EP0638418B1 - Cooling system for cylinders of printing machines - Google Patents

Cooling system for cylinders of printing machines Download PDF

Info

Publication number
EP0638418B1
EP0638418B1 EP94107097A EP94107097A EP0638418B1 EP 0638418 B1 EP0638418 B1 EP 0638418B1 EP 94107097 A EP94107097 A EP 94107097A EP 94107097 A EP94107097 A EP 94107097A EP 0638418 B1 EP0638418 B1 EP 0638418B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
air
recirculation
compressed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94107097A
Other languages
German (de)
French (fr)
Other versions
EP0638418A1 (en
Inventor
Hans-Joachim Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baldwin Gegenheimer GmbH
Original Assignee
Baldwin Gegenheimer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baldwin Gegenheimer GmbH filed Critical Baldwin Gegenheimer GmbH
Publication of EP0638418A1 publication Critical patent/EP0638418A1/en
Application granted granted Critical
Publication of EP0638418B1 publication Critical patent/EP0638418B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/22Means for cooling or heating forme or impression cylinders

Definitions

  • the invention relates to a temperature control system for printing press cylinders according to the preamble of claim 1.
  • the invention is particularly suitable for offset printing machines.
  • the cylinders of printing machines heat up during operation and can be cooled by air, which is blown onto the outer surface of the cylinders.
  • the air is cooled in a cold air generator to a certain temperature by a heat exchanger.
  • the cooled air is warmer than the press cylinders when the press starts, it causes the press cylinders to heat up more quickly to the desired one Operating temperatur. If, after the operating temperature has been reached, the temperature of the printing press cylinders continues to rise, the air cools these printing press cylinders.
  • Such printing press cylinders to be tempered or cooled are in particular printing plate cylinders, blanket cylinders, impression cylinders and inking unit rollers, which transfer the printing ink from an ink source to the printing plate cylinder.
  • Good printing qualities are achieved when the printing plate cylinder has a temperature between 24 o and 27 o C.
  • Comparable temperature control systems are known from Japanese Patent Application Publications Nos. 56-127457 and 1-72846, from EP 0 480 230 A1, US 1 749 316, GB 1 534 340, DE-OS 19 53 590 and DE-OS 35 41 458 A1 .
  • the object of the invention is to achieve a better temperature control efficiency.
  • the invention is intended to require less cooling energy and at the same time to achieve a faster temperature adjustment of the cylinder to be tempered to the desired setpoint temperature.
  • At least one, preferably a large number of cold air jets are blown onto a lateral surface of a printing unit cylinder to be temperature-controlled at a relatively high pressure.
  • Cold air deflected by the cylinder is fed into a recirculation circuit sucked and blown separately from the cold air jets again onto the outer surface of the cylinder to be cooled.
  • the air of the recirculation circuit is not mixed with the cold air that is blown onto the cylinder, but can only mix with it after touching the cylinder and then be recirculated again.
  • part of the cold air blown onto the cylinder and part of the recirculated air are fed to the air inlet of a cold air generator, which cools the air so that it can then be blown onto the cylinder again as cold air.
  • the air which is returned to the cold air generator can either be withdrawn from the recirculation circuit or it can be the leakage current which escapes between the outer surface of the cylinder to be cooled and the cooling air device, through which the cold air and the recirculated air are blown onto the outer surface of the cylinder becomes.
  • the cold air generator 8 contains a heat exchanger 10 with a refrigerant circuit for cooling air which flows from an air inlet 12 through the heat exchanger 10 and is fed from a blower 14 assigned to the cold air generator 8 via a cold air supply line 16 to a compressed air line 18 of the cooling air device 2.
  • the compressed air line 18 extends over the length of the cylinder 6 and is provided with a multiplicity of blown air openings or nozzles 20 which are located at a small distance from one another and which blow the cold air at high pressure and high flow velocity against the outer surface 4 of the cylinder 6 to be tempered.
  • the cold air blown from the blown air openings or nozzles 20 onto the cylinder 6 is shown schematically by arrows 22.
  • the cooling air device 2 consists essentially of an outer housing 24, an inner housing 26 arranged therein at a mutual spacing, a tube arranged in the inner housing 26 at a mutual spacing and forming the compressed air line 18, and a blower 28 on the side of the compressed air line 18 facing away from the cylinder 6
  • the pressure side 29 of the blower 28 points in the direction of the compressed air line 18 and the cylinder 6
  • "Mutual distances" refer to the cross-sectional view shown in FIG. 1, while the outer housing 24, the inner housing 26 and the compressed air line 18 can be mechanically connected to one another at the front ends.
  • the fan 28 is shown schematically as a fan blade.
  • one or more blowers 28 can be arranged next to one another in the longitudinal direction of the cylinder. For example, in FIG. 2, three fans 28 are arranged next to one another over the length of the cylinder 6.
  • the cooled air of the compressed air line 18 flows through the blown air openings 20 to a first angular range I of the lateral surface 4 of Cylinder 6.
  • a second angular range II of the cylinder 6 onto which recirculated air is blown from the recirculation outlets 44 and 46 of the pressure branches 34 and 36 of the internal recirculation circuit by means of the blower 28.
  • the two recirculation outlets 44 and 46 are located below and above, directly next to the blown air openings 20.
  • an upper recirculation inlet 42 of the upper suction branch 32 for extracting air from an upper third angular region III of the cylinder 6.
  • Cold air 22 of the blown air openings or nozzles 20 and recirculated air from the recirculation outlets 44 and 46 are each on the outer surface 4 of the cylinder 6 deflected in the circumferential direction of the cylinder, then mixed with one another, and then sucked off by the blower 28 through the recirculation inlets 40 and 42 and blown through the blower 28 through the pressure branches 34 and 36 onto the lateral surface 4 of the cylinder 6 again.
  • Suction line 50 of the cold air generator 8 can air 52 heated by the cylinder 6 from the space 53 between the outer housing 24 and the inner housing 26 via a suction opening 54 formed in the outer housing 24 and / or warm air 56 heated by the cylinder 6 from a lower gap 58 and an upper gap 60 are sucked off, which is formed between the lateral surface 4 of the cylinder 6 and an opposite lower edge 62 and upper edge 64 of the outer housing 24.
  • These edges 62 and 64 of the outer housing 24 also form the outer, longitudinal to the cylinder 6 boundaries of the recirculation inlets 40 and 42.
  • the temperature of the refrigerant in the heat exchanger 10 can be set and controlled by a microprocessor 70 as a function of non-contact temperature sensors 65, 66 and 68.
  • the temperature sensors 65, 66 and 68 are arranged distributed over the length of the cylinder 6 and measure the temperature of its lateral surface 4 without contact.
  • the positions of the recirculation inlets 40 and 42 can be interchanged with the positions of the recirculation outlets 44 and 46, so that the recirculation inlets 40, 42 lie between the blow air opening 20 and the recirculation outlets 44, 46.
  • the temperature control system can be used to cool several cylinders.
  • a cooling air device 2/2 is provided, which is largely identical to the cooling air device 2 of FIGS. 1 and 2, and corresponding parts are provided with the same reference numbers.
  • the cooling air device 2/2 of FIG. 3 blows cold air 22 through the blowing openings or nozzles 20 onto a first cylinder circumferential angular range I of a middle cylinder 6, which is for example a printing plate cylinder.
  • a lower cylinder 72, for example an impression cylinder, and an upper cylinder 74, for example an inking roller, are in contact with the middle cylinder 6.
  • the two recirculation outlets 44 and 46 are arranged on both sides directly next to the blowing openings or nozzles 20, and the two second angular regions II adjoin the first angular region I on the middle cylinder 6.
  • one 40 is formed over the lower cylinder 72 for extracting cooling air from a third cylinder circumferential angular range III of the lower cylinder 72
  • the other 42 is over the upper cylinder 74 for extracting cooling air from a third cylinder circumferential region III of the upper cylinder 74 is formed.
  • the three angular ranges I, II and III are connected to one another by a lower duct 82 and an upper duct 84, which are each formed by the cylinders 6, 72 and 74 and the cooling air device 2/2 opposite them.
  • the positions of the third angular region III and their recirculation inlets 40 and 42 can be interchanged with the positions of the second angular regions II and their recirculation outlets 44 and 46.

Abstract

The cooling system for cylinders of printing machines comprises at least one compressed-air line (18) having at least one compressed-air opening (20) for blowing cold air against a cylinder (6) to be cooled. At least one recirculation loop (30, 32, 34, 36, 28) is provided, which is separate from the cold air of the compressed-air line (18), sucks off air blown onto the cylinder from the compressed-air opening (20) by means of a fan (28) contained in the recirculation loop, and blows it back onto the cylinder (6) parallel to the cold air. As a result, the temperature of the cold air (22) can be effective on the cylinder (6) without the temperature previously having been changed. The cold air deflected by the cylinder is fed back onto the cylinder (6) for additional cooling. <IMAGE>

Description

Die Erfindung betrifft ein Temperierungssystem für Druckmaschinenzylinder gemäß dem Oberbegriff von Anspruch 1.The invention relates to a temperature control system for printing press cylinders according to the preamble of claim 1.

Die Erfindung eignet sich insbesondere für Offset-Druckmaschinen. Die Zylinder von Druckmaschinen erwärmen sich während des Betriebes und können durch Luft gekühlt werden, welche auf die Mantelfläche der Zylinder geblasen wird. Die Luft wird in einem Kaltlufterzeuger durch einen Wärmetauscher auf eine bestimmte Temperatur abgekühlt. Wenn beim Maschinenstart die gekühlte Luft wärmer ist als die Druckmaschinenzylinder, dann bewirkt sie eine schnellere Erwärmung dieser Druckmaschinenzylinder auf die gewünschte Betriebstemperatur. Wenn nach Erreichen der Betriebstemperatur die Temperatur der Druckmaschinenzylinder weiter ansteigt, bewirkt die Luft eine Kühlung dieser Druckmaschinenzylinder. Solche zu temperierende oder zu kühlende Druckmaschinenzylinder sind insbesondere Druckplattenzylinder, Gummituchzylinder, Gegendruckzylinder und Farbwerkswalzen, welche die Druckfarbe von einer Farbquelle auf den Druckplattenzylinder übertragen. Gute Druckqualitäten werden dann erreicht, wenn der Druckplattenzylinder eine Temperatur zwischen 24o und 27oC hat.The invention is particularly suitable for offset printing machines. The cylinders of printing machines heat up during operation and can be cooled by air, which is blown onto the outer surface of the cylinders. The air is cooled in a cold air generator to a certain temperature by a heat exchanger. When the cooled air is warmer than the press cylinders when the press starts, it causes the press cylinders to heat up more quickly to the desired one Operating temperatur. If, after the operating temperature has been reached, the temperature of the printing press cylinders continues to rise, the air cools these printing press cylinders. Such printing press cylinders to be tempered or cooled are in particular printing plate cylinders, blanket cylinders, impression cylinders and inking unit rollers, which transfer the printing ink from an ink source to the printing plate cylinder. Good printing qualities are achieved when the printing plate cylinder has a temperature between 24 o and 27 o C.

Vergleichbare Temperierungssysteme sind aus den japanischen Patentanmeldungsveröffentlichungen Nr. 56-127457 und 1-72846, aus der EP 0 480 230 A1, US 1 749 316, GB 1 534 340, DE-OS 19 53 590 und DE-OS 35 41 458 A1 bekannt.Comparable temperature control systems are known from Japanese Patent Application Publications Nos. 56-127457 and 1-72846, from EP 0 480 230 A1, US 1 749 316, GB 1 534 340, DE-OS 19 53 590 and DE-OS 35 41 458 A1 .

Durch die Erfindung soll die Aufgabe gelöst werden, einen besseren Temperierungs-Wirkungsgrad zu erzielen. Durch die Erfindung soll weniger Kühlenergie benötigt und gleichzeitig eine schnellere Temperaturanpassung des zu temperierenden Zylinders an die gewünschte Sollwert-Temperatur erzielt werden.The object of the invention is to achieve a better temperature control efficiency. The invention is intended to require less cooling energy and at the same time to achieve a faster temperature adjustment of the cylinder to be tempered to the desired setpoint temperature.

Diese Aufgabe wird gemäß der Erfindung durch die kennzeichnenden Merkmale von Anspruch 1 gelöst.This object is achieved according to the invention by the characterizing features of claim 1.

Durch die Erfindung wird mit verhältnismäßig hohem Druck mindestens ein, vorzugsweise eine Vielzahl von Kaltluftstrahlen auf eine Mantelfläche eines zu temperierenden Druckwerkszylinders geblasen. Vom Zylinder abgelenkte Kaltluft wird in einen Rezirkulationskreislauf gesaugt und getrennt von den Kaltluftstrahlen erneut auf die Mantelfläche des zu kühlenden Zylinders geblasen. Die Luft des Rezirkulationskreislaufes wird nicht mit der Kaltluft vermischt, welche auf den Zylinder geblasen wird, sondern kann sich erst nach Berührung des Zylinders mit ihr vermischen und dann wieder rezirkuliert werden.By means of the invention, at least one, preferably a large number of cold air jets are blown onto a lateral surface of a printing unit cylinder to be temperature-controlled at a relatively high pressure. Cold air deflected by the cylinder is fed into a recirculation circuit sucked and blown separately from the cold air jets again onto the outer surface of the cylinder to be cooled. The air of the recirculation circuit is not mixed with the cold air that is blown onto the cylinder, but can only mix with it after touching the cylinder and then be recirculated again.

Vorzugsweise wird ein Teil der auf den Zylinder geblasenen Kaltluft und ein Teil der rezirkulierten Luft dem Lufteinlaß eines Kaltlufterzeugers zugeführt, welcher die Luft kühlt, so daß sie anschließend wieder als Kaltluft auf den Zylinder geblasen werden kann. Die Luft, welche zum Kaltlufterzeuger zurückgeführt wird, kann entweder dem Rezirkulationskreislauf entzogen werden, oder es kann der Leckstrom sein, welcher zwischen der Mantelfläche des zu kühlenden Zylinders und der Kühlluftvorrichtung entweicht, durch welche die Kaltluft und die rezirkulierte Luft auf die Mantelfläche des Zylinders geblasen wird.Preferably, part of the cold air blown onto the cylinder and part of the recirculated air are fed to the air inlet of a cold air generator, which cools the air so that it can then be blown onto the cylinder again as cold air. The air which is returned to the cold air generator can either be withdrawn from the recirculation circuit or it can be the leakage current which escapes between the outer surface of the cylinder to be cooled and the cooling air device, through which the cold air and the recirculated air are blown onto the outer surface of the cylinder becomes.

Weitere Merkmale der Erfindung sind in den Unteransprüchen enthalten.Further features of the invention are contained in the subclaims.

Die Erfindung wird im folgenden mit Bezug auf die Zeichnungen anhand einer bevorzugten Ausführungsform als Beispiel beschrieben. Die Zeichnungen zeigen in

Fig. 1
schematisch einen Querschnitt durch einen Teil eines Temperierungssystems nach der Erfindung, in
Fig. 2
eine schematische Längsansicht des Temperierungssystems für Druckmaschinenzylinder von Fig. 1 und in
Fig. 3
schematisch einen Querschnitt ähnlich Fig. 1 durch eine weitere Ausführungsform nach der Erfindung.
The invention is described below with reference to the drawings using a preferred embodiment as an example. The drawings show in
Fig. 1
schematically shows a cross section through part of a temperature control system according to the invention, in
Fig. 2
is a schematic longitudinal view of the temperature control system for printing press cylinders of Fig. 1 and in
Fig. 3
schematically shows a cross section similar to FIG. 1 through a further embodiment according to the invention.

Das in den Fig. 1 und 2 dargestellte Temperierungssystem nach der Erfindung für Druckmaschinenzylinder enthält eine Kühlluftvorrichtung 2, welche gegenüber der Mantelfläche 4 eines zu kühlenden Zylinders 6 angeordnet ist und sich im wesentlichen über die gesamte Zylinderlänge erstreckt, und einen extern von der Kühlluftvorrichtung angeordneten Kaltlufterzeuger 8. Der Kaltlufterzeuger 8 enthält einen Wärmetauscher 10 mit einem Kältemittelkreislauf zur Kühlung von Luft, welche von einem Lufteinlaß 12 durch den Wärmetauscher 10 strömt und von einem dem Kaltlufterzeuger 8 zugeordneten Gebläse 14 über eine Kaltluftzuleitung 16 einer Druckluftleitung 18 der Kühlluftvorrichtung 2 zugeführt wird. Die Druckluftleitung 18 erstreckt sich über die Länge des Zylinders 6 und ist mit einer Vielzahl der Mantelfläche 4 mit kleinem Abstand gegenüberliegenden Blasluftöffnungen oder Düsen 20 versehen, welche die Kaltluft mit hohem Druck und hoher Strömungsgeschwindigkeit gegen die Mantelfläche 4 des zu temperierenden Zylinders 6 blasen. Die von den Blasluftöffnungen oder Düsen 20 auf den Zylinder 6 geblasene Kaltluft ist durch Pfeile 22 schematisch dargestellt.1 and 2 for a printing press cylinder contains a cooling air device 2, which is arranged opposite the outer surface 4 of a cylinder 6 to be cooled and extends essentially over the entire length of the cylinder, and a cold air generator arranged externally from the cooling air device 8. The cold air generator 8 contains a heat exchanger 10 with a refrigerant circuit for cooling air which flows from an air inlet 12 through the heat exchanger 10 and is fed from a blower 14 assigned to the cold air generator 8 via a cold air supply line 16 to a compressed air line 18 of the cooling air device 2. The compressed air line 18 extends over the length of the cylinder 6 and is provided with a multiplicity of blown air openings or nozzles 20 which are located at a small distance from one another and which blow the cold air at high pressure and high flow velocity against the outer surface 4 of the cylinder 6 to be tempered. The cold air blown from the blown air openings or nozzles 20 onto the cylinder 6 is shown schematically by arrows 22.

Die Kühlluftvorrichtung 2 besteht im wesentlichen aus einem Außengehäuse 24, einem darin mit gegenseitigem Abstand angeordneten Innengehäuse 26, einem im Innengehäuse 26 mit gegenseitigem Abstand angeordneten und die Druckluftleitung 18 bildenden Rohr und einem Gebläse 28 auf der vom Zylinder 6 abgewandten Seite der Druckluftleitung 18. Die Druckseite 29 des Gebläses 28 zeigt in Richtung zur Druckluftleitung 18 und zum Zylinder 6. Die genannten "gegenseitigen Abstände" beziehen sich auf die in Fig. 1 dargestellte Querschnittansicht, während das Außengehäuse 24, das Innengehäuse 26 und die Druckluftleitung 18 an den stirnseitigen Enden mechanisch miteinander verbunden sein können. Das Gebläse 28 ist schematisch als Ventilatorflügel dargestellt. Je nach Länge des Zylinders 6 können ein oder mehrere Gebläse 28 in Zylinderlängsrichtung nebeneinander angeordnet sein. Beispielsweise sind in Fig. 2 drei Gebläse 28 über die Länge des Zylinders 6 verteilt nebeneinander angeordnet.The cooling air device 2 consists essentially of an outer housing 24, an inner housing 26 arranged therein at a mutual spacing, a tube arranged in the inner housing 26 at a mutual spacing and forming the compressed air line 18, and a blower 28 on the side of the compressed air line 18 facing away from the cylinder 6 The pressure side 29 of the blower 28 points in the direction of the compressed air line 18 and the cylinder 6 "Mutual distances" refer to the cross-sectional view shown in FIG. 1, while the outer housing 24, the inner housing 26 and the compressed air line 18 can be mechanically connected to one another at the front ends. The fan 28 is shown schematically as a fan blade. Depending on the length of the cylinder 6, one or more blowers 28 can be arranged next to one another in the longitudinal direction of the cylinder. For example, in FIG. 2, three fans 28 are arranged next to one another over the length of the cylinder 6.

Bei jedem Gebläse 28 bildet der Zwischenraum zwischen dem Außengehäuse 24 und dem Innengehäuse 26 zwei zueinander parallele Saugzweige 30, 32 des betreffenden Gebläses 28, und der Zwischenraum zwischen dem Innengehäuse 26 und der Druckluftleitung 18 bildet zwei zueinander parallele Druckzweige 34 und 36 des betreffenden Gebläses 28. Die Saugzweige 30 und 32 und Druckzweige 34 und 36 bilden zusammen einen internen Luft-Rezirkulationskreislauf mit zwei zueinander parallelen Kreislaufzweigen, welche zusammen ein gemeinsames Gebläse 28 haben und von welchen der eine Kreislaufzweig aus dem unteren Saugzweig 30 und dem unteren Druckzweig 34 und der andere Kreislaufzweig aus dem oberen Saugzweig 32 und dem oberen Druckzweig 36 besteht. Die vom Zylinder 6 abgewandte Längsseite 38 des Innengehäuses 26 ist offen und bildet für beide Kreislaufzweige 30, 34 und 32, 36 den Einlaß des zugehörigen Gebläses 28. Die gekühlte Luft der Druckluftleitung 18 strömt durch die Blasluftöffnungen 20 auf einen ersten Winkelbereich I der Mantelfläche 4 des Zylinders 6. Direkt neben dem ersten Winkelbereich I befindet sich je ein zweiter Winkelbereich II des Zylinders 6, auf welchen rezirkulierte Luft aus Rezirkulationsauslässen 44 und 46 der Druckzweige 34 und 36 des internen Rezirkulationskreislaufes mittels des Gebläses 28 geblasen wird. Die beiden Rezirkulationsauslässe 44 und 46 befinden sich unterhalb und oberhalb direkt neben den Blasluftöffnungen 20. Direkt neben dem unteren Rezirkulationsauslaß 44 befindet sich unterhalb von ihm ein unterer Rezirkulationseinlaß 40 des unteren Saugzweiges 30 gegenüber einem unteren dritten Winkelbereich III des Zylinders 6. Direkt neben dem oberen Rezirkulationsauslaß 46 befindet sich oberhalb von ihm ein oberer Rezirkulationseinlaß 42 des oberen Saugzweiges 32 zum Absaugen von Luft von einem oberen dritten Winkelbereich III des Zylinders 6. Kaltluft 22 der Blasluftöffnungen oder Düsen 20 und rezirkulierte Luft der Rezirkulationsauslässe 44 und 46 wird je auf der Mantelfläche 4 des Zylinders 6 in Zylinderumfangsrichtung abgelenkt, danach miteinander vermischt, und dann vom Gebläse 28 durch die Rezirkulationseinlässe 40 und 42 abgesaugt und durch das Gebläse 28 hindurch über die Druckzweige 34 und 36 wieder auuf die Mantelfläche 4 des Zylinders 6 geblasen.For each blower 28, the space between the outer housing 24 and the inner housing 26 forms two mutually parallel suction branches 30, 32 of the blower 28 in question, and the space between the inner housing 26 and the compressed air line 18 forms two mutually parallel pressure branches 34 and 36 of the blower 28 in question The suction branches 30 and 32 and pressure branches 34 and 36 together form an internal air recirculation circuit with two mutually parallel circuit branches, which together have a common blower 28 and of which one circuit branch from the lower suction branch 30 and the lower pressure branch 34 and the other Circuit branch consists of the upper suction branch 32 and the upper pressure branch 36. The longitudinal side 38 of the inner housing 26 facing away from the cylinder 6 is open and forms the inlet of the associated blower 28 for both circuit branches 30, 34 and 32, 36. The cooled air of the compressed air line 18 flows through the blown air openings 20 to a first angular range I of the lateral surface 4 of Cylinder 6. Directly next to the first angular range I is a second angular range II of the cylinder 6, onto which recirculated air is blown from the recirculation outlets 44 and 46 of the pressure branches 34 and 36 of the internal recirculation circuit by means of the blower 28. The two recirculation outlets 44 and 46 are located below and above, directly next to the blown air openings 20. Directly next to the lower recirculation outlet 44, there is a lower recirculation inlet 40 of the lower suction branch 30 opposite it, relative to a lower third angular region III of the cylinder 6. Directly next to the upper one Recirculation outlet 46 is above it an upper recirculation inlet 42 of the upper suction branch 32 for extracting air from an upper third angular region III of the cylinder 6. Cold air 22 of the blown air openings or nozzles 20 and recirculated air from the recirculation outlets 44 and 46 are each on the outer surface 4 of the cylinder 6 deflected in the circumferential direction of the cylinder, then mixed with one another, and then sucked off by the blower 28 through the recirculation inlets 40 and 42 and blown through the blower 28 through the pressure branches 34 and 36 onto the lateral surface 4 of the cylinder 6 again.

In der Kühlluftvorrichtung 2 ergibt sich durch die frisch zuströmende Kaltluft 22 ein Luftüberschuß. Dieser Luftüberschuß wird über eine Saugleitung 50 vom Gebläse 14 des Kaltlufterzeugers 8 zu seinem Lufteinlaß 12 zurückgesaugt, von seinem Wärmetauscher 10 gekühlt und über die Kaltluftzuleitung 16 erneut der Druckluftleitung 18 zugeführt. Auf diese Weise ist durch den Kaltlufterzeuger 8, seine Kaltluftzuleitung 16 und seine Saugleitung 50 ein externer Kühlkreislauf für die Luft gebildet. Durch die Saugleitung 50 des Kaltlufterzeugers 8 kann vom Zylinder 6 erwärmte Luft 52 aus dem Zwischenraum 53 zwischen dem Außengehäuse 24 und dem Innengehäuse 26 über eine im Außengehäuse 24 gebildete Saugöffnung 54 und/oder vom Zylinder 6 erwärmte Warmluft 56 aus einem unteren Spalt 58 und einem oberen Spalt 60 abgesaugt werden, welcher je zwischen der Mantelfläche 4 des Zylinders 6 und einer gegenüberliegenden unteren Kante 62 und oberen Kante 64 des Außengehäuses 24 gebildet ist. Diese Kanten 62 und 64 des Außengehäuses 24 bilden auch die äußeren, längs zum Zylinder 6 verlaufenden Begrenzungen der Rezirkulationseinlässe 40 und 42. Die Drehzahl der Gebläse 28 des internen Rezirkulationskreislaufes und/oder die Drehzahl des Gebläses 14 des im externen Rezirkulationskreislauf liegenden Kaltlufterzeugers 8 und/oder die Temperatur des Kältemittels im Wärmetauscher 10 können in Abhängigkeit von berührungslosen Temperatursensoren 65, 66 und 68 von einem Mikroprozessor 70 eingestellt und geregelt werden. Die Temperatursensoren 65, 66 und 68 sind über die Länge des Zylinders 6 verteilt angeordnet und messen berührungslos die Temperatur seiner Mantelfläche 4.In the cooling air device 2, an excess of air results from the freshly flowing cold air 22. This excess air is sucked back via a suction line 50 from the blower 14 of the cold air generator 8 to its air inlet 12, cooled by its heat exchanger 10 and fed again to the compressed air line 18 via the cold air supply line 16. In this way, an external cooling circuit for the air is formed by the cold air generator 8, its cold air supply line 16 and its suction line 50. Through the Suction line 50 of the cold air generator 8 can air 52 heated by the cylinder 6 from the space 53 between the outer housing 24 and the inner housing 26 via a suction opening 54 formed in the outer housing 24 and / or warm air 56 heated by the cylinder 6 from a lower gap 58 and an upper gap 60 are sucked off, which is formed between the lateral surface 4 of the cylinder 6 and an opposite lower edge 62 and upper edge 64 of the outer housing 24. These edges 62 and 64 of the outer housing 24 also form the outer, longitudinal to the cylinder 6 boundaries of the recirculation inlets 40 and 42. The speed of the blower 28 of the internal recirculation circuit and / or the speed of the blower 14 of the cold air generator 8 and / located in the external recirculation circuit. or the temperature of the refrigerant in the heat exchanger 10 can be set and controlled by a microprocessor 70 as a function of non-contact temperature sensors 65, 66 and 68. The temperature sensors 65, 66 and 68 are arranged distributed over the length of the cylinder 6 and measure the temperature of its lateral surface 4 without contact.

Gemäß einer weiteren Ausführungsform nach der Erfindung können die Positionen der Rezirkulationseinlässe 40 und 42 mit den Positionen der Rezirkulationsauslässe 44 und 46 vertauscht werden, so daß die Rezirkulationseinlässe 40, 42 zwischen der Blasluftöffnung 20 und den Rezirkulationsauslässen 44, 46 liegen.According to a further embodiment according to the invention, the positions of the recirculation inlets 40 and 42 can be interchanged with the positions of the recirculation outlets 44 and 46, so that the recirculation inlets 40, 42 lie between the blow air opening 20 and the recirculation outlets 44, 46.

Das Temperierungssystem kann zur Kühlung von mehreren Zylindern verwendet werden. Bei der in Fig. 3 dargestellten Ausführungsform ist eine Kühlluftvorrichtung 2/2 vorgesehen, welche weitgehend identisch mit der Kühlluftvorrichtung 2 von Fig. 1 und 2 ist, und einander entsprechende Teile sind mit gleichen Bezugszahlen versehen. Die Kühlluftvorrichtung 2/2 von Fig. 3 bläst Kaltluft 22 durch die Blasöffnungen oder Düsen 20 auf einen ersten Zylinderumfangs-Winkelbereich I eines mittleren Zylinders 6, welcher beispielsweise ein Druckplattenzylinder ist. Am mittleren Zylinder 6 liegt ein unterer Zylinder 72, beispielsweise ein Druckzylinder, und ein oberer Zylinder 74, beispielsweise eine Farbwerkswalze, an. Die beiden Rezirkulationsauslässe 44 und 46 sind beidseitig direkt neben den Blasöffnungen oder Düsen 20 angeordnet und die beiden zweiten Winkelbereiche II schließen sich auf dem mittleren Zylinder 6 an den ersten Winkelbereich I an. Von den beiden Rezirkulationseinlässen 40 und 42 ist einer 40 über dem unteren Zylinder 72 zum Absaugen von Kühlluft aus einem dritten Zylinderumfangs-Winkelbereich III des unteren Zylinders 72 gebildet, und der andere 42 ist über dem oberen Zylinder 74 zum Absaugen von Kühlluft aus einem dritten Zylinderumfangsbereich III des oberen Zylinders 74 gebildet. Die drei Winkelbereiche I, II und III sind durch einen unteren Kanal 82 und einen oberen Kanal 84 miteinander verbunden, welche je durch die Zylinder 6, 72 und 74 und die ihnen gegenüberliegende Kühlluftvorrichtung 2/2 gebildet sind. Gemäß einer nicht dargestellten Ausführungsform können die Positionen des dritten Winkelbereiches III und ihrer Rezirkulationseinlässe 40 und 42 mit den Positionen der zweiten Winkelbereiche II und ihren Rezirkulationsauslässen 44 und 46 vertauscht werden.The temperature control system can be used to cool several cylinders. In the embodiment shown in FIG. 3, a cooling air device 2/2 is provided, which is largely identical to the cooling air device 2 of FIGS. 1 and 2, and corresponding parts are provided with the same reference numbers. The cooling air device 2/2 of FIG. 3 blows cold air 22 through the blowing openings or nozzles 20 onto a first cylinder circumferential angular range I of a middle cylinder 6, which is for example a printing plate cylinder. A lower cylinder 72, for example an impression cylinder, and an upper cylinder 74, for example an inking roller, are in contact with the middle cylinder 6. The two recirculation outlets 44 and 46 are arranged on both sides directly next to the blowing openings or nozzles 20, and the two second angular regions II adjoin the first angular region I on the middle cylinder 6. Of the two recirculation inlets 40 and 42, one 40 is formed over the lower cylinder 72 for extracting cooling air from a third cylinder circumferential angular range III of the lower cylinder 72, and the other 42 is over the upper cylinder 74 for extracting cooling air from a third cylinder circumferential region III of the upper cylinder 74 is formed. The three angular ranges I, II and III are connected to one another by a lower duct 82 and an upper duct 84, which are each formed by the cylinders 6, 72 and 74 and the cooling air device 2/2 opposite them. According to an embodiment which is not shown, the positions of the third angular region III and their recirculation inlets 40 and 42 can be interchanged with the positions of the second angular regions II and their recirculation outlets 44 and 46.

Claims (12)

  1. Temperature-stabilizing system having a blowing device (18, 16, 14, 12, 10, 8), which comprises at least one compressed-air line (18) and at least one blow hole (20) formed in the compressed-air line for blowing cold air (22) onto an opposing first cylinder-periphery angular region (I) of a first cylinder (6),
    characterized in
    that at least one recirculation circuit (30, 34, 32, 36, 28) is provided, which is separate from the cold air (22) supplied to the compressed-air line (18) and extracts cold air, which has been blown by the blowing device (18, 16, 14, 12, 10, 8) onto the surface area (4) of the first cylinder (6) in the first angular region (I), from at least one third cylinder-periphery angular region (III) of the first cylinder (6) or of a cylinder (72, 74), which is adjacent to the first cylinder and which in relation to the direction of rotation of the first cylinder (6) lies before and/or after the first angular region (I), through a recirculation inlet (40, 42) and then blows it through a recirculation outlet (44, 46) onto at least one second cylinder-periphery angular region (II) of the first cylinder (6) or of the cylinder (74, 76), which is adjacent to the first cylinder and which in relation to the direction of rotation of the first cylinder (6) lies before and/or after the first angular region (I) and before and/or after the third angular region (III), and that the recirculation circuit (30, 34, 32, 36, 28) comprises at least one blower (28) for generating the recirculation air flow.
  2. Temperature-stabilizing system according to claim 1,
    characterized in
    that the second angular region (II) lies between the first angular region (I) and the third angular region (III).
  3. Temperature-stabilizing system according to claim 1,
    characterized in
    that the third angular region (III) lies between the first angular region (I) and the second angular region (II).
  4. Temperature-stabilizing system according to one of the preceding claims,
    characterized in
    that the at least one compressed-air line (18) and the recirculation circuit (30, 34, 32, 36, 28) are each of a size which extends substantially over the entire length of the cylinder (6).
  5. Temperature-stabilizing system according to one of the preceding claims,
    characterized in
    that the recirculation circuit (30, 34, 32, 36, 28) is disposed around the compressed-air line (18), that the at least one blower (28) is disposed at the side of the compressed-air line (18) remote from the cylinder (6), that the recirculation circuit comprises circuit portions (30, 34, 32, 36), which in relation to the direction of rotation of the cylinder (6) are disposed before and/or after the compressed-air line (18) in each case laterally of said compressed-air line and which extend between a point close to the surface area (4) of the relevant cylinder (6, 72, 74) and the blower (28).
  6. Temperature-stabilizing system according to one of the preceding claims,
    characterized in
    that the recirculation circuit (30, 34, 32, 36, 28) comprises two parallel circuit branches (30, 34; 32, 36) of which, in relation to the direction of rotation of the first cylinder (6), one has its recirculation inlet (40 or 42) before the blow hole (20) and the other has its recirculation inlet (42 or 40) after the blow hole (20).
  7. Temperature-stabilizing system according to claim 6,
    characterized in
    that the recirculation inlets (40, 42) of both parallel circuit branches (30, 34; 32, 36) are connected in terms of flow to the suction side (at 38) of the same blower (28).
  8. Temperature-stabilizing system according to claim 6 or 7,
    characterized in
    that the two parallel circuit branches (30, 34; 32, 36) each have a recirculation outlet (44, 46), which recirculation outlets are disposed in relation to the direction of rotation of the first cylinder (6) one before and the other after the at least one blow hole (20).
  9. Temperature-stabilizing system according to claim 8,
    characterized in
    that the recirculation outlets (44, 46) of the two parallel circuit branches (30, 34; 32, 36) are connected in terms of flow to the delivery side of the same blower (28).
  10. Temperature-stabilizing system according to one of the preceding claims,
    characterized in
    that a second recirculation circuit is provided, which comprises a cold air generator (8) for generating the cold air (22), at least one blower (14) for circulating air in the second recirculation circuit, a compressed-air supply line (16) for supplying the cold air from the cold air generator (8) to the compressed-air line (18), and a suction line (50) for extracting air from the first recirculation circuit (30, 34; 32, 36) and returning said extracted air to an inlet (12) of the cold air generator (8) for renewed cooling and subsequent return into the compressed-air line (18).
  11. Temperature-stabilizing system according to one of the preceding claims,
    characterized in
    that the at least one recirculation circuit (30, 34; 32, 36, 28) is formed inside a cooling air device (2; 2/2), which is constructed substantially in the form of a beam or box which extends substantially over the entire length of the cylinder (6, 72, 74).
  12. Temperature-stabilizing system according to claim 11,
    characterized in
    that the cooling air device (2/2) directs the air over a plurality of cylinders (6, 72, 74).
EP94107097A 1993-08-10 1994-05-06 Cooling system for cylinders of printing machines Expired - Lifetime EP0638418B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326835 1993-08-10
DE4326835A DE4326835A1 (en) 1993-08-10 1993-08-10 Temperature control system for printing press cylinders

Publications (2)

Publication Number Publication Date
EP0638418A1 EP0638418A1 (en) 1995-02-15
EP0638418B1 true EP0638418B1 (en) 1996-12-04

Family

ID=6494861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107097A Expired - Lifetime EP0638418B1 (en) 1993-08-10 1994-05-06 Cooling system for cylinders of printing machines

Country Status (5)

Country Link
US (1) US5452657A (en)
EP (1) EP0638418B1 (en)
JP (1) JP2795808B2 (en)
AT (1) ATE145861T1 (en)
DE (2) DE4326835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881643A (en) * 1995-11-08 1999-03-16 Heidelberger Druckmaschinen Ag Device for cooling the surface of a blanket of a printing unit cylinder
US6571711B1 (en) 1999-10-29 2003-06-03 Air Motion Systems, Inc. Print cylinder cooling system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523076C5 (en) * 1995-06-24 2007-05-16 Heidelberger Druckmasch Ag Device for achieving a perfect support of a printing substrate in a printing press
US5758580A (en) * 1996-03-13 1998-06-02 Heidelberger Druckmaschinen Ag Printing unit using various ink types
US6209456B1 (en) 1996-03-13 2001-04-03 Heidelberger Druckmaschinen Ag Web- and sheet-fed printing unit using various ink types, particularly water-based inks
US5694848A (en) * 1996-03-13 1997-12-09 Heidelberger Druckmaschinen Ag Printing unit for water based inks
IL122953A (en) 1998-01-15 2000-11-21 Scitex Corp Ltd Printing member for use with a printing system and method of imaging the printing member
DE19926749B4 (en) * 1999-06-11 2008-11-20 Heidelberger Druckmaschinen Ag Inking unit for a printing press
DE19942118A1 (en) * 1999-09-03 2001-03-08 Technotrans Ag Process for cooling and conditioning air for printing press temperature control and related cooling and conditioning arrangement
DE19945272B4 (en) * 1999-09-22 2004-03-11 Baldwin Germany Gmbh Compressed air supply device of a printing press or a sheet handling device
IT1314474B1 (en) * 2000-01-28 2002-12-18 Perini Fabio Spa DEVICE AND METHOD FOR CLEANING A SURFACE OF A CYLINDER ROTATING, LIKE A CLICK CYLINDER OF A PRINTING MACHINE OR OTHER
DE10051230B4 (en) * 2000-10-16 2005-09-01 Aradex Ag Method for processing a web-shaped or sheet-shaped product
US6851359B2 (en) * 2001-06-22 2005-02-08 Sparflex Offset printing method and device
DE10152593A1 (en) 2001-10-24 2003-05-08 Koenig & Bauer Ag Device for printing material and printing unit cooling by means of cooled blown air on sheet-fed rotary printing machines
EP1600290B1 (en) * 2001-11-22 2006-08-23 Koenig &amp; Bauer Aktiengesellschaft Use of a printing ink in a printing group
DE10334657A1 (en) 2003-07-30 2005-02-17 Koenig & Bauer Ag Method and device for printing substrate and printing machine cooling
US6868608B2 (en) * 2003-08-18 2005-03-22 Presstek, Inc. Plate handling with thermal tensioning
DK176520B1 (en) * 2003-09-18 2008-07-07 Tresu Anlaeg As Sheet offset machine, drying unit and method for drying in sheet offset machine
DE102006056315B4 (en) * 2006-11-29 2018-05-30 Koenig & Bauer Ag Method for operating a short inking unit for offset rotary printing presses
DE102007052145A1 (en) * 2007-10-31 2009-05-14 Technotrans Ag Heat exchanger for parts of a printing machine
DE102009038032A1 (en) 2008-09-03 2010-03-04 Heidelberger Druckmaschinen Ag Sheet coating method for e.g. offset printing machine, involves using radiator of coating or printing machine for irradiation metal-effect coating and UV coating with cooling air-radiation and heated air-radiation radiation
JP7319714B2 (en) * 2016-07-26 2023-08-02 株式会社富田技研 Plate cylinder cooling device
JP6780841B2 (en) * 2016-07-26 2020-11-04 株式会社富田技研 Plate cylinder cooling device
JP6985761B2 (en) * 2016-07-26 2021-12-22 株式会社富田技研 Plate cylinder cooling device
CN111284119A (en) * 2020-04-09 2020-06-16 深圳市绍永福印刷有限公司 Printing roller cooling device for printing equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2319853A (en) * 1939-05-10 1943-05-25 Goss Printing Press Co Ltd Printing method and means
US2651992A (en) * 1949-03-05 1953-09-15 Goebel Ag Web printing press
JPS56127457A (en) * 1980-03-13 1981-10-06 Nippon Baldwin Kk Cooler for ink roller
US4627345A (en) * 1984-02-21 1986-12-09 Lockwood Technical, Inc. Rotary screen printing apparatus
US5074213A (en) * 1987-08-04 1991-12-24 Seiichi Kurosawa Thermoregulator of a block cylinder used for an offset press
DE9017795U1 (en) * 1990-10-08 1992-03-12 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
DE4202544A1 (en) * 1992-01-30 1993-08-05 Baldwin Gegenheimer Gmbh PRINT PLATE TEMPERATURE SYSTEM FOR A PRINTING MACHINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881643A (en) * 1995-11-08 1999-03-16 Heidelberger Druckmaschinen Ag Device for cooling the surface of a blanket of a printing unit cylinder
US6571711B1 (en) 1999-10-29 2003-06-03 Air Motion Systems, Inc. Print cylinder cooling system

Also Published As

Publication number Publication date
ATE145861T1 (en) 1996-12-15
DE4326835A1 (en) 1995-02-16
EP0638418A1 (en) 1995-02-15
DE59401192D1 (en) 1997-01-16
JPH07148905A (en) 1995-06-13
US5452657A (en) 1995-09-26
JP2795808B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
EP0638418B1 (en) Cooling system for cylinders of printing machines
EP0553447B1 (en) Cooling system for printing plates in a printing machine
EP0652104B1 (en) Printing unit for waterless offset printing
EP0019780A1 (en) Cooling device for electronic circuit modules
DE69915646T2 (en) METHOD AND DEVICE FOR IMPROVING THE DRYING PERFORMANCE OF A HOOD THAT COVERS A GLOSS CYLINDER
EP0627308B1 (en) Device for equilizing temperature of rotary component members in printing units
EP0318885A2 (en) Heat exchanger, especially a cooler for the engine of a vehicle
DE4431188C2 (en) Printing unit for waterless offset printing
EP0778131B2 (en) Sheet guiding system for a printing machine
EP0480230A1 (en) Temperature regulating device for a printing form on a form cylinder for waterless offset printing
DE3110447C2 (en)
EP1016521A1 (en) Temperature-regulating device of a printing machine
EP0693375B1 (en) Temperature regulating device for a printing press
DE19641031A1 (en) Device for tempering a printing unit cylinder in the printing unit of a rotary printing press
DE60037672T2 (en) COOLING SYSTEM FOR PRESSURE CYLINDERS
EP3781404B1 (en) Processing machine comprising a radiation dryer and method of operating
EP0697285B2 (en) System for controlling temperature for a printing press
DE19945272B4 (en) Compressed air supply device of a printing press or a sheet handling device
EP0699525B1 (en) Cooling system for printing machines
DE102018219859B4 (en) Refrigeration system for a vehicle and vehicle with a refrigeration system
EP1502738B1 (en) Method and means for cooling the printing product and the printing machine
EP1035385B1 (en) Method for temperature control of a hall and device for curring out this method
EP0450425A2 (en) Arrangement for heat-exchanger
DE19926749A1 (en) Ink mechanism for printer has ink transfer roller(s) subjected to air flow, forced delivery arrangement with hood for feeding air flow along roller surface on part of its circumference
DE102020002485A1 (en) Ventilation device for a vehicle cabin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19950508

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961204

REF Corresponds to:

Ref document number: 145861

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961205

REF Corresponds to:

Ref document number: 59401192

Country of ref document: DE

Date of ref document: 19970116

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: BE

Effective date: 19970531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: BALDWIN-GEGENHEIMER G.M.B.H.

Effective date: 19970531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030523

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040507

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070515

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202