EP0636182A1 - Antibodies for treatment and prevention of respiratory syncytial virus infection - Google Patents
Antibodies for treatment and prevention of respiratory syncytial virus infectionInfo
- Publication number
- EP0636182A1 EP0636182A1 EP93908006A EP93908006A EP0636182A1 EP 0636182 A1 EP0636182 A1 EP 0636182A1 EP 93908006 A EP93908006 A EP 93908006A EP 93908006 A EP93908006 A EP 93908006A EP 0636182 A1 EP0636182 A1 EP 0636182A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antibody
- seq
- rsv
- ser
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 206010061603 Respiratory syncytial virus infection Diseases 0.000 title claims description 33
- 238000011282 treatment Methods 0.000 title description 15
- 230000002265 prevention Effects 0.000 title description 7
- 208000030925 respiratory syncytial virus infectious disease Diseases 0.000 title description 3
- 230000027455 binding Effects 0.000 claims abstract description 102
- 241000283690 Bos taurus Species 0.000 claims abstract description 97
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 64
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 claims abstract description 60
- 239000000427 antigen Substances 0.000 claims abstract description 58
- 102000036639 antigens Human genes 0.000 claims abstract description 58
- 108091007433 antigens Proteins 0.000 claims abstract description 58
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 46
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 34
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 34
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 12
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 claims abstract description 11
- 150000001413 amino acids Chemical group 0.000 claims description 166
- 241000725643 Respiratory syncytial virus Species 0.000 claims description 130
- 239000012634 fragment Substances 0.000 claims description 98
- 230000004927 fusion Effects 0.000 claims description 93
- 241000282414 Homo sapiens Species 0.000 claims description 91
- 108090000623 proteins and genes Proteins 0.000 claims description 90
- 210000004027 cell Anatomy 0.000 claims description 88
- 102000004169 proteins and genes Human genes 0.000 claims description 66
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 38
- 150000007523 nucleic acids Chemical group 0.000 claims description 37
- 108060003951 Immunoglobulin Proteins 0.000 claims description 30
- 102000018358 immunoglobulin Human genes 0.000 claims description 30
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 241001465754 Metazoa Species 0.000 claims description 25
- 239000013612 plasmid Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 241000711920 Human orthopneumovirus Species 0.000 claims description 12
- 210000004408 hybridoma Anatomy 0.000 claims description 11
- 241000894007 species Species 0.000 claims description 11
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 8
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 6
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 6
- 230000009261 transgenic effect Effects 0.000 claims description 6
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 210000004962 mammalian cell Anatomy 0.000 claims description 4
- 230000010076 replication Effects 0.000 claims description 4
- 238000004113 cell culture Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims 1
- 239000003085 diluting agent Substances 0.000 claims 1
- 239000003937 drug carrier Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 25
- 238000013461 design Methods 0.000 abstract description 4
- 235000001014 amino acid Nutrition 0.000 description 140
- 241000700605 Viruses Species 0.000 description 54
- 235000018102 proteins Nutrition 0.000 description 54
- 241001529936 Murinae Species 0.000 description 51
- 125000003275 alpha amino acid group Chemical group 0.000 description 43
- 108020004414 DNA Proteins 0.000 description 41
- 241000699670 Mus sp. Species 0.000 description 38
- 244000309466 calf Species 0.000 description 34
- 230000000890 antigenic effect Effects 0.000 description 32
- 230000001681 protective effect Effects 0.000 description 32
- 238000002965 ELISA Methods 0.000 description 27
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 26
- 239000013615 primer Substances 0.000 description 25
- 230000003472 neutralizing effect Effects 0.000 description 22
- 239000013598 vector Substances 0.000 description 22
- 208000015181 infectious disease Diseases 0.000 description 20
- 238000003556 assay Methods 0.000 description 19
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 18
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 18
- 239000002953 phosphate buffered saline Substances 0.000 description 18
- 238000003752 polymerase chain reaction Methods 0.000 description 17
- 102000004142 Trypsin Human genes 0.000 description 16
- 108090000631 Trypsin Proteins 0.000 description 16
- 239000013604 expression vector Substances 0.000 description 16
- 210000004072 lung Anatomy 0.000 description 16
- 239000012588 trypsin Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 238000006386 neutralization reaction Methods 0.000 description 15
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000013592 cell lysate Substances 0.000 description 12
- 238000010367 cloning Methods 0.000 description 12
- 238000007912 intraperitoneal administration Methods 0.000 description 12
- 230000000069 prophylactic effect Effects 0.000 description 12
- 230000009257 reactivity Effects 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000012163 sequencing technique Methods 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 10
- 241000711895 Bovine orthopneumovirus Species 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical group NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 10
- 238000010790 dilution Methods 0.000 description 10
- 239000012895 dilution Substances 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 9
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 9
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 9
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 229910001629 magnesium chloride Inorganic materials 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 108010038745 tryptophylglycine Proteins 0.000 description 9
- 238000011725 BALB/c mouse Methods 0.000 description 8
- 241000283707 Capra Species 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- 230000004075 alteration Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 8
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102000003886 Glycoproteins Human genes 0.000 description 7
- 108090000288 Glycoproteins Proteins 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 238000011081 inoculation Methods 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 6
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 6
- 238000012408 PCR amplification Methods 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- HTONZBWRYUKUKC-RCWTZXSCSA-N Val-Thr-Val Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O HTONZBWRYUKUKC-RCWTZXSCSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 210000003567 ascitic fluid Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 6
- LINKCQUOMUDLKN-KATARQTJSA-N Leu-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(C)C)N)O LINKCQUOMUDLKN-KATARQTJSA-N 0.000 description 5
- YOOAQCZYZHGUAZ-KATARQTJSA-N Thr-Leu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YOOAQCZYZHGUAZ-KATARQTJSA-N 0.000 description 5
- MNYNCKZAEIAONY-XGEHTFHBSA-N Thr-Val-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O MNYNCKZAEIAONY-XGEHTFHBSA-N 0.000 description 5
- UPODKYBYUBTWSV-BZSNNMDCSA-N Tyr-Phe-Cys Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CS)C(O)=O)C1=CC=C(O)C=C1 UPODKYBYUBTWSV-BZSNNMDCSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 108010050025 alpha-glutamyltryptophan Proteins 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000003466 anti-cipated effect Effects 0.000 description 5
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 238000012875 competitive assay Methods 0.000 description 5
- 108010050848 glycylleucine Proteins 0.000 description 5
- 108010037850 glycylvaline Proteins 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 230000002637 immunotoxin Effects 0.000 description 5
- 239000002596 immunotoxin Substances 0.000 description 5
- 231100000608 immunotoxin Toxicity 0.000 description 5
- 229940051026 immunotoxin Drugs 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 230000003248 secreting effect Effects 0.000 description 5
- 238000002741 site-directed mutagenesis Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- ARHJJAAWNWOACN-FXQIFTODSA-N Ala-Ser-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O ARHJJAAWNWOACN-FXQIFTODSA-N 0.000 description 4
- CREYEAPXISDKSB-FQPOAREZSA-N Ala-Thr-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CREYEAPXISDKSB-FQPOAREZSA-N 0.000 description 4
- XVVOVPFMILMHPX-ZLUOBGJFSA-N Asn-Asp-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O XVVOVPFMILMHPX-ZLUOBGJFSA-N 0.000 description 4
- AHWRSSLYSGLBGD-CIUDSAMLSA-N Asp-Pro-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AHWRSSLYSGLBGD-CIUDSAMLSA-N 0.000 description 4
- ALMIMUZAWTUNIO-BZSNNMDCSA-N Asp-Tyr-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ALMIMUZAWTUNIO-BZSNNMDCSA-N 0.000 description 4
- 238000012286 ELISA Assay Methods 0.000 description 4
- RFTVTKBHDXCEEX-WDSKDSINSA-N Glu-Ser-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RFTVTKBHDXCEEX-WDSKDSINSA-N 0.000 description 4
- LLEUXCDZPQOJMY-AAEUAGOBSA-N Glu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCC(O)=O)N)C(O)=O)=CNC2=C1 LLEUXCDZPQOJMY-AAEUAGOBSA-N 0.000 description 4
- TVTZEOHWHUVYCG-KYNKHSRBSA-N Gly-Thr-Thr Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O TVTZEOHWHUVYCG-KYNKHSRBSA-N 0.000 description 4
- AJHCSUXXECOXOY-NSHDSACASA-N Gly-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-NSHDSACASA-N 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 101710128560 Initiator protein NS1 Proteins 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical group OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- LRKCBIUDWAXNEG-CSMHCCOUSA-N Leu-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LRKCBIUDWAXNEG-CSMHCCOUSA-N 0.000 description 4
- ABHVWYPPHDYFNY-WDSOQIARSA-N Met-His-Trp Chemical compound C([C@H](NC(=O)[C@@H](N)CCSC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CN=CN1 ABHVWYPPHDYFNY-WDSOQIARSA-N 0.000 description 4
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 description 4
- 101710144127 Non-structural protein 1 Proteins 0.000 description 4
- 102000003992 Peroxidases Human genes 0.000 description 4
- BPCLGWHVPVTTFM-QWRGUYRKSA-N Phe-Ser-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)NCC(O)=O BPCLGWHVPVTTFM-QWRGUYRKSA-N 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- UIGMAMGZOJVTDN-WHFBIAKZSA-N Ser-Gly-Ser Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O UIGMAMGZOJVTDN-WHFBIAKZSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 230000000120 cytopathologic effect Effects 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 108010084389 glycyltryptophan Proteins 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 108010034529 leucyl-lysine Proteins 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108040007629 peroxidase activity proteins Proteins 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 108010003137 tyrosyltyrosine Proteins 0.000 description 4
- 108010009962 valyltyrosine Proteins 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- OQCWXQJLCDPRHV-UWVGGRQHSA-N Arg-Gly-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O OQCWXQJLCDPRHV-UWVGGRQHSA-N 0.000 description 3
- NJLLRXWFPQQPHV-SRVKXCTJSA-N Asp-Tyr-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(N)=O)C(O)=O NJLLRXWFPQQPHV-SRVKXCTJSA-N 0.000 description 3
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 3
- 241001137901 Centropomus undecimalis Species 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241001524679 Escherichia virus M13 Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- HGJREIGJLUQBTJ-SZMVWBNQSA-N Glu-Trp-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(C)C)C(O)=O HGJREIGJLUQBTJ-SZMVWBNQSA-N 0.000 description 3
- OHUKZZYSJBKFRR-WHFBIAKZSA-N Gly-Ser-Asp Chemical compound [H]NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O OHUKZZYSJBKFRR-WHFBIAKZSA-N 0.000 description 3
- WCORRBXVISTKQL-WHFBIAKZSA-N Gly-Ser-Ser Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WCORRBXVISTKQL-WHFBIAKZSA-N 0.000 description 3
- NVTPVQLIZCOJFK-FOHZUACHSA-N Gly-Thr-Asp Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O NVTPVQLIZCOJFK-FOHZUACHSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- 241000880493 Leptailurus serval Species 0.000 description 3
- PDIDTSZKKFEDMB-UWVGGRQHSA-N Lys-Pro-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O PDIDTSZKKFEDMB-UWVGGRQHSA-N 0.000 description 3
- WQDKIVRHTQYJSN-DCAQKATOSA-N Lys-Ser-Arg Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N WQDKIVRHTQYJSN-DCAQKATOSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 3
- VUYCNYVLKACHPA-KKUMJFAQSA-N Phe-Asp-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N VUYCNYVLKACHPA-KKUMJFAQSA-N 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- IFMDQWDAJUMMJC-DCAQKATOSA-N Pro-Ala-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O IFMDQWDAJUMMJC-DCAQKATOSA-N 0.000 description 3
- LEIKGVHQTKHOLM-IUCAKERBSA-N Pro-Pro-Gly Chemical compound OC(=O)CNC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 LEIKGVHQTKHOLM-IUCAKERBSA-N 0.000 description 3
- BGWKULMLUIUPKY-BQBZGAKWSA-N Pro-Ser-Gly Chemical compound OC(=O)CNC(=O)[C@H](CO)NC(=O)[C@@H]1CCCN1 BGWKULMLUIUPKY-BQBZGAKWSA-N 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 241000724205 Rice stripe tenuivirus Species 0.000 description 3
- 108010039491 Ricin Proteins 0.000 description 3
- YUJLIIRMIAGMCQ-CIUDSAMLSA-N Ser-Leu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YUJLIIRMIAGMCQ-CIUDSAMLSA-N 0.000 description 3
- BMKNXTJLHFIAAH-CIUDSAMLSA-N Ser-Ser-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O BMKNXTJLHFIAAH-CIUDSAMLSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- XSLXHSYIVPGEER-KZVJFYERSA-N Thr-Ala-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O XSLXHSYIVPGEER-KZVJFYERSA-N 0.000 description 3
- MMTOHPRBJKEZHT-BWBBJGPYSA-N Thr-Cys-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O MMTOHPRBJKEZHT-BWBBJGPYSA-N 0.000 description 3
- UYKREHOKELZSPB-JTQLQIEISA-N Trp-Gly Chemical compound C1=CC=C2C(C[C@H](N)C(=O)NCC(O)=O)=CNC2=C1 UYKREHOKELZSPB-JTQLQIEISA-N 0.000 description 3
- SMLCYZYQFRTLCO-UWJYBYFXSA-N Tyr-Cys-Ala Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](C)C(O)=O SMLCYZYQFRTLCO-UWJYBYFXSA-N 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 108010060035 arginylproline Proteins 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000007910 cell fusion Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 239000002254 cytotoxic agent Substances 0.000 description 3
- 231100000599 cytotoxic agent Toxicity 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 108010077515 glycylproline Proteins 0.000 description 3
- 101150106093 gpt gene Proteins 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 108010087846 prolyl-prolyl-glycine Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108010073969 valyllysine Proteins 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 2
- BHNQPLPANNDEGL-UHFFFAOYSA-N 2-(4-octylphenoxy)ethanol Chemical compound CCCCCCCCC1=CC=C(OCCO)C=C1 BHNQPLPANNDEGL-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- BTYTYHBSJKQBQA-GCJQMDKQSA-N Ala-Asp-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C)N)O BTYTYHBSJKQBQA-GCJQMDKQSA-N 0.000 description 2
- KXEVYGKATAMXJJ-ACZMJKKPSA-N Ala-Glu-Asp Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O KXEVYGKATAMXJJ-ACZMJKKPSA-N 0.000 description 2
- BTRULDJUUVGRNE-DCAQKATOSA-N Ala-Pro-Lys Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O BTRULDJUUVGRNE-DCAQKATOSA-N 0.000 description 2
- IPWKGIFRRBGCJO-IMJSIDKUSA-N Ala-Ser Chemical compound C[C@H]([NH3+])C(=O)N[C@@H](CO)C([O-])=O IPWKGIFRRBGCJO-IMJSIDKUSA-N 0.000 description 2
- ZJLORAAXDAJLDC-CQDKDKBSSA-N Ala-Tyr-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(O)=O ZJLORAAXDAJLDC-CQDKDKBSSA-N 0.000 description 2
- AOHKLEBWKMKITA-IHRRRGAJSA-N Arg-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AOHKLEBWKMKITA-IHRRRGAJSA-N 0.000 description 2
- OVQJAKFLFTZDNC-GUBZILKMSA-N Arg-Pro-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O OVQJAKFLFTZDNC-GUBZILKMSA-N 0.000 description 2
- UGXYFDQFLVCDFC-CIUDSAMLSA-N Asn-Ser-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O UGXYFDQFLVCDFC-CIUDSAMLSA-N 0.000 description 2
- XHTUGJCAEYOZOR-UBHSHLNASA-N Asn-Ser-Trp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O XHTUGJCAEYOZOR-UBHSHLNASA-N 0.000 description 2
- ZVTDYGWRRPMFCL-WFBYXXMGSA-N Asp-Ala-Trp Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CC(=O)O)N ZVTDYGWRRPMFCL-WFBYXXMGSA-N 0.000 description 2
- DZQKLNLLWFQONU-LKXGYXEUSA-N Asp-Cys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N)O DZQKLNLLWFQONU-LKXGYXEUSA-N 0.000 description 2
- JOCQXVJCTCEFAZ-CIUDSAMLSA-N Asp-His-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(O)=O JOCQXVJCTCEFAZ-CIUDSAMLSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101100540120 Caenorhabditis elegans vab-3 gene Proteins 0.000 description 2
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- NRVQLLDIJJEIIZ-VZFHVOOUSA-N Cys-Thr-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)O)NC(=O)[C@H](CS)N)O NRVQLLDIJJEIIZ-VZFHVOOUSA-N 0.000 description 2
- HPZAJRPYUIHDIN-BZSNNMDCSA-N Cys-Tyr-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CS)N HPZAJRPYUIHDIN-BZSNNMDCSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- IWAXHBCACVWNHT-BQBZGAKWSA-N Gly-Asp-Arg Chemical compound NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N IWAXHBCACVWNHT-BQBZGAKWSA-N 0.000 description 2
- MHHUEAIBJZWDBH-YUMQZZPRSA-N Gly-Asp-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)CN MHHUEAIBJZWDBH-YUMQZZPRSA-N 0.000 description 2
- DKEXFJVMVGETOO-LURJTMIESA-N Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CN DKEXFJVMVGETOO-LURJTMIESA-N 0.000 description 2
- UHPAZODVFFYEEL-QWRGUYRKSA-N Gly-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CN UHPAZODVFFYEEL-QWRGUYRKSA-N 0.000 description 2
- NNCSJUBVFBDDLC-YUMQZZPRSA-N Gly-Leu-Ser Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O NNCSJUBVFBDDLC-YUMQZZPRSA-N 0.000 description 2
- VBOBNHSVQKKTOT-YUMQZZPRSA-N Gly-Lys-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O VBOBNHSVQKKTOT-YUMQZZPRSA-N 0.000 description 2
- WNZOCXUOGVYYBJ-CDMKHQONSA-N Gly-Phe-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)CN)O WNZOCXUOGVYYBJ-CDMKHQONSA-N 0.000 description 2
- MKIAPEZXQDILRR-YUMQZZPRSA-N Gly-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)CN MKIAPEZXQDILRR-YUMQZZPRSA-N 0.000 description 2
- XHVONGZZVUUORG-WEDXCCLWSA-N Gly-Thr-Lys Chemical compound NCC(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CCCCN XHVONGZZVUUORG-WEDXCCLWSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- NBWATNYAUVSAEQ-ZEILLAHLSA-N His-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N)O NBWATNYAUVSAEQ-ZEILLAHLSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UGTHTQWIQKEDEH-BQBZGAKWSA-N L-alanyl-L-prolylglycine zwitterion Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UGTHTQWIQKEDEH-BQBZGAKWSA-N 0.000 description 2
- QMKFDEUJGYNFMC-AVGNSLFASA-N Leu-Pro-Arg Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O QMKFDEUJGYNFMC-AVGNSLFASA-N 0.000 description 2
- ODRREERHVHMIPT-OEAJRASXSA-N Leu-Thr-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ODRREERHVHMIPT-OEAJRASXSA-N 0.000 description 2
- ILDSIMPXNFWKLH-KATARQTJSA-N Leu-Thr-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ILDSIMPXNFWKLH-KATARQTJSA-N 0.000 description 2
- FBNPMTNBFFAMMH-UHFFFAOYSA-N Leu-Val-Arg Natural products CC(C)CC(N)C(=O)NC(C(C)C)C(=O)NC(C(O)=O)CCCN=C(N)N FBNPMTNBFFAMMH-UHFFFAOYSA-N 0.000 description 2
- 206010024971 Lower respiratory tract infections Diseases 0.000 description 2
- WRODMZBHNNPRLN-SRVKXCTJSA-N Lys-Leu-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O WRODMZBHNNPRLN-SRVKXCTJSA-N 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- BPIMVBKDLSBKIJ-FCLVOEFKSA-N Phe-Thr-Phe Chemical compound C([C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 BPIMVBKDLSBKIJ-FCLVOEFKSA-N 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 229920002651 Polysorbate 85 Polymers 0.000 description 2
- MGDFPGCFVJFITQ-CIUDSAMLSA-N Pro-Glu-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O MGDFPGCFVJFITQ-CIUDSAMLSA-N 0.000 description 2
- FKLSMYYLJHYPHH-UWVGGRQHSA-N Pro-Gly-Leu Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O FKLSMYYLJHYPHH-UWVGGRQHSA-N 0.000 description 2
- RMODQFBNDDENCP-IHRRRGAJSA-N Pro-Lys-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O RMODQFBNDDENCP-IHRRRGAJSA-N 0.000 description 2
- GOMUXSCOIWIJFP-GUBZILKMSA-N Pro-Ser-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GOMUXSCOIWIJFP-GUBZILKMSA-N 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- HBOABDXGTMMDSE-GUBZILKMSA-N Ser-Arg-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(O)=O HBOABDXGTMMDSE-GUBZILKMSA-N 0.000 description 2
- OBXVZEAMXFSGPU-FXQIFTODSA-N Ser-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N)CN=C(N)N OBXVZEAMXFSGPU-FXQIFTODSA-N 0.000 description 2
- UGJRQLURDVGULT-LKXGYXEUSA-N Ser-Asn-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O UGJRQLURDVGULT-LKXGYXEUSA-N 0.000 description 2
- BLPYXIXXCFVIIF-FXQIFTODSA-N Ser-Cys-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CO)N)CN=C(N)N BLPYXIXXCFVIIF-FXQIFTODSA-N 0.000 description 2
- JFWDJFULOLKQFY-QWRGUYRKSA-N Ser-Gly-Phe Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JFWDJFULOLKQFY-QWRGUYRKSA-N 0.000 description 2
- SFTZWNJFZYOLBD-ZDLURKLDSA-N Ser-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CO SFTZWNJFZYOLBD-ZDLURKLDSA-N 0.000 description 2
- KCGIREHVWRXNDH-GARJFASQSA-N Ser-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N KCGIREHVWRXNDH-GARJFASQSA-N 0.000 description 2
- FKYWFUYPVKLJLP-DCAQKATOSA-N Ser-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO FKYWFUYPVKLJLP-DCAQKATOSA-N 0.000 description 2
- NMZXJDSKEGFDLJ-DCAQKATOSA-N Ser-Pro-Lys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CO)N)C(=O)N[C@@H](CCCCN)C(=O)O NMZXJDSKEGFDLJ-DCAQKATOSA-N 0.000 description 2
- AZWNCEBQZXELEZ-FXQIFTODSA-N Ser-Pro-Ser Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O AZWNCEBQZXELEZ-FXQIFTODSA-N 0.000 description 2
- HHJFMHQYEAAOBM-ZLUOBGJFSA-N Ser-Ser-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O HHJFMHQYEAAOBM-ZLUOBGJFSA-N 0.000 description 2
- KQNDIKOYWZTZIX-FXQIFTODSA-N Ser-Ser-Arg Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCNC(N)=N KQNDIKOYWZTZIX-FXQIFTODSA-N 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RFKVQLIXNVEOMB-WEDXCCLWSA-N Thr-Leu-Gly Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)O)N)O RFKVQLIXNVEOMB-WEDXCCLWSA-N 0.000 description 2
- KPNSNVTUVKSBFL-ZJDVBMNYSA-N Thr-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N)O KPNSNVTUVKSBFL-ZJDVBMNYSA-N 0.000 description 2
- BIBYEFRASCNLAA-CDMKHQONSA-N Thr-Phe-Gly Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=CC=C1 BIBYEFRASCNLAA-CDMKHQONSA-N 0.000 description 2
- QYSBJAUCUKHSLU-JYJNAYRXSA-N Tyr-Arg-Val Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(O)=O QYSBJAUCUKHSLU-JYJNAYRXSA-N 0.000 description 2
- KCPFDGNYAMKZQP-KBPBESRZSA-N Tyr-Gly-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O KCPFDGNYAMKZQP-KBPBESRZSA-N 0.000 description 2
- JLKVWTICWVWGSK-JYJNAYRXSA-N Tyr-Lys-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 JLKVWTICWVWGSK-JYJNAYRXSA-N 0.000 description 2
- JQOMHZMWQHXALX-FHWLQOOXSA-N Tyr-Tyr-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O JQOMHZMWQHXALX-FHWLQOOXSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- CVUDMNSZAIZFAE-TUAOUCFPSA-N Val-Arg-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(=O)O)N CVUDMNSZAIZFAE-TUAOUCFPSA-N 0.000 description 2
- VVZDBPBZHLQPPB-XVKPBYJWSA-N Val-Glu-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O VVZDBPBZHLQPPB-XVKPBYJWSA-N 0.000 description 2
- JVYIGCARISMLMV-HOCLYGCPSA-N Val-Gly-Trp Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N JVYIGCARISMLMV-HOCLYGCPSA-N 0.000 description 2
- BVWPHWLFGRCECJ-JSGCOSHPSA-N Val-Gly-Tyr Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N BVWPHWLFGRCECJ-JSGCOSHPSA-N 0.000 description 2
- CKTMJBPRVQWPHU-JSGCOSHPSA-N Val-Phe-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)O)N CKTMJBPRVQWPHU-JSGCOSHPSA-N 0.000 description 2
- ZXYPHBKIZLAQTL-QXEWZRGKSA-N Val-Pro-Asp Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(=O)O)C(=O)O)N ZXYPHBKIZLAQTL-QXEWZRGKSA-N 0.000 description 2
- VHIZXDZMTDVFGX-DCAQKATOSA-N Val-Ser-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N VHIZXDZMTDVFGX-DCAQKATOSA-N 0.000 description 2
- 230000010530 Virus Neutralization Effects 0.000 description 2
- 108010008685 alanyl-glutamyl-aspartic acid Proteins 0.000 description 2
- 108010069020 alanyl-prolyl-glycine Proteins 0.000 description 2
- 108010086434 alanyl-seryl-glycine Proteins 0.000 description 2
- 108010087924 alanylproline Proteins 0.000 description 2
- 230000003302 anti-idiotype Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 108010059459 arginyl-threonyl-phenylalanine Proteins 0.000 description 2
- 108010068265 aspartyltyrosine Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 230000009137 competitive binding Effects 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 108091092330 cytoplasmic RNA Proteins 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 108010089804 glycyl-threonine Proteins 0.000 description 2
- 108010015792 glycyllysine Proteins 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000009957 hemming Methods 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000010185 immunofluorescence analysis Methods 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 108010038320 lysylphenylalanine Proteins 0.000 description 2
- 101150091368 mab-20 gene Proteins 0.000 description 2
- 150000002678 macrocyclic compounds Chemical class 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 108010012581 phenylalanylglutamate Proteins 0.000 description 2
- 108010051242 phenylalanylserine Proteins 0.000 description 2
- 229940113171 polysorbate 85 Drugs 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 239000003161 ribonuclease inhibitor Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- ITFICYZHWXDVMU-IPTZIORSSA-N (2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-2-[[(2S,3R)-2-[[(2S,3S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-amino-4-carboxybutanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxybutanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]-3-sulfanylpropanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylpentanoyl]amino]hexanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-oxopentanoyl]amino]pentanedioic acid Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC2=CNC3=CC=CC=C32)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(=O)O)N ITFICYZHWXDVMU-IPTZIORSSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 1
- DWINFPQUSSHSFS-UVBJJODRSA-N Ala-Arg-Trp Chemical compound N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC2=CC=CC=C12)C(=O)O DWINFPQUSSHSFS-UVBJJODRSA-N 0.000 description 1
- WNHNMKOFKCHKKD-BFHQHQDPSA-N Ala-Thr-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O WNHNMKOFKCHKKD-BFHQHQDPSA-N 0.000 description 1
- LFFOJBOTZUWINF-ZANVPECISA-N Ala-Trp-Gly Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)C)C(=O)NCC(O)=O)=CNC2=C1 LFFOJBOTZUWINF-ZANVPECISA-N 0.000 description 1
- ZDILXFDENZVOTL-BPNCWPANSA-N Ala-Val-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ZDILXFDENZVOTL-BPNCWPANSA-N 0.000 description 1
- 241000282709 Aotus trivirgatus Species 0.000 description 1
- 101100480489 Arabidopsis thaliana TAAC gene Proteins 0.000 description 1
- IJYZHIOOBGIINM-WDSKDSINSA-N Arg-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N IJYZHIOOBGIINM-WDSKDSINSA-N 0.000 description 1
- DNLQVHBBMPZUGJ-BQBZGAKWSA-N Arg-Ser-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O DNLQVHBBMPZUGJ-BQBZGAKWSA-N 0.000 description 1
- CPTXATAOUQJQRO-GUBZILKMSA-N Arg-Val-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O CPTXATAOUQJQRO-GUBZILKMSA-N 0.000 description 1
- APHUDFFMXFYRKP-CIUDSAMLSA-N Asn-Asn-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N APHUDFFMXFYRKP-CIUDSAMLSA-N 0.000 description 1
- KZYSHAMXEBPJBD-JRQIVUDYSA-N Asn-Thr-Tyr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O KZYSHAMXEBPJBD-JRQIVUDYSA-N 0.000 description 1
- LGCVSPFCFXWUEY-IHPCNDPISA-N Asn-Trp-Tyr Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CC=C(C=C3)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N LGCVSPFCFXWUEY-IHPCNDPISA-N 0.000 description 1
- AYFVRYXNDHBECD-YUMQZZPRSA-N Asp-Leu-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O AYFVRYXNDHBECD-YUMQZZPRSA-N 0.000 description 1
- NALWOULWGHTVDA-UWVGGRQHSA-N Asp-Tyr Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 NALWOULWGHTVDA-UWVGGRQHSA-N 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101710117545 C protein Proteins 0.000 description 1
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 1
- 101100505161 Caenorhabditis elegans mel-32 gene Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- WZZSKAJIHTUUSG-ACZMJKKPSA-N Glu-Ala-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O WZZSKAJIHTUUSG-ACZMJKKPSA-N 0.000 description 1
- LKDIBBOKUAASNP-FXQIFTODSA-N Glu-Ala-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LKDIBBOKUAASNP-FXQIFTODSA-N 0.000 description 1
- WOSRKEJQESVHGA-CIUDSAMLSA-N Glu-Arg-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O WOSRKEJQESVHGA-CIUDSAMLSA-N 0.000 description 1
- IRXNJYPKBVERCW-DCAQKATOSA-N Glu-Leu-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O IRXNJYPKBVERCW-DCAQKATOSA-N 0.000 description 1
- BIYNPVYAZOUVFQ-CIUDSAMLSA-N Glu-Pro-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O BIYNPVYAZOUVFQ-CIUDSAMLSA-N 0.000 description 1
- QOXDAWODGSIDDI-GUBZILKMSA-N Glu-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)O)N QOXDAWODGSIDDI-GUBZILKMSA-N 0.000 description 1
- JLXVRFDTDUGQEE-YFKPBYRVSA-N Gly-Arg Chemical compound NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N JLXVRFDTDUGQEE-YFKPBYRVSA-N 0.000 description 1
- XZRZILPOZBVTDB-GJZGRUSLSA-N Gly-Arg-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)CN)C(O)=O)=CNC2=C1 XZRZILPOZBVTDB-GJZGRUSLSA-N 0.000 description 1
- FMNHBTKMRFVGRO-FOHZUACHSA-N Gly-Asn-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CN FMNHBTKMRFVGRO-FOHZUACHSA-N 0.000 description 1
- SCCPDJAQCXWPTF-VKHMYHEASA-N Gly-Asp Chemical compound NCC(=O)N[C@H](C(O)=O)CC(O)=O SCCPDJAQCXWPTF-VKHMYHEASA-N 0.000 description 1
- KQDMENMTYNBWMR-WHFBIAKZSA-N Gly-Asp-Ala Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O KQDMENMTYNBWMR-WHFBIAKZSA-N 0.000 description 1
- QGZSAHIZRQHCEQ-QWRGUYRKSA-N Gly-Asp-Tyr Chemical compound NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 QGZSAHIZRQHCEQ-QWRGUYRKSA-N 0.000 description 1
- UQJNXZSSGQIPIQ-FBCQKBJTSA-N Gly-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)CN UQJNXZSSGQIPIQ-FBCQKBJTSA-N 0.000 description 1
- GGAPHLIUUTVYMX-QWRGUYRKSA-N Gly-Phe-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H](NC(=O)C[NH3+])CC1=CC=CC=C1 GGAPHLIUUTVYMX-QWRGUYRKSA-N 0.000 description 1
- SOEGEPHNZOISMT-BYPYZUCNSA-N Gly-Ser-Gly Chemical compound NCC(=O)N[C@@H](CO)C(=O)NCC(O)=O SOEGEPHNZOISMT-BYPYZUCNSA-N 0.000 description 1
- POJJAZJHBGXEGM-YUMQZZPRSA-N Gly-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)CN POJJAZJHBGXEGM-YUMQZZPRSA-N 0.000 description 1
- IROABALAWGJQGM-OALUTQOASA-N Gly-Trp-Tyr Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CC=C(C=C3)O)C(=O)O)NC(=O)CN IROABALAWGJQGM-OALUTQOASA-N 0.000 description 1
- YDIDLLVFCYSXNY-RCOVLWMOSA-N Gly-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN YDIDLLVFCYSXNY-RCOVLWMOSA-N 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- XHQYFGPIRUHQIB-PBCZWWQYSA-N His-Thr-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC1=CN=CN1 XHQYFGPIRUHQIB-PBCZWWQYSA-N 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108010065920 Insulin Lispro Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- TYYLDKGBCJGJGW-UHFFFAOYSA-N L-tryptophan-L-tyrosine Natural products C=1NC2=CC=CC=C2C=1CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 TYYLDKGBCJGJGW-UHFFFAOYSA-N 0.000 description 1
- NFNVDJGXRFEYTK-YUMQZZPRSA-N Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O NFNVDJGXRFEYTK-YUMQZZPRSA-N 0.000 description 1
- FEHQLKKBVJHSEC-SZMVWBNQSA-N Leu-Glu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 FEHQLKKBVJHSEC-SZMVWBNQSA-N 0.000 description 1
- LAPSXOAUPNOINL-YUMQZZPRSA-N Leu-Gly-Asp Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(O)=O LAPSXOAUPNOINL-YUMQZZPRSA-N 0.000 description 1
- POZULHZYLPGXMR-ONGXEEELSA-N Leu-Gly-Val Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O POZULHZYLPGXMR-ONGXEEELSA-N 0.000 description 1
- RZXLZBIUTDQHJQ-SRVKXCTJSA-N Leu-Lys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O RZXLZBIUTDQHJQ-SRVKXCTJSA-N 0.000 description 1
- LMDVGHQPPPLYAR-IHRRRGAJSA-N Leu-Val-His Chemical compound N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)O LMDVGHQPPPLYAR-IHRRRGAJSA-N 0.000 description 1
- KCXUCYYZNZFGLL-SRVKXCTJSA-N Lys-Ala-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O KCXUCYYZNZFGLL-SRVKXCTJSA-N 0.000 description 1
- BYEBKXRNDLTGFW-CIUDSAMLSA-N Lys-Cys-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O BYEBKXRNDLTGFW-CIUDSAMLSA-N 0.000 description 1
- LCMWVZLBCUVDAZ-IUCAKERBSA-N Lys-Gly-Glu Chemical compound [NH3+]CCCC[C@H]([NH3+])C(=O)NCC(=O)N[C@H](C([O-])=O)CCC([O-])=O LCMWVZLBCUVDAZ-IUCAKERBSA-N 0.000 description 1
- SKRGVGLIRUGANF-AVGNSLFASA-N Lys-Leu-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O SKRGVGLIRUGANF-AVGNSLFASA-N 0.000 description 1
- AIXUQKMMBQJZCU-IUCAKERBSA-N Lys-Pro Chemical compound NCCCC[C@H](N)C(=O)N1CCC[C@H]1C(O)=O AIXUQKMMBQJZCU-IUCAKERBSA-N 0.000 description 1
- YTJFXEDRUOQGSP-DCAQKATOSA-N Lys-Pro-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O YTJFXEDRUOQGSP-DCAQKATOSA-N 0.000 description 1
- RPWTZTBIFGENIA-VOAKCMCISA-N Lys-Thr-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O RPWTZTBIFGENIA-VOAKCMCISA-N 0.000 description 1
- YQAIUOWPSUOINN-IUCAKERBSA-N Lys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCCN YQAIUOWPSUOINN-IUCAKERBSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- SEPNOAFMZLLCEW-UBHSHLNASA-N Phe-Ala-Val Chemical compound N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)O SEPNOAFMZLLCEW-UBHSHLNASA-N 0.000 description 1
- KLYYKKGCPOGDPE-OEAJRASXSA-N Phe-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O KLYYKKGCPOGDPE-OEAJRASXSA-N 0.000 description 1
- 241000711902 Pneumovirus Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- JARJPEMLQAWNBR-GUBZILKMSA-N Pro-Asp-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O JARJPEMLQAWNBR-GUBZILKMSA-N 0.000 description 1
- MHHQQZIFLWFZGR-DCAQKATOSA-N Pro-Lys-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O MHHQQZIFLWFZGR-DCAQKATOSA-N 0.000 description 1
- WOIFYRZPIORBRY-AVGNSLFASA-N Pro-Lys-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O WOIFYRZPIORBRY-AVGNSLFASA-N 0.000 description 1
- LNICFEXCAHIJOR-DCAQKATOSA-N Pro-Ser-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O LNICFEXCAHIJOR-DCAQKATOSA-N 0.000 description 1
- VDHGTOHMHHQSKG-JYJNAYRXSA-N Pro-Val-Phe Chemical compound CC(C)[C@H](NC(=O)[C@@H]1CCCN1)C(=O)N[C@@H](Cc1ccccc1)C(O)=O VDHGTOHMHHQSKG-JYJNAYRXSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100364301 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rsv1 gene Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- JPIDMRXXNMIVKY-VZFHVOOUSA-N Ser-Ala-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPIDMRXXNMIVKY-VZFHVOOUSA-N 0.000 description 1
- VAUMZJHYZQXZBQ-WHFBIAKZSA-N Ser-Asn-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O VAUMZJHYZQXZBQ-WHFBIAKZSA-N 0.000 description 1
- FIDMVVBUOCMMJG-CIUDSAMLSA-N Ser-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CO FIDMVVBUOCMMJG-CIUDSAMLSA-N 0.000 description 1
- BPMRXBZYPGYPJN-WHFBIAKZSA-N Ser-Gly-Asn Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O BPMRXBZYPGYPJN-WHFBIAKZSA-N 0.000 description 1
- GZFAWAQTEYDKII-YUMQZZPRSA-N Ser-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CO GZFAWAQTEYDKII-YUMQZZPRSA-N 0.000 description 1
- KDGARKCAKHBEDB-NKWVEPMBSA-N Ser-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CO)N)C(=O)O KDGARKCAKHBEDB-NKWVEPMBSA-N 0.000 description 1
- XXXAXOWMBOKTRN-XPUUQOCRSA-N Ser-Gly-Val Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXXAXOWMBOKTRN-XPUUQOCRSA-N 0.000 description 1
- KCNSGAMPBPYUAI-CIUDSAMLSA-N Ser-Leu-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O KCNSGAMPBPYUAI-CIUDSAMLSA-N 0.000 description 1
- XNCUYZKGQOCOQH-YUMQZZPRSA-N Ser-Leu-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O XNCUYZKGQOCOQH-YUMQZZPRSA-N 0.000 description 1
- IXZHZUGGKLRHJD-DCAQKATOSA-N Ser-Leu-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IXZHZUGGKLRHJD-DCAQKATOSA-N 0.000 description 1
- VLMIUSLQONKLDV-HEIBUPTGSA-N Ser-Thr-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VLMIUSLQONKLDV-HEIBUPTGSA-N 0.000 description 1
- VVKVHAOOUGNDPJ-SRVKXCTJSA-N Ser-Tyr-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O VVKVHAOOUGNDPJ-SRVKXCTJSA-N 0.000 description 1
- SIEBDTCABMZCLF-XGEHTFHBSA-N Ser-Val-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SIEBDTCABMZCLF-XGEHTFHBSA-N 0.000 description 1
- HSWXBJCBYSWBPT-GUBZILKMSA-N Ser-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)C(O)=O HSWXBJCBYSWBPT-GUBZILKMSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000144282 Sigmodon Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 101000865057 Thermococcus litoralis DNA polymerase Proteins 0.000 description 1
- CAJFZCICSVBOJK-SHGPDSBTSA-N Thr-Ala-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O CAJFZCICSVBOJK-SHGPDSBTSA-N 0.000 description 1
- GLQFKOVWXPPFTP-VEVYYDQMSA-N Thr-Arg-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O GLQFKOVWXPPFTP-VEVYYDQMSA-N 0.000 description 1
- JEDIEMIJYSRUBB-FOHZUACHSA-N Thr-Asp-Gly Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O JEDIEMIJYSRUBB-FOHZUACHSA-N 0.000 description 1
- KRPKYGOFYUNIGM-XVSYOHENSA-N Thr-Asp-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N)O KRPKYGOFYUNIGM-XVSYOHENSA-N 0.000 description 1
- LGNBRHZANHMZHK-NUMRIWBASA-N Thr-Glu-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)O LGNBRHZANHMZHK-NUMRIWBASA-N 0.000 description 1
- LHEZGZQRLDBSRR-WDCWCFNPSA-N Thr-Glu-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O LHEZGZQRLDBSRR-WDCWCFNPSA-N 0.000 description 1
- KCRQEJSKXAIULJ-FJXKBIBVSA-N Thr-Gly-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O KCRQEJSKXAIULJ-FJXKBIBVSA-N 0.000 description 1
- MECLEFZMPPOEAC-VOAKCMCISA-N Thr-Leu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N)O MECLEFZMPPOEAC-VOAKCMCISA-N 0.000 description 1
- KZSYAEWQMJEGRZ-RHYQMDGZSA-N Thr-Leu-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O KZSYAEWQMJEGRZ-RHYQMDGZSA-N 0.000 description 1
- TZJSEJOXAIWOST-RHYQMDGZSA-N Thr-Lys-Arg Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CCCN=C(N)N TZJSEJOXAIWOST-RHYQMDGZSA-N 0.000 description 1
- ZSPQUTWLWGWTPS-HJGDQZAQSA-N Thr-Lys-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O ZSPQUTWLWGWTPS-HJGDQZAQSA-N 0.000 description 1
- SPVHQURZJCUDQC-VOAKCMCISA-N Thr-Lys-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O SPVHQURZJCUDQC-VOAKCMCISA-N 0.000 description 1
- XKWABWFMQXMUMT-HJGDQZAQSA-N Thr-Pro-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O XKWABWFMQXMUMT-HJGDQZAQSA-N 0.000 description 1
- IQPWNQRRAJHOKV-KATARQTJSA-N Thr-Ser-Lys Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN IQPWNQRRAJHOKV-KATARQTJSA-N 0.000 description 1
- NDZYTIMDOZMECO-SHGPDSBTSA-N Thr-Thr-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O NDZYTIMDOZMECO-SHGPDSBTSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- WSGPBCAGEGHKQJ-BBRMVZONSA-N Trp-Gly-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC1=CNC2=CC=CC=C21)N WSGPBCAGEGHKQJ-BBRMVZONSA-N 0.000 description 1
- PWPJLBWYRTVYQS-PMVMPFDFSA-N Trp-Phe-Leu Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O PWPJLBWYRTVYQS-PMVMPFDFSA-N 0.000 description 1
- QJBWZNTWJSZUOY-UWJYBYFXSA-N Tyr-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N QJBWZNTWJSZUOY-UWJYBYFXSA-N 0.000 description 1
- CDHQEOXPWBDFPL-QWRGUYRKSA-N Tyr-Gly-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 CDHQEOXPWBDFPL-QWRGUYRKSA-N 0.000 description 1
- KSCVLGXNQXKUAR-JYJNAYRXSA-N Tyr-Leu-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O KSCVLGXNQXKUAR-JYJNAYRXSA-N 0.000 description 1
- GZWPQZDVTBZVEP-BZSNNMDCSA-N Tyr-Tyr-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(N)=O)C(O)=O GZWPQZDVTBZVEP-BZSNNMDCSA-N 0.000 description 1
- ANHVRCNNGJMJNG-BZSNNMDCSA-N Tyr-Tyr-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N[C@@H](CS)C(=O)O)N)O ANHVRCNNGJMJNG-BZSNNMDCSA-N 0.000 description 1
- SQUMHUZLJDUROQ-YDHLFZDLSA-N Tyr-Val-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O SQUMHUZLJDUROQ-YDHLFZDLSA-N 0.000 description 1
- 102000006943 Uracil-DNA Glycosidase Human genes 0.000 description 1
- 108010072685 Uracil-DNA Glycosidase Proteins 0.000 description 1
- FPCIBLUVDNXPJO-XPUUQOCRSA-N Val-Cys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CS)C(=O)NCC(O)=O FPCIBLUVDNXPJO-XPUUQOCRSA-N 0.000 description 1
- DJEVQCWNMQOABE-RCOVLWMOSA-N Val-Gly-Asp Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC(=O)O)C(=O)O)N DJEVQCWNMQOABE-RCOVLWMOSA-N 0.000 description 1
- CXWJFWAZIVWBOS-XQQFMLRXSA-N Val-Lys-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@@H]1C(=O)O)N CXWJFWAZIVWBOS-XQQFMLRXSA-N 0.000 description 1
- JVGHIFMSFBZDHH-WPRPVWTQSA-N Val-Met-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)O)N JVGHIFMSFBZDHH-WPRPVWTQSA-N 0.000 description 1
- SJRUJQFQVLMZFW-WPRPVWTQSA-N Val-Pro-Gly Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O SJRUJQFQVLMZFW-WPRPVWTQSA-N 0.000 description 1
- UGFMVXRXULGLNO-XPUUQOCRSA-N Val-Ser-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O UGFMVXRXULGLNO-XPUUQOCRSA-N 0.000 description 1
- SDHZOOIGIUEPDY-JYJNAYRXSA-N Val-Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)NC(=O)[C@@H](N)C(C)C)C(O)=O)=CNC2=C1 SDHZOOIGIUEPDY-JYJNAYRXSA-N 0.000 description 1
- LCHZBEUVGAVMKS-RHYQMDGZSA-N Val-Thr-Leu Chemical compound CC(C)C[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)[C@@H](C)O)C(O)=O LCHZBEUVGAVMKS-RHYQMDGZSA-N 0.000 description 1
- USXYVSTVPHELAF-RCWTZXSCSA-N Val-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](C(C)C)N)O USXYVSTVPHELAF-RCWTZXSCSA-N 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 108010043240 arginyl-leucyl-glycine Proteins 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Inorganic materials [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 230000010405 clearance mechanism Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000012303 cytoplasmic staining Methods 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- CVQOAJMWCZVVJS-UHFFFAOYSA-N dihydroxyphosphinothioyl phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=S CVQOAJMWCZVVJS-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000000531 effect on virus Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 229960003699 evans blue Drugs 0.000 description 1
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108010031719 prolyl-serine Proteins 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 108010072986 threonyl-seryl-lysine Proteins 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 108010044292 tryptophyltyrosine Proteins 0.000 description 1
- 108010079202 tyrosyl-alanyl-cysteine Proteins 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000007501 viral attachment Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/42—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1027—Paramyxoviridae, e.g. respiratory syncytial virus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18522—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- Respiratory syncytial virus is a pneumovirus of the family Paramyxoviridae and is the major cause of severe lower respiratory tract infections in children and calves during the first year of life [Kim et al . , Amer. J. EpidemJQl. .21:216-225 (1973); Stott et al . , . Hygiene. Little:257-270 (1980); Mclntosh and Chanock, in B. N. Fields et al .
- RSV Respiratory syncytial virus
- anti-RSV antibodies for treatment of RSV in murine and bovine species
- the treatment of non-murine or non-bovine species is potentially limited by the immune response of these species to the foreign murine or bovine antibodies.
- immune responses in humans against murine antibodies have been shown to both immunoglobulin constant and variable regions.
- the present invention provides a variety of anti-RSV antibodies, functional fragments thereof including CDRs.
- antibodies and fragments are useful in the construction of fusion proteins, particularly chimeric and humanized antibodies, which are characterized by the binding specificity and/or neutralizing activity of an anti-RSV monoclonal antibody (mAb) .
- mAb monoclonal antibody
- a novel humanized antibody containing bovine antibody variable sequences in association with human immunoglobulin framework and constant regions are also disclosed.
- Fig. 1 is a graph illustrating the isolation of recombinant LF1/1298, which contains the RSV Long strain F glycoprotein cDNA with a single transversion C to A at nucleotide 1298, cloned in the polylinker of pGEM4. This recombinant permits expression of the F protein in selected host cells.
- Fig. 2 is a diagram of the F glycoprotein primary structure denoting the hydrophobic regions (
- the locations of the trypsin fragments recognized by different mAbs are shown below the diagram.
- Figs. 3A and 3B compare partial B4 and B13/B14 antibody variable light (VL) chain amino acid sequences [SEQ ID ⁇ OS:
- the B4 sequence is reported above the B13/B14 sequence to more readily illustrate comparison between the sequences.
- the symbol "-" represents a gap in the sequence introduced to improve the alignment between the sequences.
- the CDRs are boxed.
- the underlined sequences correspond to the sequences of the polymerase chain reaction (PCR) oligonucleotide primers used in amplifying these antibody sequences.
- Figs. 4A and 4B compare partial B4 and B13/B14 antibody variable heavy (VH) chain amino acid sequences [SEQ ID NOS: 3 and 4] with the B4 sequence reported above the B13/B14 sequence.
- the symbol "-", CDRs and PCR oligonucleotide primers sequences are defined and illustrated as in Figs. 3A and 3B.
- Fig. 5 is a bar diagram showing the competitive binding of 10 anti-F bovine mAbs, labelled with 125 I, to the A2 strain of RSV in the presence of increasing amounts of unlabelled antibodies.
- Neg represents the ability of the mAb to neutralize the RSV in a plaque neutralization assay.
- FI refers to the ability of the antibody to inhibit fusion of multinucleated giant cells in an assay.
- Protection refers to whether the mAb was able to protect mice against RSV infection in an in vivo assay. Symbols: less than 10% ( ⁇ ) , 11 to 80% (cross-hatched box) , or greater than 80% (D) remaining bound at the highest amount of competing antibody tested.
- Fig. 6 is a bar diagram showing the competitive binding of anti-F murine mAbs. "Neut”, “FI”, “Protection” and the symbols are defined as in Fig. 5.
- Fig. 7 is a bar diagram showing the binding of anti-F mAbs to the RSV A2 strain and antibody-escape mutant RSVs.
- the antibodies were tested in an ELISA using the purified viruses indicated at the top of the figure to coat microtitre plates. Symbols: less than 20% ( ⁇ ) , 20 to 80% (cross-hatched box) , greater than 80% (D) of the absorbance values obtained with the A2 strain.
- Fig. 8 is a bar diagram showing the binding of anti-F mAbs to RSV Long strain and antibody-escape mutant RSVs. The antibodies were tested as described in Fig. 7. Symbols: less than 25% (open box) , 25 to 50% (cross-hatched box) , greater than 50% ( ⁇ ) of the absorbance values obtained with the Long strain.
- Fig. 9 is a series of 8 bar diagrams showing the binding of mAb B4 to synthetic octomeric peptides, bound to polyethylene pins, where each amino acid in the sequence corresponding to amino acid #266 through 273 of the RSV F protein [SEQ ID NO: 19] has been replaced in turn with other amino acids (indicated on the abscissa) . The sequence of amino acids beneath each bar diagram shows which amino acid has been replaced (indicated by a box around the letter) .
- Fig. 10 is a predicted humanized VH region sequence
- bovine mAb B4 is the donor antibody [SEQ ID NO: 5] .
- CDRs are boxed.
- Underlined residues in the framework regions are murine residues which have been retained.
- Fig. 11 is a predicted humanized constant heavy region sequence B4HuVK for use in constructing an altered antibody, wherein B4 is the donor antibody [SEQ ID NO: 6] .
- CDRs are boxed.
- Figs. 12A and 12B provide a contiguous predicted humanized VH region sequence B13/B14HuVH [SEQ ID NO: 7] for use in constructing an altered antibody, wherein B13/B14 is the donor antibody.
- CDRs are boxed and retained murine residues are underlined.
- Fig. 13 is a predicted humanized constant heavy region sequence B13/B14HuVK [SEQ ID NO: 8] wherein B13/B14 is the donor antibody.
- CDRs are boxed.
- FIGS. 14A and 14B provide a contiguous DNA sequence and corresponding amino acid sequence [SEQ ID NOS: 9 and 10] for the VH region of RSV19. CDRs are boxed. Underlined sequences correspond to the primers used. Figs. 15A and 15B provide a contiguous DNA sequence and corresponding amino acid sequence of the RSV19 VL region
- Fig. 16 shows the plasmid pHuRSV19VH comprising a human Ig VH region framework and CDRs from murine RSV19.
- Fig. 17 shows the plasmid pHuRSV19VK comprising a human
- Ig VL framework and CDRs derived from RSV19 Ig VL framework and CDRs derived from RSV19.
- Fig. 18 shows the derived Ig variable region amino acid sequences encoded by murine RSV19VH [SEQ ID NO: 13] .
- Fig. 19 shows the derived Ig variable region amino acid sequences encoded by pHuRSV19VH [SEQ ID NO: 14] .
- Fig. 20 shows the derived Ig variable region amino acid sequences encoded by pHuRSVl9VHFNS [SEQ ID NO: 15] .
- Fig. 21 shows the derived Ig variable region amino acid sequences encoded by pHuRSVl9VHNIK [SEQ ID NO: 16].
- Fig. 22 shows the derived Ig variable region amino acid sequences encoded by pHuRSV19VK [SEQ ID NO: 17] .
- Fig. 23 is the DNA and amino acid encoding the HuVL framework 4, [SEQ ID NOS: 20 and 21] showing the potential splice site.
- the underlined bases were changed to provide the genuine Jl gene sequence [SEQ ID NO: 22] .
- first fusion partner refers to a nucleic acid sequence encoding an amino acid sequence, which can be all or part of a heavy chain variable region, light chain variable region, CDR, functional fragment or analog thereof, having the antigen binding specificity of a selected antibody, preferably an anti-RSV antibody.
- second fusion partner refers to another nucleotide sequence encoding a protein or peptide to which the first fusion partner is fused in frame or by means of an optional conventional linker sequence. Such second fusion partners may be heterologous to the first fusion partner.
- a second fusion partner may include a nucleic acid sequence encoding a second antibody region of interest, e.g., an appropriate human constant region or framework region.
- fusion molecule refers to the product of a first fusion partner operatively linked to a second fusion partner.
- "Operative linkage" of the fusion partners is defined as an association which permits expression of the antigen specificity of the anti-RSV sequence (the first fusion partner) from the donor antibody as well as the desired characteristics of the second fusion partner.
- a nucleic acid sequence encoding an amino acid linker may be optionally used, or linkage may be via fusion in frame to the second fusion partner.
- fusion protein refers to the result of the expression of a fusion molecule. Such fusion proteins may be altered antibodies, e.g., chimeric antibodies, humanized antibodies, or any of the antibody regions identified herein fused to immunoglobulin or non-immunoglobulin proteins and the like.
- donor antibody refers to an antibody (polyclonal, monoclonal, or recombinant) which contributes the nucleic acid sequences of its naturally- occurring or modified variable light and/or heavy chains, CDRs thereof or other functional fragments or analogs thereof to a first fusion partner, so as to provide the fusion molecule and resulting expressed fusion protein with the antigenic specificity or neutralizing activity characteristic of the donor antibody.
- An example of a donor antibody suitable for use in this invention is bovine mAb B4 or B13/14.
- acceptor antibody refers to an antibody (polyclonal, monoclonal, or recombinant) heterologous to the donor antibody, but homologous to the patient (human or animal) to be treated, which contributes all or a substantial portion of the nucleic acid sequences encoding its variable heavy and/or light chain framework regions and/or its heavy and/or light chain constant regions to a second fusion partner.
- a human antibody is an acceptor antibody.
- CDRs are defined as the complementarity determining region amino acid sequences of an antibody which are the hypervariable regions of immunoglobulin heavy and light chains which provide the majority of contact residues for the binding of the antibody to the antigen or epitope.
- CDRs of interest in this invention are derived from donor antibody variable heavy and light chain sequences, and include functional fragments and analogs of the naturally occurring CDRs, which fragments and analogs also share or retain the same antigen binding specificity and/or neutralizing ability as the donor antibody from which they were derived. See, e.g., the CDRs indicated by boxes in Figs. 3A, 3B, 4A, 4B, and 10 through 13.
- mAb B13/B14 may be characterized by a certain level of antigen affinity, and a CDR encoded by a nucleic acid sequence of B13/B14 in an appropriate structural environment may have a lower affinity, it is expected that CDRs of B13/B14 in such environments will nevertheless recognize the same epitope(s) as B13/B14.
- a “functional fragment” is a partial CDR sequence or partial heavy or light chain variable sequence which retains the same antigen binding specificity and/or neutralizing ability as the antibody from which the fragment was derived.
- an “analog” is an amino acid or peptide sequence modified by replacement of at least one amino acid, modification or chemical substitution of an amino acid, which modification permits the amino acid sequence to retain the biological characteristics, e.g., antigen specificity, of the unmodified sequence.
- An "allelic variation or modification” is an alteration in the nucleic acid sequence encoding the amino acid or peptide sequences of the invention. Such variations or modifications may be due to degeneracies in the genetic code or may be deliberately engineered to provide desired characteristics. These variations or modifications may or may not result in alterations in any encoded amino acid sequence.
- an "altered antibody” describes a type of fusion protein, i.e., a synthetic antibody (e.g., a chimeric or humanized antibody) in which a portion of the light and/or heavy chain variable domains of a selected acceptor antibody are replaced by analogous parts of CDRs from one or more donor mAbs which have specificity for the selected epitope.
- a synthetic antibody e.g., a chimeric or humanized antibody
- CDRs e.g., a chimeric or humanized antibody
- These altered antibodies may also be characterized by minimal alteration of the nucleic acid sequences encoding the acceptor mAb light and/or heavy variable domain framework regions in order to retain donor mAb binding specificity.
- These antibodies can comprise immunoglobulin (Ig) constant regions and variable framework regions from the acceptor mAb, and one or more CDRs from the anti-RSV donor antibodies described herein.
- a “chimeric antibody” refers to a type of altered antibody which contains naturally-occurring variable region light chain and heavy chains (both CDR and framework regions) derived from a non-human donor antibody in association with light and heavy chain constant regions derived from a human acceptor antibody.
- a “humanized antibody” refers to an altered antibody having its CDRs and/or other portions of its light and/or heavy variable domain framework regions derived from a non- human donor immunoglobulin, the remaining immunoglobulin- derived parts of the molecule being derived from one or more human immunoglobulins.
- Such antibodies can also include altered antibodies characterized by a humanized heavy chain associated with a donor or acceptor unmodified light chain or a chimeric light chain, or vice versa.
- effector agents refers to non-protein carrier molecules to which the fusion proteins, and/or natural or synthetic light or heavy chain of the donor antibody or other fragments of the donor antibody may be associated by conventional means.
- non-protein carriers can include conventional carriers used in the diagnostic field, e.g., polystyrene or other plastic beads, or other non-protein substances useful in the medical field and safe for administration to humans and animals.
- Other effector agents may include a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin. Such effector agents are useful to increase the half-life of the anti-RSV derived amino acid sequences.
- a non-human species may be employed to generate a desirable immunoglobulin upon presentment with the respiratory syncytial virus (RSV) F protein or a peptide epitope therefrom.
- RSV respiratory syncytial virus
- Conventional hybridoma techniques are employed to provide a hybridoma cell line secreting a non-human mAb to the RSV peptide.
- FI neutralizing, fusion-inhibiting
- mAbs highly protective bovine and murine anti-RSV monoclonal antibodies
- bovine antibodies capable of binding to the F protein, B13 and B14, and other suitable bovine mAbs designated herein as B4, B7 through BIO, and murine mAbs, designated herein as 16 through 21, are described in detail in Examples 1 and 2, and in Figs. 5 and 6.
- B13 and B14 anti-RSV antibodies are characterized by the ability to neutralize RSV in a plaque reduction neutralization test. Both B13 and B14 are potent in fusion inhibition assays and are protective in mice. Competition studies, together with studies of antibody- escape mutants, binding to F protein fragments and synthetic peptides suggest that the epitope recognized by mAbs B13 and B14 may be similar to, but not identical to, the epitope recognized by mAb RSV19 (also known as mAb 19 or RSMU19) , the IgG 2a murine mAb specific for F protein amino acid 417- 438 of and described in Example 11 below and in PCT patent application No. PCT/GB91/01554.
- B13 and B14 have been determined to be substantially identical are referred to as a single mAb called B13/B14 in certain instances. Where the mAbs were tested separately, reference is made to mAb B13 or B14.
- bovine mAb B4 a previously disclosed anti-RSV mAb, B4 is effective in protecting calves against infection with bovine RSV, as well as protecting mice against infection with human RSV.
- B4 is also potent in fusion inhibition and virus neutralization assays (Examples 16 and 17) .
- These three bovine mAbs B4, B13, and B1 have been identified as desirable antibodies which may be altered for pharmaceutical or prophylactic use.
- this invention is not limited to the use of these three mAbs or their hypervariable sequences.
- These mAbs illustrate the products and methods of this invention; wherever in the following description the donor mAb is identified as B4, B13 or B14, it should be understood that any other appropriate anti-RSV neutralizing antibodies and corresponding anti-RSV CDRs may be substituted therefor.
- anti-RSV antibodies may be developed by screening an antibody library including hybridoma products or libraries derived from any species immunoglobulin repertoires in a conventional competition assay, such as described in the examples below, with one or more bovine antibodies or RSV epitopes described herein. Particularly desirable for screening for additional antibodies are the neutralizing and protective mAbs, B4 and B13/B14.
- the invention may provide an antibody, other than B4 or B13/14, which is capable of binding to the RSV peptide spanning amino acid #266 through #273, ITNDQKKL, of the F protein [SEQ ID NO: 19] or other relevant RSV epitopes.
- This antibody may be a mAb or an altered antibody, an analog of such antibodies, a Fab fragment thereof, or an F(ab') 2 fragment thereof.
- Such other mAbs generated against a desired RSV epitope a'nd produced by conventional techniques include without limitation, genes encoding murine mAbs, human mAbs, and combinatorial antibodies.
- These anti-RSV antibodies may be useful in pharmaceutical and therapeutic compositions for treating RSV in humans and other animals.
- anti-RSV antibodies described above may be useful as donors of desirable functional fragments, including the antibody light and heavy chain variable sequences and CDR peptides.
- the present invention also includes the use of Fab fragments or F(ab*) 2 fragments derived from mAbs directed against an epitope of RSV as agents protective in vivo against RSV infection and disease.
- a Fab fragment is the amino terminal half of the heavy chain and one light chain
- an F(ab') 2 fragment is the fragment formed by two Fab fragments bound by disulfide bonds.
- MAb B13/14 or other suitable RSV binding antibodies provide a source of these fragments, which can be obtained by conventional means, e.g., cleavage of the mAb with the appropriate proteolytic enzymes, papain and/or pepsin.
- the above-described mAbs recognize certain protective epitopes on the fusion (F) protein of RSV which are recognized by a natural host of RSV.
- the nucleotide sequence of the F mRNA and the predicted protein sequence of the F protein [SEQ ID NO: 19] have been previously reported in Collins et al . , Proc. Nat.'1. A ⁇ ari. Sr._ . TTS ⁇ r 11:7683-7687 (1984) .
- the amino acid numbering referred to herein is identical to the numbering in this latter reference.
- the inventors identified an eight amino acid sequence spanning amino acids 266 through 273 of the F protein [SEQ ID NO:
- epitopes of interest include epitopes at around amino acid #429 which are recognized by neutralizing antibodies, B13 and B14.
- Examples 7 and 8 synthesis of peptides with sequences containing the amino acids changed in the escape mutants and the assessment of the reactivity of these peptides with the mAbs.
- Sequence analysis of the F protein [SEQ ID NO: 19] of the antibody-escape mutants permits identification of the amino acid residues important in the binding of the highly protective mAbs. Similarly, information on the binding of the protective mAbs to synthetic peptides permits the location of the epitopes that they recognize.
- bovine mAbs recognized epitopes similar ' to those recognized by the murine mAbs, and one of the protective antigenic areas (site B; site II of
- Fig. 8 is recognized both by cattle, which are a natural host for RSV, and mice.
- the epitope(s) recognized by the protective bovine mAbs B13 and B14 do not appear to be identical to any recognized by murine mAbs.
- B13 and B14 bind to a region of the F protein around amino acid 429.
- mAb B13/B14 does not recognize the peptides spanning F protein amino acids #417-438, #417-432, and #422-438 all of SEQ ID NO: 19, which are recognized by mAb RSV19.
- a second antigenic site is not recognized by mAb RSV19.
- the RSV epitope recognized by B4 is reproduced by the RSV F peptide at the amino acid sequence spanning #255-275 of SEQ ID NO: 19.
- the inventors have determined using the Geysen pepscan technique, that B4 recognizes an epitope spanning amino acid 266 to 273 of the F protein [SEQ ID NO: 19] .
- Altered antibodies directed against functional fragments or analogs of this epitope may be designed to elicit enhanced binding with the same antibody.
- mAbs which are directed against this epitope have been shown to protect mice and/or bovines from in vivo RSV infection.
- epitopes of these antibodies are useful in the screening and development of additional anti-RSV antibodies as described above. Knowledge of these epitopes enables one of skill in the art to define synthetic peptides and identify naturally-occurring peptides which would be suitable as vaccines against RSV and to produce mAbs useful in the treatment, therapeutic and/or prophylactic, of RSV infection in humans or other animals. IV.
- the mAbs B4 and B13/14 or other anti-RSV murine, human and bovine, antibodies described herein may donate desirable nucleic acid sequences encoding variable heavy and/or light chain amino acid sequences and CDRs, functional fragments, and analogs thereof useful in the development of the first fusion partners, fusion molecules and resulting expressed fusion proteins according to this invention, including chimeric and humanized antibodies.
- the present invention provides isolated naturally- occurring or synthetic variable light chain and variable heavy chain sequences derived from the anti-RSV antibodies, which are characterized by the antigen binding specificity of the donor antibody.
- Exemplary nucleotide sequences of interest include the heavy and light chain variable chain sequences of the mAbs B4, B13 and B14, as described below in the examples. Based on this variable region sequence data, B13 and B14 appear to be substantially identical.
- the naturally occurring variable light chain of B13/14 is characterized by the amino acid sequence of Figs. 3A and 3B [SEQ ID NO: 2] labelled B13/B14VL.
- the naturally- occurring variable heavy chain of B13/14 is characterized by the amino acid sequence illustrated in Figs. 4A and 4B [SEQ ID NO: 4] labelled B13VH. These heavy and light chains are described in Example 18.
- the amino acid sequences of the B4VL and VH chains are reported in Figs. 4A and 4B [SEQ ID NO: 4] and 3A and 3B [SEQ ID NO: 2], respectively, with the putative CDR peptides boxed.
- the CDR3 peptides are unusually long, having 25 and 21 amino acids, respectively, in contrast to the vast majority of human and rodent CDR3s which have less than 20 amino acids.
- nucleic acid sequences encoding the variable heavy and/or light chains, CDRs or functional fragments thereof. are used in unmodified form or are synthesized to introduce desirable modifications. These sequences may optionally contain restriction sites to facilitate their insertion or ligation to a second fusion partner, e.g., a suitable nucleic acid sequence encoding a suitable antibody framework region or the second fusion partners defined above.
- VH and VL chain amino acid sequences and CDR sequences (e.g., Figs. 3A, 3B, 4A, 4B, and 10 through 13) and functional fragments and analogs thereof which share the antigen specificity of the donor antibody.
- these isolated or synthetic nucleic acid sequences, or fragments thereof are first fusion partners, which, when operatively combined with a second fusion partner, can be used to produce the fusion molecules and the expressed fusion proteins, including altered antibodies of this invention.
- These nucleotide sequences are also useful for mutagenic insertion of specific changes within the nucleic acid sequences encoding the CDRs or framework regions, and for incorporation of the resulting modified or nucleic acid sequence into a vector for expression.
- a fusion molecule may contain as a first fusion partner a nucleotide sequence from an anti-RSV donor mAb, fragment or analog which sequence encodes an amino acid sequence for the naturally occurring or synthetic VH or VL chain sequences, a functional fragment or an analog thereof.
- the first fusion partner is operatively linked to a second fusion partner, the resulting fusion molecule and expressed fusion protein is characterized by desirable therapeutic or prophylactic characteristics.
- the fusion molecule upon expression, can produce a fusion protein which is an altered antibody, a chimeric, humanized or partially humanized antibody. Altered antibodies directed against functional fragments or analogs of RSV may be designed to elicit enhanced binding in comparison to the donor antibody.
- An exemplary fusion molecule may contain a synthetic VH and/or VL chain nucleotide sequence from the donor mAb encoding a peptide or protein having the antigen specificity of mAb B4 or B13/14. Still another desirable fusion molecule may contain a nucleotide sequence encoding the amino acid sequence containing at least one, and preferably all of the CDRs of the VH and/or VL chains of the bovine mAbs B4 or B13/14 or a functional fragment or analog thereof.
- the second fusion partners with which the anti-RSV sequences first fusion partners are associated in the fusion molecule are defined in detail above.
- the resulting fusion molecule may express both anti-RSV antigen specificity and the characteristic of the second fusion partner.
- Typical characteristics of second fusion partners can be, e.g., a functional characteristic such as secretion from a recombinant host, or a therapeutic characteristic if the fusion partner is itself a therapeutic protein, or additional antigenic characteristics, if the second fusion partner has its own antigen specificity.
- the second fusion partner is derived from another antibody, e.g., any isotype or class of immunoglobulin framework or constant region (preferably human) , or the like
- the resulting fusion molecule of this invention provides, upon expression, an altered antibody.
- a fusion molecule which on expression produces an altered antibody can comprise a nucleotide sequence encoding a complete antibody molecule, having full length heavy and light chains, or any fragment thereof, such as the Fab or F(ab') 2 fragment, a light chain or heavy chain dimer, or any minimal recombinant fragment thereof such as an F v or a single-chain antibody (SCA) or any other molecule with the same specificity as the donor mAb.
- SCA single-chain antibody
- a fusion molecule which on expression produces an altered antibody may contain a nucleic acid sequence encoding an amino acid sequence having the antigen specificity of an anti-RSV antibody directed against the F protein amino acid sequence spanning amino acid #266 through #273 of SEQ ID NO: 19, ITNDQKKL and analogs thereof, operatively linked to a selected second fusion partner.
- Analogs of that epitope include those identified in the examples, such as SEQ ID NO: 56 when amino acid #266 is replaced with Ala, Cys, Asp, Glu, Phe, Gly, His, Leu, Pro, Gin, Arg, Ser, Thr, Val, Trp, and Tyr; or SEQ ID NO: 57 when amino acid #269 is replaced with Glu, Phe, lie, Leu, Met, Arg, Ser, Thr, Val, Trp, and Tyr; or SEQ ID NO: 58 when amino acid #271 is replaced with Asp, Glu, Phe, lie, Leu, Met, Arg, Ser, Thr, Val, Trp, Tyr and Gin; or SEQ ID NO: 59 when amino acid #273 is replaced with Ala, Cys, Asp and Glu.
- the source of the nucleic acid sequences is mAb B4.
- Another fusion molecule which on expression produces an altered antibody may contain a nucleic acid sequence encoding the variable heavy chain sequence of Figs. 4A and 4B, a functional fragment or analog thereof, the variable light chain sequence of Figs. 3A and 3B, a functional fragment or analog thereof, or one or more B4 CDR peptides.
- Another exemplary fusion molecule may contain a nucleic acid sequence encoding an amino acid sequence having the antigen specificity of the anti-RSV antibody B13/B14, operatively linked to a selected second fusion partner.
- the nucleic acid sequence may encode the VH chain sequence of Figs. 4A and 4B [SEQ ID NO: 4], a functional fragment or analog thereof, the VL chain sequence of Figs.
- 3A and 3B [SEQ ID NO: 2], a functional fragment or analog thereof, or one ' or more B13/B14 CDR peptides.
- the antibody contains at least fragments of the VH and/or VL domains of an acceptor mAb which have been replaced by analogous parts of the variable light and/or heavy chains from one or more donor monoclonal antibodies.
- These altered antibodies can comprise immunoglobulin (Ig) constant regions and variable framework regions from one source, e.g., the acceptor antibody, and one or more CDRs from the donor antibody, e.g., the anti-RSV antibodies described herein.
- An altered antibody may be further modified by changes in variable domain amino acids without necessarily affecting the specificity of the donor antibody. It is anticipated that heavy and light chain amino acids (e.g., as many as 25% thereof) may be substituted by other amino acids either in the variable domain frameworks or CDRs or both. Such altered antibodies may or may not also include minimal alteration of the acceptor mAb VH and/or VL domain framework region in order to retain donor mAb binding specificity.
- these altered antibodies may also be characterized by minimal alteration, e.g., deletions, substitutions, or additions, of the acceptor mAb VL and/or VH domain framework region at the nucleic acid or amino acid levels may be made in order to retain donor antibody antigen binding specificity.
- Such altered antibodies are designed to employ one or both of the VH or VL chains of a selected anti-RSV mAb (optionally modified as described) or one or more of the above identified heavy and/or light chain CDR amino acid and encoding nucleic acid sequences.
- an altered antibody may be produced by expression of a fusion molecule containing a synthetic nucleic acid sequence encoding three CDRs of the VL chain region of the selected anti-RSV antibody or a functional fragment thereof in place of at least a part of the nucleic acid sequence encoding the
- a suitable acceptor antibody for supplying nucleic acid sequences as second fusion partners, may be a human (or other animal) antibody selected from a conventional database, e.g., the Kabat database, Los Alamos database, and
- the acceptor antibody is selected from human IgG subtypes, such as IgGi or IgG 2 , although other Ig types may also be employed, e.g., IgM and IgA.
- a human antibody characterized by a homology to the framework regions of the donor antibody (on an amino acid basis) may be suitable to provide a heavy chain constant region and/or a heavy chain variable framework region for the insertion of the donor
- acceptor antibody capable of donating light chain constant or variable framework regions may be selected in a similar manner. It should be noted that the acceptor antibody heavy and light chains are not required to originate from the same acceptor antibody.
- the acceptor antibody need not contribute only human immunoglobulin nucleotide sequences to the desired fusion molecule, and resulting expressed fusion protein.
- a fusion molecule may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding the amino acid sequence of a polypeptide effector or reporter molecule.
- a bovine or another species' immunoglobulin may be used, e.g., to create a 'bovinized' or other species' altered antibody.
- a particularly desirable fusion protein is a humanized antibody.
- humanized antibody refers to a molecule having its CDR regions and/or other portions of its VL and/or VH domain framework regions derived from an immunoglobulin from a non- human species, the remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin.
- these humanized antibodies one, two or preferably three CDRs from the anti-RSV antibody VH and/or VL regions are inserted into the framework regions of a selected human antibody, replacing the native CDRs of that latter antibody.
- the variable domains in both human heavy and light chains have been altered by one or more CDR replacements.
- Such altered antibodies according to this invention include a humanized antibody containing the framework regions of a human IgG subtype into which are inserted one or more of the CDR regions of a bovine antibody.
- Such a humanized antibody can contain the VH CDR peptides of the bovine mAb inserted into the heavy chain framework region of a human antibody and in association with the bovine light chain, or a bovine/human chimeric light chain.
- a humanized antibody is described in Example 20.
- such an altered antibody may be associated with a desired human light chain.
- a chimeric antibody can contain the human heavy chain constant regions (preferably IgG) fused to the anti-RSV antibody, preferably bovine mAb, Fab regions.
- An exemplary chimeric antibody is described in Example 19.
- the altered antibody preferably has the structure of a natural antibody or a fragment thereof and possesses the combination of properties required for effective prevention and treatment of a desired condition in animals or man depending on the antigenicity supplied by the donor antibody.
- the altered humanized antibody thus preferably has the structure of a natural human antibody or a fragment thereof, and possesses the combination of properties required for effective therapeutic use.
- Such "humanized" antibodies are effective in the prevention and treatment of RSV infection in an appropriate animal model for RSV infection in humans, and recognize a large variety of human clinical isolates of RSV.
- nucleic acids encoding the bovine mAbs B4, B13 and B14 provide desirable RSV epitope specific donor sequences (first fusion partners) for the construction of a fusion molecule, which upon expression produces a humanized antibody according to this invention which can elicit a minimal immune response in humans. See, for example, the variable heavy and light chain sequences of Figs. 4A, 4B,
- a fusion protein which is a chimeric antibody, as defined above, differs from the humanized antibodies by providing the entire non-human donor antibody heavy chain and light chain variable regions, including framework regions in association with human (or other heterologous animal, where desired) IgG constant regions for both chains.
- chimeric antibodies which retain additional non-human sequence in comparison to humanized antibodies of this invention, may also prove likely to elicit some desirable immune response in the human.
- a preferred altered antibody is one directed against respiratory syncytial virus (RSV) , preferably one specific for the fusion (F) protein of RSV.
- RSV respiratory syncytial virus
- F fusion protein of RSV.
- a particularly preferred antibody of this kind has all or a portion of the variable domain amino acid sequences of B4 or B13/B14 reported in
- Figs. 3A, 3B, 4A and 4B in its light and heavy chains, respectively.
- Figs. 10 through 13 illustrate predicted amino acid regions suitable for use in a "humanized" antibody and are described in the Brief Description of the
- an altered antibody of this invention may be characterized by the presence of one or more of the CDR peptides identified in the above figures.
- an altered antibody may contain a the
- the resulting humanized antibody is characterized by the antigen binding specificity of mAb B4.
- Still another preferred altered antibody may contain a
- the altered antibody is thus characterized by the antigen binding specificity of mAb
- variable sequences such as the B4 CDR peptides, including:
- SYSVS amino acids 31-35 of SEQ ID NO: 3 ;
- DASNGGII YNPALKS amino acids 50-65 of SEQ ID NO: 3 ;
- CSVGDSGSYACTXaaGXaaRKGEYVDA wherein Xaa is any or no amino acid (amino acids 100-122 of SEQ ID NO: 3); SGSS(S or D)NIG(R or I) (W or F) (G or A)V(N or G) (amino acids 22-34 of SEQ ID NO: 1) ;
- YESSRPS amino acids 50-56 of SEQ ID NO: 1 ;
- ATGDYNIA amino acids 89-96 of SEQ ID NO: 1 ;
- ATGDYNIAV amino acids 89-97 of SEQ ID NO: 1 ; or the B13/B14 CDR peptides, including
- GNTKRPS amino acids 50-56 of SEQ ID NO: 2 ;
- VCGESKSATPV amino acids 89-99 of SEQ ID NO: 2
- DHNVG amino acids 31-35 of SEQ ID NO: 4 ;
- VIYKEGDKDYNPALKS (amino acids 50-65 of SEQ ID NO: 4) ; LGCYPVEGVGYDCTYGLQHTTFXaaDA, wherein Xaa is any amino acid (amino acids 98-122 of SEQ ID NO: 4), may be used in place of the larger variable region sequences of the figures.
- Such altered antibodies can be effective in prevention and treatment of respiratory syncytial virus (RSV) infection in animals and man.
- RSV respiratory syncytial virus
- Another species of therapeutic, diagnostic or pharmaceutical protein of this invention is provided by the proteins or peptides encoded by the first fusion partner which are associated with above-described effector agents.
- Such a protein provides an anti-RSV amino acid sequence of the invention associated with a non- protein carrier molecule.
- Another example contains a desired anti-RSV sequence of the invention to which is attached an non-protein reporter molecule.
- the entire fusion proteins described above may be associated with an effector agent.
- the procedure of recombinant DNA technology may be used to produce a protein of the invention in which the F c fragment or CH3 domain of a complete anti-RSV antibody molecule has been replaced by an enzyme or toxin molecule.
- Another example of a protein of this invention contains an anti-RSV amino acid sequence of the invention with a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure.
- fusion or linkage between the anti-RSV antibody nucleotide sequences sequences and the second fusion partner in the fusion molecule or association of the peptides encoded by the first fusion partner and an effector agent may be by way of any suitable conventional means.
- Such conventional means can include conventional covalent or ionic bonds, protein fusions, or hetero-bifunctional cross- linkers, e.g., carbodiimide, glutaraldehyde, and the like.
- conventional chemical linking agents may be used to fuse or join to the anti-RSV amino acid sequences.
- the fusion proteins and altered antibodies of the invention will be produced by recombinant DNA technology using genetic engineering techniques.
- the same or similar techniques may also be employed to generate other embodiments of this invention, e.g., to construct the chimeric or humanized antibodies, the synthetic light and heavy chains, the CDRs, and the nucleic acid sequences encoding them, as above mentioned.
- a hybridoma producing the anti-RSV antibody e.g., the bovine mAb B4
- the cDNA of its heavy and light chain variable regions obtained by techniques known to one of skill in the art, e.g., the techniques described in Sambrook et al., Molecular r.lonin ⁇ (A Laboratory Manual ) f 2nd edition, Cold Spring Harbor Laboratory (1989) .
- the variable regions of the mAb B4 are obtained using PCR primers, and the CDRs identified using a known computer database, e.g, Kabat, for comparison to other antibodies.
- Homologous framework regions of a heavy chain variable region from a human antibody are identified using the same databases, e.g., "Kabat, and a human (or other desired animal) antibody having homology to the anti-RSV donor antibody is selected as the acceptor antibody.
- the sequences of synthetic VH regions containing the CDRs within the human antibody frameworks are defined in writing with optional nucleotide replacements in the framework regions for restriction sites. This plotted sequence is then synthesized by overlapping oligonucleotides, amplified by polymerase chain reaction (PCR) , and corrected for errors.
- a suitable light chain variable framework region may be designed in a similar manner or selected from the donor or acceptor antibodies. As stated above, the source of the light chain is not a limiting factor of this invention.
- CDRs of the anti-RSV mAbs and their encoding nucleic acid sequences are employed in the construction of fusion proteins and altered antibodies, preferably humanized antibodies, of this invention, by the following process.
- a DNA sequence is obtained which encodes the non-human donor antibody (e.g., B4, B13/B14) VH or VL chain regions.
- the non-human donor antibody e.g., B4, B13/B14
- VH or VL chain regions encodes the non-human donor antibody (e.g., B4, B13/B14) VH or VL chain regions.
- a donor antibody at least the CDRs and those minimal portions of the acceptor mAb light and/or heavy variable domain framework region required in order to retain donor mAb binding specificity as well as the remaining immunoglobulin-derived parts of the antibody chain are derived from a human immunoglobulin.
- a first conventional expression vector is produced by placing these sequences in operative association with conventional regulatory control sequences capable of controlling the replication and expression thereof in a host cell.
- a second expression vector is produced having a DNA sequence which encodes the complementary antibody light or heavy chain, wherein at least the CDRs (and those minimal portions of the acceptor monoclonal antibody light and/or heavy variable domain framework region required in order to retain donor monoclonal antibody binding specificity) of the variable domain are derived from a non-human immunoglobulin.
- this second vector expression vector is identical to the first except in so far as the coding sequences and selectable markers are concerned so to ensure as far as possible that each polypeptide chain is equally expressed.
- a single vector of the invention may be used, the vector including the sequence encoding both light chain and heavy chain-derived polypeptides.
- the DNA in the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both.
- a selected host cell is co-transfected by conventional techniques with both the first and second vectors to create the transfected host cell of the invention comprising both the recombinant or synthetic light and heavy chains.
- the transfected cell is then cultured by conventional techniques to produce the altered or humanized antibody of the invention.
- the humanized antibody which includes the association of both the recombinant heavy chain and/or light chain is screened from culture by appropriate assay, such as an ELISA assay. Similar conventional techniques may be employed to construct other fusion molecules of this invention.
- the invention also includes a recombinant plasmid containing a fusion molecule, which upon expression produces an altered antibody of the invention.
- Such a vector is prepared by conventional techniques and suitably comprises the above described DNA sequences encoding the altered antibody and a suitable promoter operatively linked thereto.
- the invention includes a recombinant plasmid containing the coding sequence of a mAb generated against the F protein
- Suitable vectors for the cloning and subcloning steps employed in the methods and construction of the compositions of this invention may be selected by one of skill in the art.
- any vector which is capable of replicating readily, has an abundance of cloning sites and marker genes, and is easily manipulated may be used for cloning.
- the selection of the cloning vector is not a limiting factor in this invention.
- the vectors employed for expression of the altered antibodies according to this invention may be selected by one of skill in the art from any conventional vector.
- the expression vectors also contain selected regulatory sequences which are in operative association with the DNA coding sequences of the immunoglobulin regions and capable of directing the replication and expression of heterologous DNA sequences in selected host cells, such as
- CMV promoters contain the above described DNA sequences which code for the altered antibody or fusion protein.
- the vectors may incorporate the selected immunoglobulin sequences modified by the insertion of desirable restriction sites for ready manipulation.
- the expression vectors may also be characterized by marker genes suitable for amplifying expression of the heterologous DNA sequences, e.g., the mammalian dihydrofolate reductase gene (DHFR) or neomycin resistance gene (neo R ) .
- marker genes suitable for amplifying expression of the heterologous DNA sequences e.g., the mammalian dihydrofolate reductase gene (DHFR) or neomycin resistance gene (neo R ) .
- Other preferable vector sequences include a poly A signal sequence, such as from bovine growth hormone (BGH) and the betaglobin promoter sequence (betaglupro) .
- replicons e.g. replicons, selection genes, enhancers, promoters, and the like
- selection genes e.g. replicons, selection genes, enhancers, promoters, and the like
- Other appropriate expression vectors of which numerous types are known in the art for mammalian, bacterial, insect, yeast, and fungal expression may also be selected for this purpose.
- Such a vector is transfected into a mammalian cell or other suitable cell lines via conventional techniques.
- the present invention also encompasses a cell-line transfected with these described recombinant plasmids.
- the host cell used to express the altered antibody or molecule is preferably a eukaryotic cell, most preferably a mammalian cell, such as a CHO cell or a myeloid cell.
- Other primate cells may be used as host cells, including human cells which enable the molecule to be modified with human glycosylation patterns.
- suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art. See, e.g., Sambrook et al . , cited above.
- Bacterial cells may prove useful as host cells suitable for the expression of the recombinant mAbs of the present invention.
- any recombinant mAb produced in a bacterial cell would have to be screened for retention of antigen binding ability.
- Streptomyces other bacilli and the like may also be employed in this method.
- strains of yeast cells known to those skilled in the art are also available as host cells, as well as insect cells and viral expression systems. See, e.g.
- the vectors of the invention may be constructed, transfection methods required to produce the host cells of the invention, and culture methods necessary to produce the fusion protein or altered antibody of the invention from such host cell are all conventional.
- the fusion proteins or altered antibodies of the invention may be purified from the cell culture contents according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like. Such techniques are within the skill of the art and do not limit this invention.
- a method of expression of the humanized antibodies may utilize expression in a transgenic animal.
- a method of expression of the humanized antibodies of the invention may be by expression in the milk of a female transgenic animal, such as described in U.S.
- a DNA sequence for a selected humanized antibody of the invention may be operatively linked in an expression system to a milk-specific protein promoter, or any promoter sequence specifically activated in mammary tissue, through a DNA sequence coding for a signal peptide that permits secretion (and maturation, if necessary) of the desired protein in the mammary tissue.
- Suitable promoters and signal peptides may be readily selected by one of skill in the art.
- the expression system is transgenically introduced into a host genome using standard transgenic techniques, for example by microinjection into the pronuclei of fertilized mammalian eggs. See, e.g. B. Hogan et al, "Manipulating The
- one or more copies of the construct or system are incorporated into the genome of the transgenic mammal.
- the presence of the expression system permits the female of the mammalian species to produce and secrete the recombinant humanized antibody into its milk. This system allows for high level production of the humanized antibodies of the invention.
- This latter method of expression may be particularly suitable for a humanized antibody containing bovine CDRs, and especially suitable for the oral administration of this antibody to bovines as well as human infants.
- Other transgenic systems may also be employed.
- the altered antibody is then examined for in vitro activity by use of an appropriate assay.
- an appropriate assay Presently, conventional enzyme linked immunosorbent assay (ELISA) formats are employed to assess qualitative and quantitative binding of the altered antibody to the RSV epitope (see Example 3) .
- ELISA enzyme linked immunosorbent assay
- Other assays may also be used to verify efficacy prior to subsequent human clinical studies performed to evaluate the persistence of the altered antibody in the body despite the usual clearance mechanisms.
- Example 11 below demonstrates the method of constructing the altered humanized antibodies derived from the murine monoclonal antibody RSV19, such as HuRSV19VH/VK and HuRSV19VHFNS/HuRSV19VK which are described in copending PCT patent application No. PCT/GB91/01554.
- RSV19 monoclonal antibody
- HuRSV19VH/VK HuRSV19VHFNS/HuRSV19VK
- Such altered antibodies can effectively prevent and eradicate infection.
- humanized antibodies are the antibodies B4, B13 and B14 described herein. Such antibodies are useful in treating, therapeutically or prophylactically, a human against human RSV infection. Such antibodies may also be useful as diagnostic agents. VII. Therapeutic/Prophylactic Uses of the Invention
- This invention also relates to a method of treating, therapeutically or prophylactically, human RSV infection in a human in need thereof which comprises administering an effective, human RSV infection-treating dose of antibodies including one or more of the mAbs described herein, or fragments thereof, or an altered antibody as described herein, or another fusion protein, to such human.
- This invention also relates to a method of treating, therapeutically or prophylactically, bovine or other species' RSV infection in a bovine or other animal in need thereof which comprises administering an effective, RSV infection-treating dose of antibodies or molecules including one or more of the mAbs described herein, or fragments thereof, or an altered antibody as described herein, to such animal.
- fusion proteins, antibodies, altered antibodies or fragments thereof of this invention may also be used in conjunction with other antibodies, particularly human monoclonal antibodies reactive with other markers (epitopes) responsible for the disease against which the altered antibody of the invention is directed.
- monoclonal antibodies reactive with other markers (epitopes) responsible for the disease in a selected animal against which the antibody of the invention is directed may also be employed in veterinary compositions.
- fusion proteins or fragments thereof described by this invention may also be used as separately administered compositions given in conjunction with chemotherapeutic or immunosuppressive agents.
- chemotherapeutic or immunosuppressive agents The appropriate combination of agents to utilized can readily be determined by one of skill in the art using conventional techniques.
- the altered antibody HuRSV19VHFNS/HuRSV19VK described in Example 11, or a similarly altered 34, B13 or B14 antibody may be given in conjunction with the antiviral agent ribavirin in order to facilitate the treatment of RSV infection in a human.
- One pharmaceutical composition of the present invention comprises the use of the antibodies of the subject invention in immunotoxins, i.e., molecules which are characterized by two components and are particularly useful for killing selected cells in vitro or in vivo.
- immunotoxins i.e., molecules which are characterized by two components and are particularly useful for killing selected cells in vitro or in vivo.
- One component is a cytotoxic agent which is usually fatal to a cell when attached or absorbed.
- the second component known as the
- delivery vehicle provides a means for delivering the toxic agent to a particular cell type, such as cells comprising a carcinoma.
- the two components are commonly chemically bonded together by any of a variety of well-known chemical procedures.
- the linkage may be by way of heterobifunctional cross-linkers, e.g., carbodiimide, glutaraldehyde, and the like. Production of various immunotoxins is well-known in the art.
- cytotoxic agents are suitable for use in immunotoxins, and may include, among others, radionuclides, chemotherapeutic drugs such as methotrexate, and cytotoxic proteins such as ribosomal inhibiting proteins (e.g., ricin) .
- the delivery component of the immunotoxin may include one or more of the humanized immunoglobulins or bovine immunoglobulins of the present invention. Intact immunoglobulins or their binding fragments, such as Fab, are preferably used. Typically, the antibodies in the immunotoxins will be of the human IgM or IgG isotype, but other mammalian constant regions may be utilized if desired.
- the mode of administration of the therapeutic agent of the invention may be any suitable route which delivers the agent to the host.
- the fusion proteins, antibodies, altered antibodies, and fragments thereof, and pharmaceutical compositions of the invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly or intravenously.
- the compositions for parenteral administration will commonly comprise a solution of the altered antibody of the invention or a cocktail thereof dissolved in an acceptable carrier, preferably an aqueous carrier.
- an acceptable carrier preferably an aqueous carrier.
- aqueous carriers may be employed, e.g., water, buffered water, 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well known sterilization techniques.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc.
- concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.
- a pharmaceutical composition of the invention for intramuscular injection could be prepared to contain 1 mL sterile buffered water, and 50 mg of an altered antibody of the invention.
- a pharmaceutical composition of the invention for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution, and 150 mg of an altered antibody of the invention.
- Actual methods for preparing parenterally administrable compositions are well known or will be apparent to those skilled in the art and are described in more detail in, for example. Remington's Pharmaceutical Scienc r 15th ed., Mack Publishing Company,
- one dose of approximately 1 mg/kg to approximately 20 mg/kg of a molecule or an antibody of this invention should be administered parenterally, preferably i.v. (intravenously) or i.m. (intramuscularly) ; or one dose of approximately 20 ug/kg to approximately 2 mg/kg of such antibody should be administered i.n. (intranasally) .
- such dose should be repeated every six (6) weeks starting at the beginning of the RSV season (October- November) until the end of the RSV season (March-April) .
- one dose of approximately 5 mg/kg to approximately 100 mg/kg of an antibody of this invention should be administered i.v. or i.m. or one dose of approximately 0.5 mg/kg to approximately 10 mg/kg of such antibody should be administered i.n.
- one dose of approximately 2 mg/kg to approximately 20 mg/kg of an antibody of this invention should be administered parenterally., preferably i.v. or i.m.; or approximately 200 ug/kg to approximately 2 mg/kg of such antibody should be administered i.n.
- Such dose may, if necessary, be repeated at appropriate time intervals until the RSV infection has been eradicated.
- the dose of B4 required to protect calves when administered by the i.t. route was 300 ⁇ g/kg body weight. This is 300 to 1000-fold less than the amount of human IgG, containing high titres of RSV- neutralizing antibody, required to reduce RSV infection in cotton-rats and owl monkeys, passively immunized by the i.t. route [Hemming and Prince, Reviews of Infectious Diseases. 12:S470-S475 (1990)]. It has been shown that about 10-fold less antibody is required to reduce virus shedding when given by the topical route when compared with intravenous administration [Prince & Hemming, (1990) ] .
- compositions of the invention may also be administered by inhalation.
- inhalation is meant intranasal and oral inhalation administration.
- Appropriate dosage forms for such administration such as an aerosol formulation or a metered dose inhaler, may be prepared by conventional techniques.
- a composition for administration by inhalation for an aerosol container with a capacity of 15-20 ml: Mix 10 mg of an • antibody of this invention with 0.2-0.2% of a lubricating agent, such as polysorbate 85 or oleic acid, and disperse such mixture in a propellant, such as freon, preferably in a combination of (1,2 dichlorotetrafluoroethane) and difluorochloromethane and put into an appropriate aerosol container adapted for either intranasal or oral inhalation administration.
- a propellant such as freon
- a composition for administration by inhalation for an aerosol container with a capacity of 15-20 ml: Dissolve 10 mg of an antibody of this invention in ethanol (6-8 ml), add 0.1-0.2% of a lubricating agent, such as polysorbate 85 or oleic acid; and disperse such in a propellant, such as freon, preferably a combination of (1.2 dichlorotetrafluoroethane) and difluorochloromethane, and put into an appropriate aerosol container adapted for either intranasal or oral inhalation administration.
- a lubricating agent such as polysorbate 85 or oleic acid
- a propellant such as freon
- the antibodies, altered antibodies or fragments thereof described herein can be lyophilized for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional immune globulins and art-known lyophilization and reconstitution techniques can be employed.
- compositions of the invention can be administered for prophylactic and/or therapeutic treatments.
- compositions are administered to a patient already suffering from a disease, in an amount sufficient to cure or at least partially arrest the disease and its complications.
- compositions containing the present antibodies or a cocktail thereof are administered to a patient not already in a disease state to enhance the patient's resistance.
- Single or multiple administrations of the pharmaceutical compositions can be carried out with dose levels and pattern being selected by the treating physician.
- the pharmaceutical composition of the invention should provide a quantity of the altered antibodies of the invention sufficient to effectively treat the patient.
- fusion proteins, antibodies, variable sequences, CDR peptides and epitopes of this invention may be used for the design and synthesis of either peptide or non-peptide compounds (mimetics) which would be useful in the same therapy as the antibody. See, e.g., Saragovi et al . , Science, 2__2.:792-795 (1991).
- Murine monoclonal antibodies 1 to 14 were described in Taylor et al . , (1984) cited above and incorporated herein by reference. Several of these antibodies were produced by immunizing BALB/c mice with bovine RSV, strain 127. The bovine RSV, strain 127 was isolated at Compton in 1973 from a calf with respiratory disease. Others of these antibodies were produced with cells persistently infected with the Long strain of human RSV [Fernie et al . , Proc. Son. Exp. Biol. Medic. , l ⁇ 2:83-86 (1981)].
- Murine monoclonal antibodies 16 to 21 were produced from BALB/c mice inoculated intranasally (i.n.) on two occasions, three weeks apart, with 1X10 4 pfu of the human RSV strain A2, grown in Hep-2 cells. Human RSV, strain A2, subtype A was isolated from a child in Australia [Lewis et al . , P>H . , ⁇ . Ans r. . 11: 932-933 ( 1961) ] .
- mice were inoculated intraperitoneally (i.p.) with 2X10 7 pfu of the bovine 127 strain.
- the immune splenocytes were fused with NS-1 myeloma cells
- the resulting hybridomas were screened for antibody to RSV by radioimmunoassay and immunofluorescence, cloned twice on soft agar and cloned cells inoculated into BALB/c mice to produce ascitic fluid as described in Taylor et al . , cited above.
- Bovine monoclonal antibodies Bl to B6 were produced as described in Kennedy et al . , J. Gen. Virol. , 69:3023-3032 (1988), incorporated herein by reference.
- bovine mAbs B7 to B10, B13 and B14 were produced from bovine lymphocytes obtained from the same calf, but the lymphocytes were stored in liquid nitrogen and fused with NS1 cells at later dates.
- the resulting heterohybridomas were screened for bovine antibody to RSV by ELISA and in some cases also by the fusion inhibition assay [essentially as described in Kennedy et al . (1988), cited above], but adapted to microtitre plates.
- the antibody AK13A2 raised against the Long F protein was a generous gift of Dr. P. Coppe, Centre d' economies rurale, Marloie, Belgium.
- the mAbs 1BC11 (a negative control antibody) , 47F and 49F have been described by Garcia-Barreno et al . , J. Virol . . £1:925-932 (1989).
- the specificities of the mAbs for F protein viral polypeptides were determined by radioimmune precipitation of ( 35 S)-methionine or ( 3 H)-glucosamine labelled RSV infected cell lysates performed as described by Kennedy et al . , ___. Gen. Virol.. 11:3023-3032 (1988). The specificity was confirmed by Western blots (immunoblotting) of non-reduced and reduced RSV-infected cell lysates performed as described by Taketa et al . , Electrophor.. 1:492-497 (1985).
- the antigens used in immunoblotting were either Hep-2 cells infected with the human RSV A2 strain or calf kidney (CK) cells infected with the bovine RSV strain 127. Uninfected Hep-2 or CK cells were used as control antigens. Only mAbs Bl, B4, B5 [Kennedy et al . , cited above] and mAbs RSV19, B13 and B14 reacted with F protein denatured by boiling in dithiothreitol. Whereas mAbs Bl, B4 and B5 recognized 46K and 22K fragments of denatured FI protein in Western blotting, mAbs RSV19, B13 and B14 only recognized 46K fragments.
- a "+" indication means that the mAb inhibited the formation of multinucleated giant cells.
- mice The ability of mAbs to protect against RSV infection was studied in BALB/c mice as follows. 100 ⁇ l of ascitic fluid containing the mAbs was injected intra-peritoneally into groups of five mice. One day later, the mice were inoculated i.n. with 10 4 pfu of the A2 RSV strain. On day 5 of the infection, the mice were killed and their lungs assayed for RSV on secondary CK monolayers, according to the procedure described in Taylor et al . , Infect. Immun. r
- a "-" indication means that the mAb did not protect the immunized mice against RSV infection.
- a “+” or “+_-+” indication means that the mAb did protect the animals to a lesser or greater degree, respectively.
- the eight mAbs that were effective in the fusion inhibition assay i.e., murine mAbs 11, 13, RSV19 and
- bovine mAbs B4, B5, B13, and B14 were highly effective in preventing RSV infection in BALB/c mice when administered i.p. 24 hours prior to i.n. challenge with the
- Example 3 - Enzyme Linked I munosorhent Assay RSV antigens to be tested in the ELISA were each prepared from Hep-2 cells, 3 to 4 days after infection. Cells were scraped into medium, spun at 500 g for 5 minutes, resuspended in distilled water and treated with 0.5% (w/v) NP40 detergent to yield a cell lysate. Control antigen was made in a similar way using uninfected Hep-2 cells.
- the ELISA was performed as follows: Microtitre plates were coated with RSV or control antigen, diluted in distilled water, overnight at 37°C, incubated with blocking buffer consisting of 5% normal pig serum in PBS and 0.05% Tween 20 for 1 hour at room temperature and washed 5x with PBS/Tween. Serial 3-fold dilutions of mAb were added to the wells and the plates incubated for 1 hour at room temperature. After washing 5x with PBS/Tween, HRP- conjugated rabbit anti-bovine IgG (Sigma) diluted 1:4000 or HRP-conjugated goat anti-mouse IgG (Kpl, Maryland, USA) diluted 1:2000, was added to each well.
- Example 4 Purification of the F glycoprotein and trypsin treatment The F protein was purified by immunoaffinity chromatography from extracts of Hep-2 cells infected with the Long strain [See, Walsh et al . , . Gen. Virol.. 66:409- 415 (1985); and Garcia-Barreno et al . , (1989), cited above].
- FIG. 2 shows the F glycoprotein primary structure denoting the hydrophobic regions, the site of proteolytic processing, the potential sites for N- glycosylation, the cysteine residues and the amino acid residues which are changed in the neutralization escape mutants (see Table 3A-3C below) .
- the locations of the trypsin fragments recognized by different mAbs are shown below Fig. 2.
- the region on the F protein recognized by mAbs B13 and B14 were identified by examining their binding to F protein fragments, expressed in E. coli.
- Recombinant C protein (rC, F 37 _ s24 ) of SEQ ID NO: 19 and recombinant D protein (rD, F 371 _ 550 ) of SEQ ID NO: 19 were used as antigens in ELISA as described in Example 3.
- These peptide sequences of the F protein were fused to an influenza non-structural protein fragment containing amino acids 1 - 81 of the influenza nonstructural protein 1 (NS-1) at their amino termini, inserted into an expression plasmid and expressed in E. coli .
- the production of these fusion peptides involved conventional procedures.
- the epitope specificity of the 16 murine and 12 bovine mAbs to the F protein were analyzed by a competitive binding assay using purified and labelled mAbs.
- these competitive binding assays identified twelve antigenic sites on the F protein, many of which overlapped extensively.
- Three epitopic sites were recognized by both the neutralizing mAbs and the highly protective FI mAbs, e.g., B4, B5, B13 and B14.
- These findings are similar to those of others who have identified three antigenic sites on the F protein involved in neutralization using murine mAbs, two of which are involved in FI activity [Walsh et al . , J. Gen. Virol .. 11:505-513 (1986) and Beeler et al . , .7. Virol.. £1:2941-2950 (1989)].
- virus neutralization can occur by a mechanism independent of preventing the fusion of the virus with the cell membrane, e.g. steric hindrance of virus attachment
- the IgG from ascitic fluid containing either murine or bovine mAbs was purified on either Protein A- sepharose or Protein G-sepharose Fast-Flow [Pharmacia LKB] .
- the ascitic fluids were mixed with equal volumes of 0.1M phosphate buffer (pH 8) , and passed through a Protein A- sepharose column with the same buffer.
- Bound antibodies were eluted with 0.1 M citrate buffer (pH 6.0 to 3.5). Fractions eluted with low pH buffers were collected in IM
- IgG from tissue culture supernatants was purified on Protein G-sepharose Fast-Flow and eluted with 0.1M glycine as described above. Purified IgG was dialyzed against PBS and labelled with 125 I using chloramine T or coupled to biotin.
- mAbs B13 and B14 a dilution of biotinylated mAbs, determined to give 90% of maximum binding to RSV- infected cell lysate, was allowed to bind to RSV antigen in the presence of increasing amounts of unlabelled antibody.
- An unlabelled mAb to the nucleoprotein (N) was used as a control. The results of this assay are illustrated in Figs.
- the binding of bovine mAbs Bl and B7 were not inhibited by any of the murine mAbs and, indeed, B7 appeared to recognize a distinct epitope.
- the epitopes recognized by 2 highly protective bovine mAbs B4 and B5 were similar to each other and to 2 of the highly protective murine mAbs, 11 and 13.
- the binding of the protective bovine mAbs B13 and B14 was inhibited to various degrees by protective murine mAbs, RSV19 and 20, and the protective bovine mAbs B4 and B5.
- the competition profiles of mAbs B13 and B14 were different from those antibodies mapping to sites B and C, suggesting that they recognize a different site on the F protein.
- the murine and bovine mAbs recognized 12 antigenic areas, most of which overlapped extensively.
- the highly protective, fusion-inhibiting (FI) neutralizing mAbs mapped to 2 or possibly 3 sites (areas B, C and L in Fig. 5) on the F protein.
- the pattern of reactivity of antibody-escape mutants with the mAbs confirmed the mapping of the protective epitopes deduced from competitive binding assays.
- two regions of the F primary structure were identified where the epitopes recognized by neutralizing mAbs were located.
- the first region mapped within the trypsin resistant amino terminal third of the large FI subunit.
- This region contained the overlapping epitopes recognized by mAbs 47F, 49F, 7C2, AK13A2, 11 and B4, included in antigenic area II (Fig. 8) and area B (Figs. 5 and 7) .
- Antigenic areas II and B are identical.
- Most amino acid changes found in mutants selected with these antibodies were clustered around amino acids 262-272 of SEQ ID NO: 19. Since these antibodies reacted in Western blots with proteolytic fragments of the FI subunit, it was originally thought that they recognized "linear" epitopes determined by sequences of consecutive amino acids.
- the change at 216 is distantly located from the peptide 255-
- the neutralization of RSV by the mAbs used to select the escape mutants is theorized to be related to their capacity to inhibit the membrane fusion of the F glycoprotein [Garcia-Barreno et al . (1989), cited above;
- mutants altered in the fusogenic activity of the influenza virus hemagglutinin [Daniels et al . , Cell, 40:431- 439 (1985) ] have been mapped outside the fusion peptide of the HA2 subunit.
- the escape mutants were developed and evaluated as follows.
- the wild type and neutralization escape mutant viruses were grown in Hep-2 cells and purified from culture supernatants as previously described [Garcia-Barreno et al. ,
- the Long and A2 strains of human RSV were plaque purified before being used to select viruses which escaped neutralization (mAb resistant mutants) by mAbs 47F, AK13A2, 7C2, 11, B4, B5, 19 or 20, and other mAbs directed against the F glycoprotein as described herein. These were selected in two different ways:
- Antibody escape mutant viruses of the RSV A2 strain which are refractory to neutralization by one of the highly protective mAbs, 11, B4, B5, RSV19 and 20, were produced using plaque reduction techniques.
- mAbs RSV19 For mAbs RSV19,
- confluent monolayers of primary CK cells were infected with the A2 strain at a multiplicity of infection (MOD of 0.2. Starting 24 hours after infection and continuing for 3 to 5 days, the culture medium was replaced daily with fresh medium containing 10% mAb. Virus was harvested when a cytopathic effect (CPE) was apparent.
- MOD multiplicity of infection
- Virus prepared in this way was mixed with an equal volume of the mAb under test for 1 hour at room temperature and inoculated onto CK monolayers in 35 mm multi-well plates
- Mutant viruses were plaque picked again and inoculated into tubes containing coverslips of calf testes cells or Hep-2 cells. After 4 to 6 days incubation, the coverslips were removed and stained with the mAb under test followed by FITC-labelled rabbit anti-mouse
- each escape mutant was used as antigen in the ELISA described in Example 3 to test its reactivity with a panel of anti-F mAbs (Figs. 7 and 8) .
- Mutant viruses selected for resistance to mAb 11 lost the capacity to bind not only mAb 11 but also mAbs 13, B4, and B5, and had reduced binding to mAb 7C2, when compared with the parent A2 strain of RSV (Fig. 7) .
- All mutant viruses selected for resistance to either B4 or B5 lost the capacity to bind not only B4 or B5 but also 11 and 13.
- some mutants selected with B4 e.g. C4947/5) still bound to B5 but at a greatly reduced level when compared with the A2 strain.
- mutants selected for resistance to mAb As seen for mutants selected for resistance to mAb
- B4 and B5 mutants showed either the same, reduced or no binding to mAb BIO when compared with the parent A2 strain.
- escape mutants of the Long strain were isolated as previously described [Garcia-Barreno et al . (1989), cited above] . Briefly, virus stocks were enriched in mutant viruses by 4-5 consecutive passages in the presence of the selecting antibody, 47F, 7C2 or AK13A2.
- viruses were plaque purified in antibody containing agar plates. Several viral plaques were isolated, and their resistance to antibody neutralization was confirmed. A single plaque originated from each aliquot of the virus stock was chosen for further analysis.
- AK13A2 were included in antigenic area II previously described by Garcia-Barreno et al . (1989), cited above, based solely on their reactivity with antibody-escape mutants.
- the epitopes recognized by mAbs RSV19 and 20 were included in antigenic area IV by the same criteria (Fig. 8) .
- the mutations selected in the escape viruses affected only epitopes from the antigenic area which included the selective antibody. For instance, mutant 4/4 did not react with any of the antibodies grouped in area II, whereas other mutants selected with the same antibody (11/3, 4, 5 and 7) reacted with mAbs 7C2 and B4 but not with 47F, 49F or AK13A2.
- the mutants selected with mAbs 19 or 20 did not bind the antibodies grouped in the antigenic area IV, except mAb 52F. However, in all cases the mutant viruses retained the binding of mAbs from other antigenic areas.
- the epitopes included in antigenic area II could be distinguished by at least one of the following criteria: i) the reactivity of mAbs with escape mutants, ii) the competition of mAbs for virus binding and iii) the inhibition of virus binding by an anti-Id antiserum. Only the epitopes 47F and 49F could not be distinguished by the above criteria, but they differ in both neutralizing capacity and susceptibility to denaturing agents.
- Example 8 Location of amino acid changes selected in neutralization escape mutants
- the F protein mRNAs obtained from cells infected with the different viruses were sequenced as follows. Hep-2 cells were infected with the different viruses and harvested 30-40 hours post-infection, when cytopathic effect was evident by the formation of syncytia. Total RNA was isolated by the isothiocyanate-CsCl method [Chirgwin et al . , Biochem., 11:5294-5299 (1979)] and poly A+ RNA was selected by oligo dT-cellulose chromatography. These mRNA preparations were used for sequencing by the dideoxy method [Sanger et al . , Proc. Na '1. Acad. Sci... USA.
- SEQ ID NO: 28 F1707 5'-CTCAGTTGATCCTTGCTTAG.
- the F mRNA of viruses selected with mAbs AK13A2, AK13A2, 7C2 and B4 were sequenced between nucleotides 420 and 920, which encode the trypsin resistant fragments recognized by those antibodies (Fig. 2) .
- the F mRNA of viruses selected with mAb 11 were sequenced only between nucleotides 893 and 906.
- the F mRNAs of viruses selected with mAbs 19 and 20 were sequenced between nucleotides 1100 and 1680, which encode the region of the tentatively located 26 kDa trypsin resistant fragment recognized by those antibodies.
- Table 3 illustrates sequence changes selected in different neutralization escape mutants, including two previously reported mutants selected with mAb 47F [Lopez et al . , (1990), cited above]. Only nucleotide (mRNA sense) and amino acid changes at the indicated positions, as compared to the Long and A2 strain sequences, are shown. ND means not done.
- viruses selected with mAb AK13A2 (11/3, 4, 5 and 7) has a single transversion (A to U) at nucleotide 797 which changed Asn-262 to Tyr. This change eliminated the binding sites for antibodies 47F, 49F and AK13A2 (see also Fig. 8) and it is identical to the change observed in mutant 4 selected with mAb 47F.
- a fifth virus selected with mAb AK13A2 (4/4) had, in addition, a transition (A to G) at nucleotide 659 which Asn-216 to Asp. This second amino acid change led to the loss of all the epitopes- from antigenic area II (Fig. 8) .
- the last mutant selected with mAb AK13A2 (4') had a single transition A to G at nucleotide 827, leading to the replacement of Lys-272 by Glu and the loss of all the epitopes from area II.
- mutants selected with mAb 7C2, except mutant 4 contained single nucleotide changes (A to G or A to C) at positions 827 or 828 which changed Lys-272 to Glu or Thr, respectively. These changes eliminated the reactivity with all the mAbs from antigenic area II. Mutant 4 had two nucleotide substitutions at position 583 (C to A) and 786 (U to C) which changed amino acids 190 (Ser to Arg) and 258 (Leu to Ser) . The last mutant had only lost the binding site for mAb 7C2 but retained its reactivity with all the other anti-F antibodies (Fig. 8) .
- the two mutants selected with mAb B4 had a single nucleotide transversion at position 828 (A to C) which changed Lys-272 to Thr.
- all the amino acid changes selected with mAbs from antigenic area II were clustered in a small segment of the F protein, between amino acids 262 and 272, except the changes at amino acids 258, 216 and 190 which were detected only in viruses with two amino acid substitutions.
- Example 9 Reactivity of antibodies with synthetic peptides Since the antibodies used to select the escape mutants reacted in Western blot with trypsin fragments of the FI subunit, whether or not synthetic peptides could reproduce the epitopes recognized by these antibodies was determined.
- the peptides shown in Table 4 were synthesized in an Applied Biosystem 430 instrument, using the solid phase technology and t-Boc chemistry [Merrifield, Science, 212:341-347 (1986)]. The peptides were cleaved off the resin with trifluoromethyl sulfonic acid and purified from protecting groups and scavengers by Sephadex G-25 chromatography. The amino acid sequence of each peptide was confirmed by automated Edman degradation in an Applied Biosystem 477 protein sequencer.
- the first site contains several overlapping epitopes located within the trypsin resistant amino terminal third of the FI subunit, clustered around amino acids 262-
- Overlapping peptides corresponding to amino acids 255 to 275 of the F protein [SEQ ID NO: 19] were synthesized in duplicate as a series of octamers overlapping by seven amino acids and offset by one amino acid, bound to polyethylene pins using F-Moc chemistry following the method of Geyson et al, J. Immunol. Meth., 112:259-274 (1987) .
- the software package, polyethylene pins and amino acids used to produce the peptides were obtained from Cambridge Research Biochemicals, Cheshire, England.
- the pins to which the peptides are bound were incubated with blocking buffer in 96 well microtitre plates (PBS containing 0.05% Tween 20 and 2% Marvel) on a rotary shaker. After one hour incubation at room temperature, the pins were incubated with mAb B4, and diluted 1:600 in blocking buffer at 4°C with shaking. After being washed 10 times for 5 minutes in PBS containing 0.05% Tween 20 (PBS/Tw) , the pins were incubated with horseradish peroxidase (HRP)-rabbit anti-bovine IgG [Sigma], diluted 1:4000 in blocking buffer.
- HRP horseradish peroxidase
- the pins were washed ten times for 5 minutes and incubated, in the dark with agitation, in microtiter plates containing 150 ⁇ l/well of 50 mg of azino-di-3-ethyl-benzthiazodisulpho-nate [Sigma] dissolved in 100 ml of substrate buffer (0.1M disodium hydrogen orthophosphate; 0.08M citric acid) containing 0.3 ⁇ 1/ml of 120 volume hydrogen peroxide. When sufficient color had developed, the O.D. was read at 405 nm- on a Titertek Multiscan MCC 340 plate reader.
- MAb B4 recognized a single peptide extending from amino acid #266-273 of SEQ ID NO: 19 and having the sequence I T N D Q K K L bound to the pins.
- the binding of B4 to this octomer was studied further using peptides, bound to pins, which represented the above sequence, but where every amino acid in this sequence was replaced in turn with each of the 20 naturally occurring amino acids.
- Duplicate peptides were synthesized as described above and the binding of mAb B4 to the peptides was determined by ELISA and is shown in Fig. 9.
- B4 bound to all peptides where amino acid 266-Ile was replaced in turn with all other amino acids, indicating that amino acid 266- He was not essential for the binding of B4 to the peptide 266-273 of SEQ ID NO: 19.
- replacement of amino acids 270-Glu and 273-Lys did not affect the binding of B4 to a significant extent.
- substitution of amino acids 268-Asn, 269-Asp and 272-Lys resulted in the total loss of binding of B4, indicating that these amino acids are essential for the binding of B4 to peptide 266-273 of SEQ ID NO: 19.
- RSV19 is specific for the fusion (F) protein of RSV.
- the RSV19 hybridoma cell line was obtained from Dr. Geraldine Taylor. Methodology for the isolation of hybridoma cell lines secreting monoclonal antibodies specific for RSV is described by Taylor et al . , Immunology, 12:137-142 (1984) .
- cytoplasmic RNA was prepared by the method of Favaloro et al . , (1980) cited above from the RSV19 hybridoma cell line, and cDNA was synthesized using Ig variable region primers as follows.
- Ig variable region primers for the Ig heavy chain variable region, RSV19VH (see Figs. 15A, 15B and 19), the primer [SEQ ID NO: 33] VH1FOR
- VH1FOR or VKIFOR 250 ⁇ M each of dATP, dCTP, dGTP and dTTP,
- VH and VK cDNAs were then amplified using PCR.
- the primers used were: VH1FOR; VKIFOR; VH1BACK
- DNA/primer mixtures consisted of 5 ⁇ l RNA/cDNA hybrid, and 0.5 ⁇ M VH1FOR and
- VH1BACK primers For PCR amplifications of VK, DNA/primer mixtures consisted of 5 ⁇ l RNA/cDNA hybrid, and 0.5 ⁇ M VKIFOR and VKIBACK primers. To these mixtures was added 200 ⁇ M each of dATP, dCTP, dGTP and dTTP, lOmM Tris-HCl pH 8.3,
- amplified VH DNA was purified on a low melting point agarose gel and by
- VH DNA was either directly ligated into the Smal site of M13 mp 18/19 or, following digestion with PstI, into the
- Amplified VK was similarly gel purified and cloned by the following alternatives: (1) PvuII digest into M13mpl9 (Smal site) ; (2) PvuII and Bglll digest into M13mpl8/19 (Smal-BamHI site) ; (3) PvuII and Bglll digest into M13tgl31 (EcoRV-BglH site) ; (4) Bglll digest into M13tgl31 (Smal-Bglll site) .
- the resultant collections of overlapping clones were sequenced by the dideoxy method [Sanger et al . , cited above] using Sequenase [United States
- the murine RSV19 CDRs were transferred to human frameworks by site directed mutagenesis.
- the primers used were:
- the DNA templates for mutagenesis comprised human framework regions derived from the crystallographically solved proteins, NEW [Saul, et al . , J. Biol.,Chem., 53:585- 597 (1978)] with a substitution of amino acid 27 from serine to phenylalanine [See, Riechmann et al . , loc.cit.1 and REI [Epp et al . , Eur J. Bio ⁇ hsm. ...:..1_-...4 (1974)] for VH and VK domains, respectively.
- M13 based templates comprising human frameworks with irrelevant CDRs were prepared as described by Riechmann et al . , Nature, 332 (1988).
- Oligonucleotide site directed mutagenesis of the human VH and VK genes was based on the method of Nakamaye et al . , Nucl. Acid Res., 14:9679-9698 (1986). To 5 ⁇ g of VH or VK single-stranded DNA in M13 was added a two-fold molar excess of each of the three VH or VK phosphorylated oligonucleotides encoding the three mouse CDR (complementarity determining region) sequences. Primers were annealed to the template by heating to 70°C and slowly cooled to 37°C.
- T4DNA ligase [Life Technologies, Paisley, UK]; 0.5 mM of each of the following nucleoside triphosphates (dATP, dGTP, dTTP and 2'-deoxycytidine 5'-0-) 1-thiotriphosphate) (thiodCTP) ; 60mM Tris-HCl (pH 8.0); 6mM MgCl 2 ; 5mM DTT [Sigma, Poole, UK]; and lOmM ATP in a reaction volume of 50 ⁇ l. This mixture was incubated at 16°C for 15 hours.
- the DNA was then ethanol precipitated and digested with 5 units Neil [Life Technologies, Paisley, UK] which nicks the parental strand but leaves the newly synthesized strand containing thiodCTP intact.
- the parental strand was then removed by digesting for 30 minutes with 100 units exonuclease III [Pharmacia,
- Single-stranded DNA was prepared from individual plaques and sequenced by the method of Messing, Methods in Enzymology. 111:20-78 (1983) . If only single or double mutants were obtained, then these were subjected to further rounds of mutagenesis (utilizing the methodology described above) by using the appropriate oligonucleotides until the triple CDR mutants were obtained.
- the CDR replaced VH and VK genes were cloned in expression vectors (by the method of Maniatis et al . ) to yield the plasmids pHuRSV19VH and pHuRSV19VK.
- the plasmids are shown in Figs. 16 and 17, respectively.
- the CDR replaced VH gene together with the Ig heavy chain promoter, appropriate splice sites and signal peptide sequences were excised from M13 by digestion with Hindlll and BamHI, and cloned into an expression vector containing the murine Ig heavy chain enhancer, the SV40 promoter, the gpt gene for selection in mammalian cells and genes for replication and selection in E. coli .
- the variable region amino acid sequence is shown in Fig. 19.
- a human IgGl constant region was then added as a BamHI fragment.
- pHuRSV19VK plasmid The construction of the pHuRSV19VK plasmid was essentially the same except that the gpt gene was replaced by the hygromycin resistance gene and a human kappa chain constant region was added (see Figs. 17 and 22).
- lO ⁇ g of pHuRSV19VH and 20 ⁇ g of pHuRSV19VK were digested with Pvul utilizing conventional techniques. The DNAs were mixed together, ethanol precipitated and dissolved in 25 ⁇ l water.
- Approximately 10 7 YB2/0 cells [American Type Culture Collection, Rockville, Maryland, USA] were grown to semi- confluency, harvested by centrifugation and resuspended in 0.5ml DMEM [Gibco, Paisley, UK] together with the digested DNA in a cuvette. After 5 minutes on ice, the cells were given a single pulse of 170V at 960uF (Gene-Pulser, Bio-Rad- Richmond, California, USA) and left in ice for a further 20 minute. The cells were then put into 20 ml DMEM plus 10% foetal calf serum and allowed to recover for 48 hours.
- the cells were distributed into a 24-well plate and selective medium applied (DMEM, 10% foetal calf serum, 0.8 ⁇ g/ml mycophenolic acid, and 250 ⁇ g/ml xanthine) . After 3-4 days, the medium and dead cells were removed and replaced with fresh selective medium. Transfected clones were visible with the naked eye 10-12 days later.
- DMEM 10% foetal calf serum, 0.8 ⁇ g/ml mycophenolic acid, and 250 ⁇ g/ml xanthine
- the presence of human antibody in the medium of wells containing transfected clones was measured by conventional ELISA techniques. Micro-titre plates were coated overnight at 4°C with goat anti-human IgG (gamma chain specific) antibodies [Sera-Lab-Ltd., Crawley Down, UK] at 1 ⁇ g per well. After washing with PBST (phosphate buffered saline containing 0.02% Tween 20x (pH7.5)), lOO ⁇ l of culture medium from the wells containing transfectants was added to each microtitre well for 1 hour at 37°C.
- PBST phosphate buffered saline containing 0.02% Tween 20x (pH7.5)
- HuRSV19VH/VK also called RSH200
- HuRSV19VH/VK secreted from cell lines cotransfected with pHuRSV19VH and pHuRSV19VK
- Antigen consisted of calf kidney (CK) cells infected with RSV A2 strain [Lewis et al . , Med. J. Austral a, 41:932-933 (1961)] and treated with 0.5% (v/v) NP40 detergent to yield a cell lysate.
- Microtitre plate wells were coated with either infected or control cell lysate. Antigen coated plates were blocked with PBST for 1 hour at 37°C, washed with PBST, and thereafter humanized antibody was applied (i.e., HuRSV19VH/VK) . After 1 hour at 37°C, the wells were emptied, washed with PBST and 200 ng goat anti-human IgG antibodies [Sera Lab-Ltd., Crawley Down, UK] added per well.
- This humanized antibody HuRSV19VH/VK (RSHZ00) , generated by the straight replacement of the RSV19 heavy and light chain CDRs into the human heavy chain framework regions (variable and constant regions REI and kappa, respectively) bound to whole RSV preparations, although with an affinity less than the donor murine RSV19 antibody.
- High affinity antibodies specific for RSV were developed by a method designed to achieve minimal variable region framework modifications giving rise to high affinity binding.
- the method involves the following order of steps of alteration and testing:
- amino acid 94 comprises Arg in the framework of the primary antibody but not in the framework of the altered antibody, then an alternative heavy chain gene comprising
- Arg 94 in the altered antibody is produced.
- the altered antibody framework comprises an Arg residue at position 94 but the primary antibody does not, then an alternative heavy chain gene comprising the original amino acid at position 94 is produced.
- alternative plasmids produced on this basis are tested for production of high affinity altered antibodies.
- Framework amino acids within 4 residues of the CDRs as defined according to Kabat are compared in the primary antibody and altered CDR- replacement antibody. Where differences are present, then for each region (e.g., upstream of VHCDRl) the specific amino acids of that region are substituted for those in the corresponding region of the altered antibody to provide a small number of altered genes. Alternative plasmids produced on this basis are then tested for production of high affinity antibodies.
- the method is exemplified by the production of a high affinity altered antibody derivative of HuRSV19VH/VK specific for RSV.
- Comparison of VH gene sequences between RSV19VH and pHuRSV19VH indicates that 3 out of 4 amino acid differences occur between amino acids 91 to 94 of the F protein of SEQ ID NO: 19, which defines a framework sequence adjacent to heavy chain CDR3.
- plasmid pHuRSVl9VHFNS (Fig. 20) was produced by inserting the RSV1 heavy chain CDRs and the four amino acid framework sequence amino acids 91 to 94 into the human framework described in the preceding example.
- oligonucleotide site directed mutagenesis the following oligonucleotide was used for mutagenesis of the HuRSV19VH gene in Ml3:
- the cell line cotransfected with pHuRSVl9VHFNS and pHuRSV19VK (Fig. 22) produced a second humanized antibody
- HuRSV19VHFNS/HuRSV19VK (abbreviated hereafter as RSHZ19) .
- This antibody was tested in an ELISA assay for analysis of binding to RSV antigen prepared from detergent-extracted, virus-infected cells.
- the substitution of VH residues 91 to 94 in HuRSV19VH/VK with VH residues from mouse RSV19VH partially restored antigen binding levels.
- Additional analysis of HuFNS binding properties was performed using an ELISA assay in which intact Type A RSV (Long strain) was used as the antigen. The data from such additional analysis show that there is little if any difference between the ability of the murine mAb RSV19 and the humanized RSHZ19 antibodies to bind to intact, non-denatured RSV. This additional analysis also showed detectable binding of HuRSV19VH/VK to intact virus, although of a much lower magnitude than was seen with either RSV19 or RSHZ19.
- fluorescein-conjugated rabbit anti-mouse IgG [Nordic Laboratories-Tilburg, The Netherlands] or fluorescein-conjugated goat anti-human IgGl
- a suspension of MA104 cells was infected with RSV at an m.o.i. (multiplicity of infection) of 0.01 PFU (plaque forming units) per cell. After 1 hour at 37°C, 2 ml of cells at lOVml were distributed to glass coverslips in tubes. After a further 24 hours at 37°C, the culture medium was replaced by medium containing dilutions of humanized antibody, RSHZ19. Twenty-four hours later, coverslip cultures were fixed in methanol for 10 minutes and stained with May Grunwald stain [BDH Chemicals Ltd., Poole, UK].
- the effect of increasing concentrations of RSHZ19 in inhibiting the frequency of giant cells demonstrates the biological activity of the humanized antibody RSHZ19 in inhibiting Type A RSV induced cell fusion. Additional studies showed that the fusion inhibition titres for RSV19 versus RSHZ19 were comparable, providing additional evidence that affinity for the native viral antigen was fully restored in the humanized RSHZ19.
- the humanized antibody RSHZ19 has also been shown, using methodology analogous to that utilized above for showing inhibition of Type A RSV induced cell fusion, to exhibit a dose dependent inhibition of Type B RSV (strain 8/60) induced giant cell fusion.
- mice were challenged intranasally with 10 4 PFU of the A2 strain of human RSV [Taylor et al . , Infect. Immun. , 41:649-655 (1984)]. Groups of mice were administered with 25 ⁇ g of humanized antibody either one day prior to virus infection or 4 days following infection. Administration of antibody was either by the intranasal
- RSHZ19 was also shown to be active in vivo when administered prophylactically to mice challenged with Type B
- HuRSV19VH/VK was also shown to be active in vivo when administered prophylactically to mice challenged with Type B
- mice Five female BALB/c mice (weighing approximately 20g) were inoculated i.p. with 50 ⁇ g RSHZ19 (CHO) and another 5 were inoculated intravenously (i.v.) with 50 ⁇ g RSHZ19 (CHO) . Mice were bled from the tail 2 hours, 1, 4, 7, 14,
- strain A2-infected or uninfected Hep-2 cells, followed by dilutions of mouse sera and HRP-anti human IgG.
- mice inoculated i.v. developed antibody to
- mice inoculated i.p. had no detectable antibody to RSHZ19.
- mice log 10 ELISA Inoculated titre* _ i.v. 2.5 + 0.2 i.p. ⁇ -5
- Biotinylated RSHZ19 recognized RSV in all the nasopharyngeal aspirates studied.
- the intensity of fluorescence in samples stained with biotinylated RSHZ19 was less than in those stained with IMAGENTM RSV; however, the numbers of stained cells appeared to be similar in both samples.
- Lung washings were obtained at post-mortem by filling the lungs with 800 ml of PBS. Lung washings were centrifuged at 1300 g and the cell pellet resuspended in 5 ml of medium. All samples were assayed for RSV on secondary
- Calves were also treated i.t. with 15 mg B13 or 15 mg Bl 24 hours prior to challenge with bovine RSV (BRSV) .
- MAb Bl is an anti-F antibody that is non-neutralizing, non- protective in mice but fixes complement (Kennedy et al, (1988)) .
- p 0.07
- Cytoplasmic RNA was prepared by the method of Favaloro et al . , Meth. Enzy ol . . 11:718-749 (1980) from B4, B13 and B14 hybridoma cell lines.
- the primers
- BCGIFOR 5*TTGAATTCAGACTTTCGGGGCTGTGGTGGAGG 3' [SEQ ID NO: 29], which is based on sequence complementary to the 5' end of bovine ⁇ -1 and -2 constant region genes
- BCLIFOR 5'CCGAATTCGACCGAGGGTGGGGACTTGGGCTG 3' [SEQ ID NO: 30], which is complementary to the 5' end of the bovine lambda constant region gene, were used in the synthesis of Ig heavy (VH) and light (VL) chain variable region cDNAs, respectively.
- cDNA synthesis reactions consisted of 20 ⁇ g RNA, 0.4 ⁇ M BCGIFOR or BCLIFOR, 250 ⁇ M each of dATP, dCTP, dGTP and dTTP, 50mM Tris-HCl pH 7.5, 75mM KC1, lOmM DTT, 3mM MgCl 2 and 27 units RNase inhibitor [Pharmacia, Milton Keynes, United Kingdom] in a total volume of 50 ⁇ l. Samples were heated at 70°C for 10 minutes and slowly cooled to 42°C over a period of 30 minutes. Then, lOO ⁇ MMLV reverse transcriptase [Life Technologies, Paisley, United Kingdom] was added and incubation at 42°C continued for 1 hour.
- VH and VK cDNAs were then amplified using the polymerase chain reaction (PCR) as described by Saiki et al . , Science. 211:487-491 (1988).
- PCR polymerase chain reaction
- the primers used were BCGIFOR, BCLIFOR, [SEQ ID NO: 31]
- VH1BACK 5'AGGT(S) (M) (R)CTGCAG(S)AGTC(W)GG 3'
- VL2BACK 5'TTGACGCTCAGTCTGTGGTGAC(K)CAG(S) (M)GCCCTC 3'
- VH1BACK is described by Orlandi et al . , Proc. Nat'1. Acad. Sci.. USA. 11:3833-3937 (1989) .
- the sequence of VL2BACK was based on nucleotide sequences listed for the 5' end of human lambda variable regions [Kabat et al . , (1987), cited above] .
- DNA/primer mixtures consisted of 5 ⁇ l RNA/cDNA hybrid and 0.5 ⁇ M BCGIFOR and VHIBACK primers.
- DNA/primer mixtures consisted of 5 ⁇ l RNA/cDNA hybrid and 0.5 ⁇ M BCLIFOR and VL2BACK primers.
- VH DNA was cloned as Pstl-EcoRI fragments into similarly-digested M13mpl8/19 [Pharmacia-Milton Keynes, UK] .
- VL DNA was cloned as Sstl-EcoRI fragments into M13mpl8/19 digested with the same enzymes. Representative clones were sequenced by the dideoxy method [Sanger et al . , Proc. Nat'1.
- amino acid sequences obtained by translation of the variable region gene inserts were aligned with known VH and VL sequences to allow identification of the CDRs.
- VL and VH amino acid sequences of B4 and the apparently substantially identical B13 and B14 antibodies are reported in Figs. 3A and 3B (VL) , and 4A and 4B (VH) .
- the B4 sequences are reported above the B13/B14 sequences to demonstrate the ho ologies therebetween.
- the B4VH gene was amplified from an M13 clone
- Example 18 by PCR with oligonucleotides VH1BACK (described in Example 18) and VH1FOR (5' TGAGGAGACGGTGACCGTGGTCCCT
- the PCR mixture consisted of 0.5 ⁇ l M13 phage supernatant 0.5 uM each of the above primers, 250 uM each of dATP, dCTP, dGTP and dTTP, 10 mM KCl, 20 mM Tris-HCl pH 8.8, 10 mM (NH 4 ) 2 S0 4 ,
- M13VHPCR1 (Orlandi et la, 1989, cited above) .
- the integrity of a chosen clone was confirmed by nucleotide sequencing.
- the B4VH was cloned into an expression vector as described in Example 11 except that the human IgGl constant region was already present in the vector.
- the plasmid was termed ⁇ SVgptB4BoVHHuIgGl.
- the vector M13VKPCR1 (Orlandi et al, 1989, cited above) was first modified to allow it to accept a lambda, rather than kappa, chain variable region. This was achieved by mutating the 5' end of the existing VK gene using the oligonucleotide
- M13VKPCR1 was grown in E. coli RZ1032 (dut ' ung " ) to give single-stranded template DNA containing uracil in place of thymine.
- 0.5 ug DNA was mixed with 1 pmol each of the three phosphorylated oligonucleotides above and 1 pmol of an oligonucleotide VKPCRFOR (5' GCGGGCCTCTTCGCTATTACGC 3') [SEQ ID NO: 47] which anneals to the M13 template downstream of the insert DNA.
- the oligonucleotides were annealed to the template in 20 ul of 50 mM Tris-HCl pH 7.5, 25 mM MgCl 2 , 63 mM NaCI by heating to 80°C for 5 minutes and cooling slowly to room temperature.
- dATP, dCTP, dGTP and dTTP were added to a 250 ⁇ M final concentration, DTT to 7 mM, ATP to 1 mM with 0.5 unit T7 DNA polymerase (USB) and 0.5 unit T4 DNA ligase (BRL) in the same buffer.
- the 30 ⁇ l reaction was incubated at room temperature for one hour and the DNA ethanol precipitated.
- the DNA was dissolved in 50 ⁇ l of 60 mM Tris.HCl, pH 8.0, 1 mM EDTA, 1 mM DTT, 0.1 mg/ml BSA containing 1 unit uracil DNA glycosylase and incubated at 37°C for one hour before NaOH was added to 0.2 M and incubation continued at room temperature for 5 minutes.
- the DNA was ethanol precipitated, dissolved in 20 ⁇ l TE and the insert fragment amplified by PCR.
- the reaction mixture contained 2 ⁇ l mutant DNA, 0.5 ⁇ M each VKPCRFOR and VKPCRBACK (5 1
- CTGTCTCAGGGCCAGGCGGTGA 3*) [SEQ ID NO: 48], 250 ⁇ M each of dATP, dCTP, dGTP and dTTP, 10 mM Tris.HCl pH 8.3, 50 mM KCl,
- the product DNA was cloned into M13mpl9 as a Hindlll-
- Hpal and Ncol restriction sites were introduced at the ends of the B4VL by amplifying the DNA from an Ml3 clone
- the expression vectors were co-transfected into YB2/0 myeloma cells, transfectomas secreting antibody identified and a chimeric antibody B4BoVH/BoVL purified as described in Example 11.
- the chimeric antibody was compared to the B4 bovine antibody for binding to RSV-infected cell lysate in an ELISA.
- the method was essentially as described in Example 11 except that RSV-infected and uninfected Hep2 cell lysates were used.
- the reporter antibodies were goat anti- human IgG antibodies, HRPO-conjugated (Sera-Lab Ltd, Crawley Down, UK) and rabbit anti-bovine IgG antibodies, HRPO- conjugated (Sigma, Poole, UK), used as 1 in 1000 dilutions.
- bovine and chimeric (BoVH/BoVL) B4 antibodies bound to the infected cell lysate whereas an irrelevant humanized antibody did not. None of the antibodies reacted against the control lysate. It is not possible to draw a direct comparison between the bovine and chimaeric antibodies from this experiment as different reporter antibodies were used. In a separate experiment comparing the conjugates, about 2.5 fold more bovine antibody than human antibody was required to obtain the same OD reading. Thus the bovine and chimeric antibodies are approximately equivalent in binding.
- B4 Humanized Heavy Chain The B4VH was humanized by transferring the bovine CDRs onto human NEWM VH frameworks (Saul et al, 1978, cited above) using site-directed mutagenesis. The following bovine framework residues (numbering as Kabat et al, (1987) , cited above) were incorporated into the humanized VH alongside the CDRs (see Figure 10) .
- Lys94 - the amino acid at this position can affect the conformation of CDR3 by formation of a salt bridge (Chothia and Lesk (1987) , cited above) .
- the template DNA was M13mpl9-based and contained a VH gene comprising NEWM frameworks and irrelevant CDRs, similar to that described by Riechmann et al . , Nature, 332:323-327 (1988) .
- the mutagenesis was carried out as described above for the construction of M13VLPCR1.
- the oligonucleotides employed were:
- VHCDR1 5' CTGTCTCACCCAGCTTACAGAATAGCTGCTCAATGAGAAG
- VHCDR2 5' CATTGTCACTCTGGATTTCAGGGCTGGGTTATAATATATGATT
- VHCDR3 5' CAAGGACCCTTGGCCCCAGGCGTCGACATACTCGCCCTTGC
- pSVgptB4HuVHHuIgGl was co-transfeeted with the chimeric light chain vector, pSVhygB4BoVLHuVK as described in Example
- the resulting partially humanized antibody B4HuVH/BoVL therefore contains a humanized B4 heavy chain (B4HuVH) with a B4 light chain chimeric B4BoVLHuVK.
- B4HuVH humanized B4 heavy chain
- B4 light chain chimeric B4BoVLHuVK.
- Cells secreting B4HuVH/BoVL antibody were expanded and antibody purified from 400ml conditioned medium.
- the B4HuVH/BoVL antibody was compared to the chimeric antibody B4BoVH/BoVL in binding to RSV strain A2-infected cell lysate in an ELISA. This allowed assessment of the relative binding abilities of the chimeric and humanized heavy chains.
- the humanized heavy chain HuVH binds to RSV-infected cell lysate, but is 2-3 fold deficient in binding relative to the chimeric heavy chain BoVH. Additional murine residues were included to attempt to increase binding.
- the HuVH gene was mutated to encode the following changes: T at position 73, N at position 76 and F at position 78 to NSV. These residues are part of a ⁇ -turn which forms a fourth loop at the antigen binding surface.
- a HuVHNSV/BoVL antibody was produced and tested for binding to a lysate of cells infected with the Snook strain of RSV by ELISA. Inclusion of the RSV residues gave no advantage over the original HuVH.
- a humanized version of the B4 light chain B4HuVL was constructed by site-directed mutagenesis of the bovine B4VL frameworks to give frameworks of the human KOL lambda variable region (see Figure 11) .
- Cells were selected for the presence of the gpt gene which is found on the heavy chain expression vector.
- Initial results using BoVL and HuVL probes show bands of approximately the same size for all three species of light chain.
- Two more humanized light chain constructs - a human REI kappa framework-based version of the light chain and a CDR- grafted light chain with frameworks of the human KIM46L lambda chain, may be made using the actual nucleotide sequence of the KIM46L VL gene (Cairns et al, J. Immunol..
- bovine variable region sequences in the databases meant that it was difficult to design primers for PCR amplification and thus to isolate DNA for the initial cloning and sequencing.
- Example 21 Effect of RSH7.19 and RSBV04 administered therapeut cally to RSV infected mice
- Groups of five mice were inoculated intranasally with approximately 10 5 PFU of the A2 strain of RSV and were treated on day 4 of infection with different amounts of
- RSBV04 administered intraperitoneally either alone or with
- RSHZ19 0.5 mg/kg RSHZ19, as shown in Table 10 below. Mice were killed five days after RSV challenge, and the level of virus in the lungs determined on CK cells. The results are shown in Table 10 and indicated that the effect of combined therapy with RSHZ19 and RSBV04 is additive rather than synergistic.
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE protein
- FEATURE protein
- MOLECULE TYPE DNA (genomic)
- CAG AAA CCA GGC CAG TCT CCA AAG CTC CTG ATC TAC AGA GTT 168 Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu He Tyr Arg Val 45 50 ' 55
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Virology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Communicable Diseases (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9207479 | 1992-04-06 | ||
GB929207479A GB9207479D0 (en) | 1992-04-06 | 1992-04-06 | Novel antibodies for treatment and prevention of respiratory syncytial virus infection in animals and man |
PCT/GB1993/000725 WO1993020210A1 (en) | 1992-04-06 | 1993-04-06 | Antibodies for treatment and prevention of respiratory syncytial virus infection |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0636182A1 true EP0636182A1 (en) | 1995-02-01 |
Family
ID=10713521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93908006A Withdrawn EP0636182A1 (en) | 1992-04-06 | 1993-04-06 | Antibodies for treatment and prevention of respiratory syncytial virus infection |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0636182A1 (ko) |
JP (1) | JPH07508401A (ko) |
KR (1) | KR950701386A (ko) |
AU (1) | AU679440B2 (ko) |
CA (1) | CA2133662A1 (ko) |
GB (1) | GB9207479D0 (ko) |
NZ (1) | NZ251405A (ko) |
WO (1) | WO1993020210A1 (ko) |
ZA (1) | ZA932445B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9963500B2 (en) | 2015-10-29 | 2018-05-08 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5824307A (en) | 1991-12-23 | 1998-10-20 | Medimmune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
US6258529B1 (en) * | 1994-12-01 | 2001-07-10 | Oravax, Inc. | PCR amplification of rearranged genomic variable regions of immunoglobulin genes |
US5811524A (en) * | 1995-06-07 | 1998-09-22 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
US7175847B1 (en) | 1995-06-07 | 2007-02-13 | Biogen Idec Inc. | Treating intestinal inflammation with anti-CD80 antibodies that do not inhibit CD80 binding to CTLA-4 |
US7153508B2 (en) | 1995-06-07 | 2006-12-26 | Biogen Idec Inc. | Treatment of B cell lymphoma using anti-CD80 antibodies that do not inhibit the binding of CD80 to CTLA-4 |
WO1997010846A1 (en) | 1995-09-18 | 1997-03-27 | Intracel Corporation | Neutralizing monoclonal antibodies to respiratory syncytial virus |
FR2758331B1 (fr) * | 1997-01-14 | 1999-03-05 | Univ Bourgogne | Nouveaux moyens pour le diagnostic, la prevention et le traitement vis-a-vis de contaminations ou d'infections par des virus a tropisme muqueux |
US6160099A (en) * | 1998-11-24 | 2000-12-12 | Jonak; Zdenka Ludmila | Anti-human αv β3 and αv β5 antibodies |
AU2001259379B2 (en) * | 2000-05-03 | 2006-08-03 | Medimmune, Llc | Combination therapy of respiratory diseases using antibodies |
AU2001263443A1 (en) * | 2000-05-25 | 2001-12-03 | Med Immune, Inc. | F-protein epitope-based vaccine for respiratory syncytial virus infection |
US7132100B2 (en) | 2002-06-14 | 2006-11-07 | Medimmune, Inc. | Stabilized liquid anti-RSV antibody formulations |
TW200636064A (en) * | 2004-10-28 | 2006-10-16 | Centocor Inc | Anti-respiratory syncytial virus antibodies, antigens and uses thereof |
EP1997830A1 (en) | 2007-06-01 | 2008-12-03 | AIMM Therapeutics B.V. | RSV specific binding molecules and means for producing them |
US8568726B2 (en) | 2009-10-06 | 2013-10-29 | Medimmune Limited | RSV specific binding molecule |
DK2614082T3 (en) | 2010-09-09 | 2018-11-26 | Pfizer | 4-1BB BINDING MOLECULES |
US9364414B2 (en) | 2011-02-01 | 2016-06-14 | Isp Investments Inc. | Method to protect skin from ultraviolet radiation using novel peptides involved in the improvement of microparasol organization in keratinocytes |
FR2970968A1 (fr) * | 2011-02-01 | 2012-08-03 | Isp Investments Inc | Nouveaux peptides intervenant dans la voie de signalisation scf c-kit et compositions les comprenant |
US10774132B2 (en) * | 2012-01-09 | 2020-09-15 | The Scripps Research Instittue | Ultralong complementarity determining regions and uses thereof |
CA2862979A1 (en) * | 2012-01-09 | 2013-07-18 | The Scripps Research Institute | Humanized antibodies with ultralong cdr3s |
EP2943512A4 (en) | 2013-01-11 | 2016-06-01 | California Inst Biomedical Res | FUSION BOVINE ANTIBODIES |
WO2015010100A2 (en) * | 2013-07-18 | 2015-01-22 | Fabrus, Inc. | Humanized antibodies with ultralong complementarity determining regions |
CA3111336A1 (en) * | 2018-09-03 | 2020-03-12 | Pontificia Universidad Catolica De Chile | Specific monoclonal antibody against the n antigen of human respiratory syncytial virus (hrsv) useful for treating infection, detection thereof and diagnosis |
AU2021399453A1 (en) * | 2020-12-18 | 2023-07-27 | Zhuhai Trinomab Pharmaceutical Co., Ltd. | Respiratory syncytial virus-specific binding molecule |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989005823A1 (en) * | 1987-12-23 | 1989-06-29 | The Upjohn Company | Chimeric glycoproteins containing immunogenic segments of the glycoproteins of human respiratory syncytial virus |
EP0539522B1 (en) * | 1990-07-19 | 1998-12-30 | THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce | Improved immunotherapeutic method of preventing or treating viral respiratory tract disease |
GB9019812D0 (en) * | 1990-09-11 | 1990-10-24 | Scotgen Ltd | Novel antibodies for treatment and prevention of infection in animals and man |
DK0671927T3 (da) * | 1992-09-16 | 2003-04-22 | Us Gov Health & Human Serv | Neutraliserende humane monoklonale antistoffer mod respiratorisk syncytialvirus |
AU3660893A (en) * | 1993-01-29 | 1994-08-15 | Med Immune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
-
1992
- 1992-04-06 GB GB929207479A patent/GB9207479D0/en active Pending
-
1993
- 1993-04-05 ZA ZA932445A patent/ZA932445B/xx unknown
- 1993-04-06 WO PCT/GB1993/000725 patent/WO1993020210A1/en not_active Application Discontinuation
- 1993-04-06 JP JP5517272A patent/JPH07508401A/ja active Pending
- 1993-04-06 KR KR1019940703584A patent/KR950701386A/ko not_active Application Discontinuation
- 1993-04-06 EP EP93908006A patent/EP0636182A1/en not_active Withdrawn
- 1993-04-06 AU AU39000/93A patent/AU679440B2/en not_active Ceased
- 1993-04-06 NZ NZ251405A patent/NZ251405A/en unknown
- 1993-04-06 CA CA002133662A patent/CA2133662A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9320210A1 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9963500B2 (en) | 2015-10-29 | 2018-05-08 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
US10072072B2 (en) | 2015-10-29 | 2018-09-11 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
US10323079B2 (en) | 2015-10-29 | 2019-06-18 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
US10358480B2 (en) | 2015-10-29 | 2019-07-23 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
US11008380B2 (en) | 2015-10-29 | 2021-05-18 | Merck Sharp & Dohme Corp. | Antibody neutralizing human respiratory syncytial virus |
US11566065B2 (en) | 2015-10-29 | 2023-01-31 | Merck Sharp & Dohme Llc | Antibody neutralizing human respiratory syncytial virus |
US11981726B2 (en) | 2015-10-29 | 2024-05-14 | Merck Sharp & Dohme Llc | Antibody neutralizing human respiratory syncytial virus |
Also Published As
Publication number | Publication date |
---|---|
ZA932445B (en) | 1995-01-05 |
NZ251405A (en) | 1997-09-22 |
AU679440B2 (en) | 1997-07-03 |
AU3900093A (en) | 1993-11-08 |
GB9207479D0 (en) | 1992-05-20 |
CA2133662A1 (en) | 1993-10-14 |
WO1993020210A1 (en) | 1993-10-14 |
KR950701386A (ko) | 1995-03-23 |
JPH07508401A (ja) | 1995-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU679440B2 (en) | Antibodies for treatment and prevention of respiratory syncytial virus infection | |
AU654827B2 (en) | Novel antibodies for treatment and prevention of infection in animals and man | |
WO1993020210A9 (en) | Antibodies for treatment and prevention of respiratory syncytial virus infection | |
CA2197684C (en) | Human-murine chimeric antibodies against respiratory syncytial virus | |
US5955364A (en) | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof | |
FI108991B (fi) | Menetelmä ihmisen monoklonaalisen vasta-aineen tuottamiseksi | |
Maeda et al. | Construction of reshaped human antibodies with HIV-neutralizing activity | |
KR101671452B1 (ko) | 항rsv g 단백질 항체 | |
US6569430B1 (en) | Antibodies to the antigen Campath-1 | |
EP1265928B1 (en) | Ultra high affinity rsv neutralizing antibodies | |
US20070020279A1 (en) | Human-murine chimeric antibodies against respiratory syncytial virus | |
NZ256232A (en) | Fusion molecule with one partner having the antigenic specificity of an anti-plasmodium antibody, antibodies thereof, plasmids and cell lines therefor, and pharmaceutical compositions | |
US5607847A (en) | Recombinant human anti-human immunodeficiency virus antibody | |
JP2001510329A (ja) | ヒトモノクローナル抗体 | |
EP1079856B1 (en) | Humanized antibodies that recognize verotoxin ii and cell line producing same | |
JPH05276988A (ja) | 新規抗hiv抗体 | |
NZ250415A (en) | Monoclonal antibody directed against rsv epitope 417-438, its use and production | |
CA2087528A1 (en) | Chimeric hiv-1-neutralizing immunoglobulins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941025 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19980112 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980923 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1013665 Country of ref document: HK |