EP0636796B1 - Hydraulischer Verstärker, insbesondere für Steuerventile - Google Patents

Hydraulischer Verstärker, insbesondere für Steuerventile Download PDF

Info

Publication number
EP0636796B1
EP0636796B1 EP19930112185 EP93112185A EP0636796B1 EP 0636796 B1 EP0636796 B1 EP 0636796B1 EP 19930112185 EP19930112185 EP 19930112185 EP 93112185 A EP93112185 A EP 93112185A EP 0636796 B1 EP0636796 B1 EP 0636796B1
Authority
EP
European Patent Office
Prior art keywords
jet
hydraulic
hydraulic amplifier
amplifier
deflection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930112185
Other languages
English (en)
French (fr)
Other versions
EP0636796A1 (de
Inventor
Anton Haumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GmbH
Original Assignee
Moog GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog GmbH filed Critical Moog GmbH
Priority to DE59305886T priority Critical patent/DE59305886D1/de
Priority to EP19930112185 priority patent/EP0636796B1/de
Publication of EP0636796A1 publication Critical patent/EP0636796A1/de
Application granted granted Critical
Publication of EP0636796B1 publication Critical patent/EP0636796B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0436Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being of the steerable jet type

Definitions

  • the present invention relates to a hydraulic amplifier, in particular for control valves, servo or proportional valves according to the preamble of claim 1.
  • Servo and proportional valves are known from the prior art. These control valves essentially consist of a control piston and an electromechanical drive which generates a control pressure for the control piston via a hydraulic pilot control stage. When the control valve is operating, the drive generates a mechanical torque for the pilot stage in response to an electrical control signal. In the pilot control stage, the mechanical moment is converted into a liquid jet that changes its direction (see e.g. GB-A-2 030 325).
  • the jet of liquid is directed at two receiver openings, each of which is connected to the end faces of the control piston via a connecting line. If the liquid jet is directed evenly at both receiver openings, it causes the same control pressure on both ends of the control piston. If, on the other hand, the jet changes its direction so that one of the two receiver openings is exposed to a larger jet pressure, the control pressure on the end face of the control piston connected to this opening increases. The other receiver opening, on the other hand, experiences a lower jet pressure, which lowers the control pressure on the other end. The resulting pressure difference moves the spool in a desired direction. At the same time, hydraulic fluid flows from the other receiver opening via a return line back into a supply tank.
  • the electromechanical drive is provided with a movable armature which is firmly connected to a jet pipe of the hydraulic amplifier. Inside the jet pipe there is a nozzle from which hydraulic fluid flows out under operating pressure. A deflection of the armature is transferred directly to the nozzle of the jet pipe, which changes the direction of the emerging liquid jet.
  • the liquid jet emerges from a fixed nozzle and is changed in its direction by a downstream jet deflecting element.
  • the mechanical moment of the drive acts on the movable beam deflection element, which, for example, has a suitably designed opening in the middle through which the beam can pass, as a result of which the liquid jet changes its direction.
  • the present invention has for its object to provide a hydraulic amplifier, in which the hydraulic power loss is low and shows a stable operating behavior.
  • the return opening is arranged such that it forms a variable throttle point for the hydraulic fluid flowing back, depending on the position of the beam deflection device.
  • the size of the return opening varies depending on the operating behavior of the amplifier. This is advantageous in that the return opening can be kept small in the neutral position of the valve, which reduces the hydraulic losses.
  • the stability of the amplifier is improved by a throttle point, the size of which is adapted to the operating behavior of the valve.
  • the variable throttle point has the advantage of being self-cleaning, i.e. Any dirt particles present in the hydraulic fluid can flow freely through a variable return opening.
  • the return opening is arranged laterally next to the beam deflecting device in such a way that the variable throttle point is thereby formed directly.
  • the beam deflection device also has the function a throttle valve.
  • the return opening is arranged essentially planar to the plane in which the beam deflection device is moved.
  • the beam deflection device has flat surfaces in those areas which face a return opening. The flat surfaces of the beam deflection device reduce the flow through the throttle point, as a result of which the hydraulic power loss in the neutral position is even lower.
  • Two return openings are preferably arranged opposite one another in the amplifier, such that the beam deflection device can be moved between the openings. This symmetrical arrangement of the return openings causes particularly favorable flow conditions in the amplifier, which further improves their stability during operation.
  • the beam deflection device is designed as a pivotable jet pipe with a jet nozzle mounted therein.
  • the beam deflection device is designed as a stationary nozzle with a movable deflection element connected downstream.
  • the hydraulic booster 3 has a jet pipe 6 connected to the armature of the drive (not shown), in the interior of which a nozzle 8 is mounted.
  • the jet pipe or the nozzle are directed to a receiver 4 with two receiver openings 5, which are connected via control lines 7 to the end faces of the control piston of a control valve.
  • two opposing return nozzles 10 are arranged laterally next to the lower end of the jet pipe, the respective return openings 9 of which face the jet pipe 6.
  • the return nozzles run essentially transversely to the axial direction of the jet pipe.
  • the jet pipe is arranged approximately centrally between the two return nozzles 10.
  • the jet pipe 6 forms, together with the return nozzle 10, a throttle point which is variable depending on the position of the jet pipe.
  • the jet pipe is in its neutral position, which is shown in all figures. Hydraulic fluid with a suitable operating pressure is supplied to the jet pipe via a supply line, not shown. As a result, a jet of liquid emerges from the nozzle 8 of the jet pipe and is uniform is directed to the receiver openings 5. The resulting control pressure on the two end faces of the control valve is therefore the same.
  • the throttling points which form between the jet pipe 6 and the openings 9 of the return nozzles 10 are relatively small in the neutral position. Therefore, only a small amount of liquid flows through the two throttling points, which means that the hydraulic power loss is small. Due to the small amount of liquid flowing out, the pressure in the control lines 7 increases. This in turn increases the uniform control pressure (centering pressure) for the end faces of the control piston.
  • the small throttle point in the neutral position both significantly reduces the amount of liquid flowing out through the return nozzles and thus the power loss, and at the same time increases the control pressure which centers the control piston in the zero position. This largely avoids instabilities and vibrations in the system.
  • the drive moves the jet pipe 6 in one of the two directions, which are represented by arrows in FIGS. 1 and 3.
  • the liquid jet emerging from the nozzle 8 is directed onto one of the two receiver openings 5.
  • the control pressure on that end face of the control piston which is connected to this receiver opening increases, as a result of which the control piston moves.
  • liquid flows out of the other receiver opening which must flow to the supply tank via the return lines.
  • the throttle point between the outer circumference of the jet pipe 6 and the return openings 9 has increased due to the movement of the jet pipe. Therefore, the liquid flowing out of the other receiver opening can easily flow back via the return nozzles in the direction of the supply tank.
  • hydraulic fluid (useful flow) flowing through the amplifier is significantly increased compared to the leakage in the neutral position.
  • the resulting changed flow conditions of the hydraulic fluid improve the stability behavior of the amplifier in the deflected position of the jet pipe.
  • variable throttle point provided according to the invention in an amplifier improves the flow conditions of the hydraulic fluid as a function of the operating behavior of the amplifier. This reduces the hydraulic power loss in the neutral position and the stability of the amplifier is increased in the entire operating range.
  • An alternative embodiment of the beam deflection device comprises a stationary nozzle and a downstream deflection element.
  • the movable deflecting element can consist, for example, of a plate with a through hole for the liquid jet to be deflected. Moving the plate changes the liquid jet passing through in the direction of one of the two receiving openings and at the same time causes the return openings to open and close, so that the hydraulic booster functions essentially exactly as the embodiment described above with reference to the drawings.
  • jet deflection device jet pipe according to the first embodiment or plate-shaped deflection element according to the second embodiment
  • flat areas at the areas where the device faces a return opening.
  • the application of the hydraulic booster according to the invention is not limited to use as a pilot stage in a control valve. Rather, the amplifier itself can be used as a servo valve without a control piston, with it directly influencing the fluidic power flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf einen hydraulischen Verstärker, insbesondere für Steuerventile, Servo- oder Proportionalventile nach dem Oberbegriff des Patentanspruchs 1.
  • Aus dem Stand der Technik sind Servo- und Proportionalventile bekannt. Diese Steuerventile bestehen im wesentlichen aus einem Steuerkolben sowie einem elektromechanischen Antrieb, der über eine hydraulische Vorsteuerstufe einen Steuerdruck für den Steuerkolben erzeugt. Im Betrieb des Steuerventils erzeugt der Antrieb auf ein elektrisches Steuersignal hin ein mechanisches Moment für die Vorsteuerstufe. In der Vorsteuerstufe wird das mechanische Moment in einen in seiner Richtung veränderlichen Flüssigkeitsstrahl umgesetzt (siehe z.B. GB-A-2 030 325).
  • Diese hydraulischen Verstärker arbeiten nach dem sogenannten Strahlablenkprinzip. Dabei wird der Flüssigkeitsstrahl auf zwei Empfängeröffnungen gerichtet, die jeweils über eine Verbindungsleitung mit den Stirnseiten des Steuerkolbens verbunden sind. Wenn der Flüssigkeitsstrahl gleichmäßig auf beide Empfängeröffnungen gerichtet ist, bewirkt er einen gleichen Steuerdruck an beiden Stirnseiten des Steuerkolbens. Ändert sich dagegen der Strahl in seiner Richtung, so daß eine der beiden Empfängeröffnungen einem größeren Strahldruck ausgesetzt wird, so erhöht sich der Steuerdruck an der mit dieser Öffnung verbundenen Stirnseite des Steuerkolbens. Die andere Empfängeröffnung erfährt dagegen einen geringeren Strahldruck, wodurch sich der Steuerdruck auf der anderen Stirnseite erniedrigt. Die auf diese Weise entstehende Druckdifferenz bewegt den Steuerkolben in eine gewünschte Richtung. Gleichzeitig strömt Hydraulikflüssigkeit aus der anderen Empfängeröffnung über eine Rücklaufleitung zurück in einen Versorgungstank.
  • In einer Ausführung des hydraulischen Verstärkers ist der elektromechanische Antrieb mit einem bewegbaren Anker versehen, der mit einem Strahlrohr des hydraulischen Verstärkers fest verbunden ist. Im Inneren des Strahlrohrs befindet sich eine Düse, aus der Hydraulikflüssigkeit unter Betriebsdruck ausströmt. Eine Auslenkung des Ankers überträgt sich direkt auf die Düse des Strahlrohrs, wodurch der austretende Flüssigkeitsstrahl in seiner Richtung verändert wird.
  • In einer anderen Ausführung des hydraulischen Verstärkers tritt der Flüssigkeitsstrahl aus einer ortfesten Düse aus und wird durch ein nachgeschaltetes Strahlablenkelement in seiner Richtung verändert. Dabei wirkt das mechanische Moment des Antriebs auf das bewegliche Strahlablenkelement, das beispielsweise in der Mitte eine geeignet konstruierte Öffnung besitzt, durch die der Strahl hindurchtreten kann, wodurch der Flüssigkeitsstrahl sein Richtungsänderung erfährt.
  • Es wird bei den bekannten, in Steuerventilen verwendeten Hydraulikverstärkern als nachteilig angesehen, daß in der Neutralstellung des Ventils, bei der sich der Steuerkolben in der Null-Stellung befindet, kontinuierlich Hydraulikflüssigkeit durch die Rücklaufleitung in den Versorgungstank zurückfließt. Dadurch entsteht eine hydraulische Verlustleistung, die je nach Betriebsdruck zwischen 300 und 400 Watt betragen kann.
  • Darüber hinaus treten bei den bekannten Hydraulikverstärkern durch die Strömungsverteilung der Hydraulikflüsigkeit Kräfte auf, wodurch die Vorsteuerstufe zu Instabilitäten neigt. Bei einem instabilen Verhalten des Verstärkers ist es insbesondere schwierig, das Steuerventil in der Neutralstellung genau zu positionieren. Für den Fall, daß der hydraulische Verstärker so konstruiert ist, daß er eine federnde Rückstelleinrichtung für das Strahlablenkelement oder das Strahlrohr aufweist, wird diese durch die auftretenden Schwingungen stark belastet, was zu einem Ermüdungsbruch und damit zu einem vollständigen Ausfall der Vorsteuerstufe führen kann.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen hydraulischen Verstärker anzugeben, bei der die hydraulische Verlustleistung gering ist und ein stabiles Betriebsverhalten zeigt.
  • Diese Aufgabe wird von einem hydraulischen Verstärker mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Bei dem erfindungsgemäßen Verstärker ist die Rücklauföffnung so angeordnet, daß sie in Abhängigkeit von der Stellung der Strahlablenkeinrichtung eine variable Drosselstelle für die zurückströmende Hydraulikflüssigkeit bildet. Bei einem so ausgebildeten Verstärker variiert die Größe der Rücklauföffnung in Abhängigkeit von dem Betriebsverhalten des Verstärkers. Dies ist insofern vorteilhaft, daß in der Neutralstellung des Ventils die Rücklauföffnung klein gehalten werden kann, wodurch sich die hydraulischen Verluste verringern. Darüber hinaus verbessert sich die Stabilität des Verstärkers durch eine Drosselstelle, deren Größe an das Betriebsverhalten des Ventils angepaßt ist. Schließlich besitzt die variable Drosselstelle den Vorteil, saß sie selbstreinigend ist, d.h. eventuell in der Hydraulikflüssigkeit vorhandene Schmutzpartikel können bei einer in der Größe variablen Rücklauföffnung ungehindert abströmen.
  • In einer bevorzugten Ausgestaltung des Verstärkers ist die Rücklauföffnung seitlich neben der Strahlablenkeinrichtung derart angeordnet, daß dadurch unmittelbar die variable Drosselstelle ausgebildet ist. Bei dieser Konstruktionsweise besitzt die Strahlablenkeinrichtung gleichzeitig die Funktion einer Drosselklappe.
  • In einer vorteilhaften Ausführung des Verstärkers ist die Rücklauföffnung im wesentlichen planar zu der Ebene angeordnet, in der die Strahlablenkeinrichtung bewegt wird. Bei einer solchen Anordnung der Rücklauföffnung ergeben sich günstige Strömungsverhältnisse für die Hydraulikflüssigkeit, welche sich stabilisierend auf den Verstärker auswirken.
  • In einer weiteren Ausgestaltung des Verstärkers weist die Strahlablenkeinrichtung in denjenigen Bereichen, die einer Rücklauföffnung gegenüberstehen, ebene Flächen auf. Die ebenen Flächen der Strahlablenkeinrichtung verringern den Durchfluß durch die Drosselstelle, wodurch die hydraulische Verlustleistung in der Neutralstellung noch geringer ist.
  • Vorzugsweise sind in dem Verstärker zwei Rücklauföffnungen einander gegenüber angeordnet, derart, daß die Strahlablenkeinrichtung zwischen den Öffnungen bewegbar ist. Diese symmetrische Anordnung der Rücklauföffnungen bewirkt besonders günstige Strömungsverhältnisse in dem Verstärker, wodurch sich deren Stabilität im Betrieb weiter verbessert.
  • In einer vorteilhaften Ausführungsform des Verstärkers ist die Strahlablenkeinrichtung als ein verschwenkbares Strahlrohr mit einer darin gelagerten Strahldüse ausgeführt.
  • In einer dazu alternativen Ausführungsform ist die Strahlablenkeinrichtung als eine ortsfeste Düse mit einem nachgeschalteten bewegbaren Ablenkelement ausgebildet.
  • Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen schrieben. Es zeigen:
  • Fig.1
    eine schematische Darstellung des hydraulischen Verstärkers gemäß der vorliegenden Erfindung;
    Fig.2
    ein Schnittbild durch den in Fig. 1 dargestellten hydraulischen Verstärker entlang der Linie B-B; und
    Fig.3
    eine vergrößerte schnittbildliche Ansicht entlang der in Fig. 1 gezeichneten Linie A-A des Verstärkers nach der Erfindung.
  • Gemäß Fig. 1 weist der hydraulische Verstärker 3 nach der Erfindung ein mit dem Anker des (nicht dargestellten) Antriebs verbundenes Strahlrohr 6 auf, in dessen Inneren eine Düse 8 gelagert ist. Das Strahlrohr bzw. die Düse sind auf einen Empfänger 4 mit zwei Empfängeröffnungen 5 gerichtet, die über Steuerleitungen 7 mit den Stirnflächen des Steuerkolbens eines Steuerventils in Verbindung stehen. Wie aus der Fig. 2 und 3 ersichtlich, sind seitlich neben dem unteren Ende des Strahlrohrs zwei sich gegenüberstehende Rücklaufdüsen 10 angeordnet, deren jeweilige Rücklauföffnungen 9 dem Strahlrohr 6 zugewandt sind. Die Rücklaufdüsen verlaufen im wesentlichen quer zur axialen Richtung des Strahlrohrs. Das Strahlrohr ist in etwa mittig zwischen den beiden Rücklaufdüsen 10 angeordnet. Das Strahlrohr 6 bildet zusammen mit der Rücklaufdüse 10 eine Drosselstelle, die in Abhängigkeit von der Stellung des Strahlrohrs variabel ist.
  • Im folgenden soll die Funktionsweise des erfindungsgemäßen Verstärkers erläutert werden. Zunächst befindet sich das Strahlrohr in seiner Neutralstellung, die in allen Figuren dargestellt ist. Dem Strahlrohr wird über eine nicht dargestellte Versorgungsleitung Hydraulikflüssigkeit mit einem geeigneten Betriebsdruck zugeführt. Dadurch tritt aus der Düse 8 des Strahlrohrs ein Flüssigkeitsstrahl aus, der gleichmäßig auf die Empfängeröffnungen 5 gerichtet ist. Der resultierende Steuerdruck auf die beiden Stirnflächen des Steuerventils ist daher gleich. Die Drosselstellen, welche sich zwischen dem Strahlrohr 6 und den Öffnungen 9 der Rücklaufdüsen 10 ausbilden, sind in der Neutralstellung relativ klein. Daher fließt nur eine geringe Menge Flüssigkeit durch die beiden Drosselstellen, wodurch die hydraulische Verlustleistung klein ist. Bedingt durch die geringe abströmende Menge Flüssigkeit steigt der Druck in den Steuerleitungen 7 an. Dies wiederum erhöht den gleichmäßigen Steuerdruck (Zentrierdruck) für die Stirnflächen des Steuerkolbens.
  • Bei dem erfindungsgemäßen Verstärker ist durch die kleine Drosselstelle in der Neutralstellung sowohl die durch die Rücklaufdüsen abströmende Flüssigkeitsmenge und damit die Verlustleistung deutlich herabgesetzt und gleichzeitig der Steuerdruck, welcher den Steuerkolben in der Null-Stellung zentriert, erhöht. Dadurch werden Instabilitäten und Schwingungen des Systems weitgehend vermieden.
  • Auf ein geeignetes Steuersignal hin bewegt der Antrieb das Strahlrohr 6 in eine der beiden Richtungen, die durch Pfeile in den Figuren 1 und 3 dargestellt sind. Dadurch richtet sich der aus der Düse 8 austretende Flüssigkeitsstrahl auf eine der beiden Empfängeröffnungen 5. Dies hat zur Folge, daß der Steuerdruck auf derjenigen Stirnfläche des Steuerkolbens, die mit dieser Empfängeröffnung verbunden ist, zunimmt, wodurch sich der Steuerkolben verschiebt. Gleichzeitig strömt aus der anderen Empfängeröffnung Flüssigkeit aus, die über die Rücklaufleitungen dem Versorgungstank zufließen muß. Durch die Bewegung des Strahlrohrs hat sich die Drosselstelle zwischen dem äußeren Umfang des Strahlrohrs 6 und den Rücklauföffnungen 9 vergrößert. Daher kann die aus der anderen Empfängeröffnung ausströmende Flüssigkeit leicht über die Rücklaufdüsen in Richtung des Versorgungstanks zurückströmen. Folglich ist die in der ausgelenkten Stellung des Strahlrohrs durch den Verstärker fließende Hydraulikflüssigkeit (Nutzfluß) gegenüber der Leckage in der Neutralstellung wesentlich erhöht. Die dadurch veränderten Strömungsverhältnisse der Hydraulikflüssigkeit verbessern das Stabilitätsverhalten des Verstärkers in der ausgelenkten Stellung des Strahlrohrs.
  • Im weiteren soll der selbstreinigende Effekt des hydraulischen Verstärkers kurz erläutert werden. Schmutzpartikel, die eventuell in der Hydraulikflüssigkeit enthalten sind, sammeln sich in der Neutralstellung des Verstärkers um die Drosselstelle herum an. Sobald das Strahlrohr 6 in eine der beiden Richtungen ausgelenkt wird, können die Partikel durch die sich vergrößernde Drosselstelle in die Rücklaufdüsen eindringen und in Richtung des Versorgungstanks abströmen.
  • Zusammenfassend ist festzustellen, daß die bei einem Verstärker erfindungsgemäß vorgesehene variable Drosselstelle die Strömungsverhältnisse der Hydraulikflüssigkeit in Abhängigkeit vom Betriebsverhalten des Verstärkers verbessert. Dadurch verringert sich die hydraulische Verlustleistung in der Neutralstellung und die Stabilität des Verstärkers ist im gesamten Betriebsbereich erhöht.
  • Eine nicht in den Zeichnungen dargestellte alternative Ausführungsform der Strahlablenkeinrichtung umfaßt eine ortsfeste Düse und ein nachgeschaltetes Ablenkelement. Das bewegbare Ablenkelement kann beispielsweise aus einer Platte mit einer Durchgangsbohrung für den abzulenkenden Flüssigkeitsstrahl bestehen. Das Verschieben der Platte verändert den durchtretenden Flüssigkeitsstrahl in seiner Richtung auf eine der beiden Empfangsöffnungen und bewirkt gleichzeitig ein Öffnen und Schließen der Rücklauföffnungen, so daß der hydraulische Verstärker im wesentlichen genauso funktioniert wie die anhand der Zeichnungen oben beschriebene Ausführungsform.
  • Weiterhin ist es vorstellbar, die Strahlablenkeinrichtung (Strahlrohr gemäß der ersten Ausführungsform oder plattenförmiges Ablenkelement gemäß der zweiten Ausführungsform) an den Bereichen, an denen die Einrichtung einer Rücklauföffnung gegenübersteht mit ebenen Flächen zu versehen. Dadurch können die Rücklauföffnungen nahezu verschlossen werden, wodurch die Leckage in der Neutralstellung des Verstärkers weiter verringert werden kann.
  • Die Anwendung des erfindungsgemäßen hydraulischen Verstärkers ist nicht auf die Verwendung als Vorsteuerstufe bei einem Steuerventil beschränkt. Vielmehr kann der Verstärker selbst als Servoventil ohne Steuerkolben Verwendung finden, wobei er die fluidischen Leistungsströme direkt beeinflußt.

Claims (7)

  1. Hydraulischer Verstärker (3), insbesondere für Steuerventile, mit einer bewegbaren Strahlablenkeinrichtung (6, 8), die die Richtung eines auf wenigstens zwei Empfängeröffnungen (5) gerichteten Steuerstrahls verändert und wenigstens einer Rücklauföffnung (9), dadurch gekennzeichnet, daß die Rücklauföffnung so angeordnet ist, daß sie in Abhängigkeit von der Stellung der Strahlablenkeinrichtung (6, 8) eine variable Drosselstelle für die zurückströmende Hydraulikflüssigkeit bildet.
  2. Hydraulischer Verstärker nach Anspruch 1, dadurch gekennzeichnet, daß die Rücklauföffnung (9) seitlich neben der Strahlablenkeinrichtung (6, 8) angeordnet ist, derart, daß diese zusammen mit der Öffnung die variable Drosselstelle bildet.
  3. Hydraulischer Verstärker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Rücklauföffnung (9) im wesentlichen senkrecht zu der Ebene angeordnet ist, in der die Strahlablenkeinrichtung (6, 8) bewegt wird.
  4. Hydraulischer Verstärker nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Strahlablenkeinrichtung (6, 8) in den Bereichen, die einer Rücklauföffnung (9) gegenüberstehen, zylindrisch ist oder ebene Flächen aufweist.
  5. Hydraulischer Verstärker nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zwei Rücklauföffnungen (9) einander gegenüberliegend angeordnet sind und die Strahlablenkeinrichtung (6, 8) zwischen den Öffnungen bewegbar ist.
  6. Hydraulischer Verstärker nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strahlablenkeinrichtung als ein verschwenkbares Strahlrohr (6) mit einer darin gelagerten Düse (8) ausgeführt ist.
  7. Hydraulischer Verstärker nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strahlablenkeinrichtung als eine ortsfeste Düse mit einem nachgeschalteten bewegbaren Ablenkelement ausgeführt ist.
EP19930112185 1993-07-29 1993-07-29 Hydraulischer Verstärker, insbesondere für Steuerventile Expired - Lifetime EP0636796B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59305886T DE59305886D1 (de) 1993-07-29 1993-07-29 Hydraulischer Verstärker, insbesondere für Steuerventile
EP19930112185 EP0636796B1 (de) 1993-07-29 1993-07-29 Hydraulischer Verstärker, insbesondere für Steuerventile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19930112185 EP0636796B1 (de) 1993-07-29 1993-07-29 Hydraulischer Verstärker, insbesondere für Steuerventile

Publications (2)

Publication Number Publication Date
EP0636796A1 EP0636796A1 (de) 1995-02-01
EP0636796B1 true EP0636796B1 (de) 1997-03-19

Family

ID=8213123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930112185 Expired - Lifetime EP0636796B1 (de) 1993-07-29 1993-07-29 Hydraulischer Verstärker, insbesondere für Steuerventile

Country Status (2)

Country Link
EP (1) EP0636796B1 (de)
DE (1) DE59305886D1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542051A (en) * 1967-12-29 1970-11-24 Moog Inc Free jet stream deflector servovalve
US3584638A (en) * 1969-06-13 1971-06-15 Bell Aerospace Corp Adjustable receiver port construction for jet pipe servovalve
US3612103A (en) * 1969-07-01 1971-10-12 Moog Inc Deflectable free jetstream-type two-stage servo valve
US4227443A (en) * 1978-09-25 1980-10-14 General Electric Company Fail-fixed servovalve

Also Published As

Publication number Publication date
DE59305886D1 (de) 1997-04-24
EP0636796A1 (de) 1995-02-01

Similar Documents

Publication Publication Date Title
EP1629336B1 (de) Ventil
EP0171031A2 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE102005042679A1 (de) Bypassventil für Verbrennungskraftmaschinen
WO2004012968A1 (de) Steuerventil, düsenanordnung und waschanlage
DE4031885A1 (de) Magnetventil
DE3630200C2 (de)
DE69008266T2 (de) Elektromagnetisches Ventil.
EP0636796B1 (de) Hydraulischer Verstärker, insbesondere für Steuerventile
DE19626060A1 (de) Servolenkungsvorrichtung mit variabler Unterstützung
DE2701580A1 (de) Druckventil
EP0041247A2 (de) Vorgesteuerte Vorrichtung zur lastunabhängigen Volumenstromregelung
DE7834499U1 (de) Servobetaetigtes dreiwegeventil
DE69212989T2 (de) Aufhängungsvorrichtung für fahrzeuge
DE2246809A1 (de) Steuereinheit fuer einen arbeitszylinder mit differentialkolben
EP0056423B1 (de) Elektromagnet-betätigtes Mehrstellungs/Mehrwege-Hydraulikventil
DE19510244C2 (de) Fluidverstärker
WO2005111430A1 (de) Hydraulik-ventilanordnung, insbesondere wasserhydraulik-ventilanordnung
DE4135822A1 (de) Piezogesteuerter duesenwiderstand fuer hydraulikgeraete, insbesondere fuer pilotaufgaben bei servoventilen
DE9415118U1 (de) Ventilanordnung
DE3141143C2 (de)
EP0662565A1 (de) Hydraulischer Verstärker
EP0899180A2 (de) Vorrichtung zur Steuerung eines doppelt wirkenden Lenkzylinders
DE3743345A1 (de) Proportional arbeitendes druckbegrenzungsventil
EP1163142A1 (de) Prioritätsventil für einen hydraulischen lenkkreislauf
EP4197643A1 (de) Düse mit einstellbarer strahlgeometrie, düsenanordnung und verfahren zum betrieb einer düse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE

17P Request for examination filed

Effective date: 19950731

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960813

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 59305886

Country of ref document: DE

Date of ref document: 19970424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020828

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203