 2 ) between the base layer ( 5 ) and protective layer ( 15 ) are pressed together. 16. Photovoltaische Solarzellenanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberfläche (4) oberhalb oder auf der Tragschicht mit einer lichtreflektierenden Profilierung (4') versehen ist.16. Photovoltaic solar cell arrangement ( 1 ) according to one of the preceding claims, characterized in that the surface ( 4 ) above or on the base layer is provided with a light-reflecting profile ( 4 ').
DE19732876A 1997-07-30 1997-07-30 Photovoltaic solar energy module Withdrawn DE19732876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19732876A DE19732876A1 (en) 1997-07-30 1997-07-30 Photovoltaic solar energy module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732876A DE19732876A1 (en) 1997-07-30 1997-07-30 Photovoltaic solar energy module

Publications (1)

Publication Number Publication Date
DE19732876A1 true DE19732876A1 (en) 1999-02-04

Family

ID=7837407

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19732876A Withdrawn DE19732876A1 (en) 1997-07-30 1997-07-30 Photovoltaic solar energy module

Country Status (1)

Country Link
DE (1) DE19732876A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196262B2 (en) 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US7259322B2 (en) 2006-01-09 2007-08-21 Solyndra, Inc. Interconnects for solar cell devices
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
US7535019B1 (en) 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
US7879685B2 (en) 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
US8093493B2 (en) 2007-04-30 2012-01-10 Solyndra Llc Volume compensation within a photovoltaic device
US8106292B2 (en) 2007-04-30 2012-01-31 Solyndra Llc Volume compensation within a photovoltaic device
US8183458B2 (en) 2007-03-13 2012-05-22 Solyndra Llc Photovoltaic apparatus having a filler layer and method for making the same
US8344238B2 (en) 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327643A1 (en) * 1975-10-09 1977-05-06 Commissariat Energie Atomique Solar photoelectric converter using silicon photodiode rod - has cylindrical PN:junction between cylindrical lens and reflector
DE3129456A1 (en) * 1980-07-29 1982-04-22 Andrés Cuevas Fernandez Solar cell generator, particularly in plate form
WO1984004425A1 (en) * 1983-04-25 1984-11-08 Inst Microtechnique De L Unive Large surface photovoltaic cell and production method thereof
DE4201571A1 (en) * 1991-01-25 1992-08-06 Phototronics Solartechnik Gmbh Thick film solar cell partially transparent to light - consists of a substrate with holes inside with which the front electrode is connected to a shunting back layer
EP0641029A2 (en) * 1993-08-27 1995-03-01 Twin Solar-Technik Entwicklungs-GmbH Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell
US5419782A (en) * 1993-05-11 1995-05-30 Texas Instruments Incorporated Array of solar cells having an optically self-aligning, output-increasing, ambient-protecting coating
US5431741A (en) * 1992-12-11 1995-07-11 Shin-Etsu Chemical Co., Ltd. Silicon solar cell
EP0662722A2 (en) * 1994-01-07 1995-07-12 Honda Giken Kogyo Kabushiki Kaisha Solar cell arrangement
US5437736A (en) * 1994-02-15 1995-08-01 Cole; Eric D. Semiconductor fiber solar cells and modules

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327643A1 (en) * 1975-10-09 1977-05-06 Commissariat Energie Atomique Solar photoelectric converter using silicon photodiode rod - has cylindrical PN:junction between cylindrical lens and reflector
DE3129456A1 (en) * 1980-07-29 1982-04-22 Andrés Cuevas Fernandez Solar cell generator, particularly in plate form
WO1984004425A1 (en) * 1983-04-25 1984-11-08 Inst Microtechnique De L Unive Large surface photovoltaic cell and production method thereof
DE4201571A1 (en) * 1991-01-25 1992-08-06 Phototronics Solartechnik Gmbh Thick film solar cell partially transparent to light - consists of a substrate with holes inside with which the front electrode is connected to a shunting back layer
US5431741A (en) * 1992-12-11 1995-07-11 Shin-Etsu Chemical Co., Ltd. Silicon solar cell
US5419782A (en) * 1993-05-11 1995-05-30 Texas Instruments Incorporated Array of solar cells having an optically self-aligning, output-increasing, ambient-protecting coating
EP0641029A2 (en) * 1993-08-27 1995-03-01 Twin Solar-Technik Entwicklungs-GmbH Element for a photovoltaic solar cell and process of fabrication as well as its arrangement in a solar cell
EP0662722A2 (en) * 1994-01-07 1995-07-12 Honda Giken Kogyo Kabushiki Kaisha Solar cell arrangement
US5437736A (en) * 1994-02-15 1995-08-01 Cole; Eric D. Semiconductor fiber solar cells and modules

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535019B1 (en) 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
US7196262B2 (en) 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US8344238B2 (en) 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US8067688B2 (en) 2006-01-09 2011-11-29 Solyndra Llc Interconnects for solar cell devices
US7259322B2 (en) 2006-01-09 2007-08-21 Solyndra, Inc. Interconnects for solar cell devices
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer
US7879685B2 (en) 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
US8183458B2 (en) 2007-03-13 2012-05-22 Solyndra Llc Photovoltaic apparatus having a filler layer and method for making the same
US8674213B2 (en) 2007-03-13 2014-03-18 Solyndra, Llc Photovoltaic apparatus having a filler layer and method for making the same
US8093493B2 (en) 2007-04-30 2012-01-10 Solyndra Llc Volume compensation within a photovoltaic device
US8106292B2 (en) 2007-04-30 2012-01-31 Solyndra Llc Volume compensation within a photovoltaic device
US8710361B2 (en) 2007-04-30 2014-04-29 Solyndra, Llc Volume compensation within a photovoltaic device

Similar Documents

Publication Publication Date Title
DE60317805T2 (en) ELECTRODE FOR PHOTOVOLTAIC CELLS, PHOTOVOLTAIC CELL AND PHOTOVOLTAIC MODULE
EP2537065B1 (en) Electrochromic glazing with cells connected in series and method for producing same
DE102006057454A1 (en) Photovoltaic module
DE1639152C3 (en) Solar cell batteries and processes for their manufacture
EP0118797A2 (en) Solar cell
DE102007005091B4 (en) solar cell
DE19732876A1 (en) Photovoltaic solar energy module
DE2723508A1 (en) PHOTOCELL ARRANGEMENT
DE112006003262T5 (en) Light capture by patterned solar cell bus wires
DE2363120A1 (en) SOLAR CELL ARRANGEMENT
WO1995001654A1 (en) Solar cell system
EP0933818B1 (en) Solar module in integrated thin film technology
EP1049958A1 (en) Electrochrome cell
EP0811871A2 (en) Electrochromic unit
DE19902334A1 (en) Photovoltaic solar cell installation with elongated electrodes coated with photovoltaic layer for lightweight solar modules
DE3382695T2 (en) PHOTOVOLTAIC CONVERTER.
DE29710301U1 (en) Photovoltaic solar cell arrangement
DE102008040332B4 (en) Back-contacted solar cell and solar module with back-contacted solar cells
DE102009019937A1 (en) Sequence solar cell arrangement for use in photovoltaic system, has sequence solar cells and reflectors, where solar cells have two photoactive layers and refractive intermediate layer
EP4122017B1 (en) Thin film solar module and production method
DE4040688C2 (en) Solar cell for converting solar energy into electrical energy
DE2060332C3 (en) Solid-state image intensifier and process for its manufacture
DE2452263C2 (en) Photoelectric generator
DE1564935C3 (en) Method for manufacturing a solar element
DE4336582A1 (en) Solar cell arrangement comprising individual solar cell elements and method for its production

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8130 Withdrawal
8165 Unexamined publication of following application revoked