EP0635725B1 - Elektronische Schaltung zur Kontrolle der Anwesenheit von Spannungen in elektrischen Leitungen und zum Vergleichen deren Phasenlage - Google Patents

Elektronische Schaltung zur Kontrolle der Anwesenheit von Spannungen in elektrischen Leitungen und zum Vergleichen deren Phasenlage Download PDF

Info

Publication number
EP0635725B1
EP0635725B1 EP94410052A EP94410052A EP0635725B1 EP 0635725 B1 EP0635725 B1 EP 0635725B1 EP 94410052 A EP94410052 A EP 94410052A EP 94410052 A EP94410052 A EP 94410052A EP 0635725 B1 EP0635725 B1 EP 0635725B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
voltage
phase
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94410052A
Other languages
English (en)
French (fr)
Other versions
EP0635725A3 (de
EP0635725A2 (de
Inventor
Giorgio Schneider Electric Sa Perli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP0635725A2 publication Critical patent/EP0635725A2/de
Publication of EP0635725A3 publication Critical patent/EP0635725A3/de
Application granted granted Critical
Publication of EP0635725B1 publication Critical patent/EP0635725B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/155Indicating the presence of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller, or for passing one of the input signals as output signal

Definitions

  • capacitive couplings are generally used. If the capacity of such couplings is high enough, the current supplied by the couplings is sufficient to supply visibly continuous discharge lamp. However, with capacitive couplings at high capacity (with large areas of reinforcement or short distances insulation from the conductor), the stresses on the dielectric of the coupling as well that the possibilities of perforation increase. The verification device thus becomes less reliable in terms of both operation and safety.
  • capacitive couplings with very low capacity for example constituted by simple rings arranged around conductors at the input and output of the switchboards.
  • This kind of coupling has much higher reliability than high capacity couplings, and has also the advantage of a significantly lower cost; but it is only able to provide very low currents, of the order of a few tens of micro amps.
  • the circuit including the capacitor and the discharge lamp is connected directly between the capacitive couplings of the two conductors between which we want to check the agreement of phase; if the two conductors are in phase, there will be no current flowing in the circuit and the lamp will remain off, however the current will flow, causing the periodic lighting of the lamp if, on the contrary, the two conductors are not in phase.
  • suitable electronic devices which directly record the phase matching of the currents supplied by the capacitive couplings which are supplied to it electrically connected. Capacitive couplings on the various conductors can be equal between them, there is obviously no importance, for the verification of the phase concordance, that there is a possible phase shift between the network signal and the signal from capacitive coupling.
  • a second drawback comes from the use of capacitive couplings with low capacity requiring to have the verification system in the immediate vicinity of the driver.
  • the current at low intensity coming from the capacitive coupling would be entirely absorbed by the intrinsic capacity of the connection cable only. System usage naturally involves certain inconveniences for the operator.
  • Document EP-A-402 277 describes a voltage presence indicator having a warning light LED diode controlled by a programmable unijunction transistor, which is associated with a threshold circuit.
  • the latter includes a resistive divider connected in parallel with a low voltage capacitor at the output of a capacitive divider.
  • a rectifier bridge is inserted between the high voltage capacitor, and the earth.
  • a first object of the present invention is to have a device for the verification of the presence of voltage and the phase comparison of power line conductors, able to operate with currents of the order of a few tens of micro amps, in which the part accessible to ordinary inspection and handling operations is electrically isolated from and away from line conductors in an area not crossed by metallic conductors.
  • a second object of the invention consists in moving such a safety zone away at will, by example at 10 meters, so as to be able to arrange the part of the device intended to be frequently used by the operator in an easily accessible area of the cab, for example example at ground level without any negative consequences either for the operator or for any person likely to be in the vicinity of the device.
  • the discharge activated on the first of said capacitors activates the discharge of the second said capacitor by means of said thyristor.
  • FIG. 1 represents a block diagram of an invention device, comprising circuits for phase detection voltage detection and phase comparison.
  • FIG. 2 represents a diagram of a circuit for detecting the presence of voltage which can be used in the device of figure 1.
  • FIG. 3 represents a diagram of a phase detection circuit that can be used in the device of figure 1.
  • FIG. 4 represents a block diagram of a phase comparison circuit which can be used in the device of figure 1.
  • FIG. 5 schematically illustrates diagrams of the signals leaving various blocks and Figure 4 circuits.
  • the object of the present invention is to transform the electrical signal from capacitive couplings provided on conductors line electrical signals. Said light signals are transported to fiber optic cable means beyond a safety zone and then up to a easy accessibility area for the operator, where such signals are used directly or indirectly to obtain the desired information.
  • the present invention has solved various problems: on the one hand, that of obtaining a first light signal representative of the presence of a signal voltage of the electrical conductor under control, on the other hand that of obtaining a second signal luminous representative of the phase of the current flowing in said conductor and then suitable to allow verification of the phase identity of two conductors.
  • These operations are necessary before making the electrical connection of the conductors, and facilitated by very low current supply to the device (a few ⁇ A to a few tens of ⁇ A) emitted by a capacitive supply device coupled to the conductor itself.
  • the light signals must also be intense enough to be able to be efficiently transmitted at a suitable distance from electrical conductors (for example example 5 to 10 meters).
  • a device according to an embodiment of the invention is illustrated in the block diagram of Figure 1, in which, for simplicity, only two active conductors X and Y of two different sections of power lines are indicated. It is obvious that devices analogues are associated with other conductors present in the cabin, on which must to be executed the controls, object of the present invention.
  • TLS circuit is intended for emit an intermittent light signal, of sufficient intensity to be easily seen with the naked eye, when the respective conductor is energized. This signal is transported to by means of a fiber optic cable 2 to a place accessible by the operator, and rendered more easily noticeable with a diffusion lens 3.
  • the PLS circuit is on the other hand, intended to emit a light signal representative of the phase of the electrical signal generated by the capacitive coupling 1.
  • the light signal is more precisely a light signal with pulse emissions, one for each period, in correspondence with a well-defined narrow area of the sinusoidal voltage curve, as will be seen more clearly below.
  • This same signal could easily be used to check for the presence of voltage on conductors X or Y, however this is too weak to be visibly perceived and should therefore be advantageously amplified.
  • the signal emitted by the PLS circuit is therefore transported to the place accessible to the operator by means of a fiber optic cable 4 with an optical connector 5.
  • the device according to the present invention is completed by a PSC comparison device phase which is connected by the operator to the optical connectors 5 relating to two different conductors X and Y on which we want to check the phase concordance.
  • a PSC comparison device phase which is connected by the operator to the optical connectors 5 relating to two different conductors X and Y on which we want to check the phase concordance.
  • the TLS voltage presence detection circuit represented by the diagram in FIG. 2, comprises a diode bridge D, of which a first alternating input receives a current I supplied by a capacitive coupler 1 and a second alternative input connected for example to a phase detection circuit allows the output of current I.
  • a capacitor C1 is connected between the positive output and the negative output of the diode bridge.
  • a serial circuit comprising a resistor R, a discharge lamp W and a light emitting diode LED1 is connected in parallel on capacitor C1.
  • the diode bridge D the current I emitted by the capacitive coupling 1 always flows in the same direction, passing through the capacitor C1 in the form of pulsed rectified current. Said capacitor therefore gradually charges in n successive current cycles until it reaches a discharge voltage of the lamp W.
  • the discharge current limited by the resistance R, causes the lamp W and the LED1 to light up. Since the very low energy of the current produced by the capacitive coupling 1 comes accumulate in capacitor C1 in n cycles, the discharge current of the capacitor has sufficient intensity, to make a light signal in LED1 clearly noticeable even with the naked eye.
  • the value of the capacitance of the capacitor C1 and the lamp characteristic W are chosen according to the current emitted by the coupling capacitive 1, to preferably have at least one discharge per second by the lamp W and on LED1.
  • the PLS phase detection circuit is shown in detail in FIG. 3.
  • the current I from capacitive coupling 1 enters through an input H of the circuit, and exits through an output O.
  • the PLS circuit of FIG. 3 comprises two main branches OABH and HEBO where A, E and B are particular points of the circuit.
  • a diode D1 is connected between point B and input H, and a capacitor C2 is connected in a similar way between points A and B.
  • a diode D2 is connected between output O and point A, and a diode D3 is connected between input H and point E.
  • a capacitor C3 is connected between points E and B, and a diode D4 is connected between point B and the output O.
  • the serial circuit of diode D2, of capacitor C2 and diode D1 forms the first branch OABH traversed by the negative half-period of current I and diode D3, capacitor C3 and diode D4 form a second branch HEBO traversed the positive half-period of the current I, the point B being common to the anodes of diodes D1 and D4 and to an electrode of each of capacitors C2 and C3.
  • the voltage on capacitor C2 increases gradually as a function of the intensity of the current I, of the capacity of the capacitor C2 and the value of the sum of two resistors in series R2 and R3, put in parallel on the capacitor C2.
  • the voltage on the capacitor C2, divided by the divider bridge R2-R3 is distributed between a point F, common to bridge R2-R3, and points and B.
  • a resistor R1, an SCR thyristor and a light-emitting diode LED2 connected between them in series are connected between point A and point B.
  • a resistor R4 of polarization is connected between the trigger of the thyristor, corresponding to a point L, and a point N common to the thyristor cathode and the LED2 anode.
  • a transistor a PUT junction is connected between point E, through a resistor R5 in series, and point L, the transistor control electrode being connected to point F.
  • the voltage between the points G and B becomes greater than a predetermined value of the voltage between points F and B.
  • the transistor PUT allows the discharge of the capacitor C3 through the EGLNBE circuit.
  • the current of this discharge limited by the resistor R5, crosses the PUT transistor, SCR thyristor, relative polarization resistance R4 and LED2.
  • the transition to conduction causes the capacitor C2 to discharge through the ANBA circuit with a current limited by resistor R1 and passing through SCR thyristor and LED2 diode.
  • Vak is the working voltage of the PUT unijunction transistor
  • the voltage V in the circuit must be less than or equal to the working voltage; it can be expressed by the following relation: V ⁇ R3 R2 + R3 2 Imax ⁇ CI ⁇ V AK where one can easily find, knowing I, ⁇ , R2 and R3, the work of the capacity C2 which satisfies such a relation. Such a value is the minimum value which can be assimilated by the capacitor in C2.
  • the value of C thus defined becomes the upper limit of the possible values of the capacities C2 and C3.
  • the light signal thus obtained by the PLS circuit is sufficiently intense to be transmitted with optical fibers 4 to the operator's access position. It results in a physical separation between the operator and the electrical conductors.
  • a comparator device PSC is used, which is illustrated in the block diagram in Figure 4.
  • Figure 5 are represented qualitatively, with the same numerical references, the graphs of the electrical signals from particular blocks of the PSC comparison device.
  • Such device can be mounted fixed inside the cabin, in the operator access and control area or be in the form of an instrument portable, permanently on the operator. In each case, it must be provided with a source of autonomous energy, for example an electric battery.
  • the comparator device of FIG. 4 collects, through 5X and 5Y connectors, trains of light signals transmitted by circuits PLS associated with two line conductors X and Y to which the phase must be checked, using fiber optic cables 4.
  • the connection between the terminations of the cables to fiber optics and the PSC comparator device can be fixed, if the device itself is installed fixed in the electrical cabin or, preferably, the connections are made to the time of use, with fiber optic plugs and cables that transfer the signal inside the comparator.
  • optical signals from the 5x and 5Y connectors are sent separately to respective blocks 6X and 6Y constituted by photosensitive elements which transform the light pulses into electrical pulses lasting a few tens of micro seconds.
  • the duration of such signals is then advantageously extended, for example up to half the signal period itself, using two 7X and 7Y monostable multivibrators.
  • Block 8 capable of comparing the input signals of blocks 7X and 7Y and producing as output a train of pulses whose duration is proportional to the phase shift between the signals 7X and 7Y .
  • the duration of the signals leaving block 8 within each particular period will thus be proportional to the phase difference between the signals coming from 7X and 7Y.
  • Block 8 can for example be constructed with exclusive OR gates (EXOR) or AND gates NOT (NAND).
  • the output signal of block 8 is integrated into a stabilizer 9 which provides on its output a direct voltage of value proportional to the duration, in the period of the signal leaving the block 8 and therefore proportional to the phase shift between the signals from blocks 7X and 7Y.
  • Such voltages are applied to the input of a comparator 10 which will send an output high or low respectively, depending on whether the output value is higher or lower at a predetermined threshold value.
  • Low output means that the electrical conductors tested are in phase, while a high output means that the same conductors are not in phase.
  • the status of this output can be conveniently made visible by means of a light indicator 11.
  • the device can be completed with 12X light indicators and 12Y, connected to the outputs of monostables 7X and 7Y respectively, to indicate the presence of at least the input signals of the device coming from the connectors 5X and 5Y.
  • TCS and PLS circuits make it possible to obtain light signals which correspond respectively to the presence of voltage on the conductors and representative of the phase of their tensions. These signals also have a sufficiently high intensity - notwithstanding the absence of an autonomous power source - to be transmitted, via a fiber optic cable, up to a suitable safety distance, and also up to a convenient place for operator access.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Claims (6)

  1. Elektronische Anordnung, die dazu dient, aus einer Sicherheitsentfemung Leiter (X, Y) von elecktrischen Wechselstromleitungen auf das Anstehen einer Spannung sowie auf Spannungsphasendifferenzen zu überprüfen, und die
    mindestens zwei kapazitive Anordnungen (1), die an mindestens zwei der genannten elektrischen Leiter angekoppelt sind, wobei jede kapazitive Anordnung einen Wechselstrom (I) sehr geringer Stärke liefert, der die gleiche Frequenz aufweist, wie das Spannungssignal des Leiters, an den er angekoppelt ist,
    Phasenerfassungsschaltungen (PLS) mit Eigenstromversorgung, die jeweils mit einer der zugeordneten kapazitiven Anordnungen verbunden sind und für jede Periode des von der genannten, zugeordneten kapazitiven Anordnung gelieferten Signals einen Lichtimpuls liefern,
    Lichtleiterkabel (4), die jeweils ein, mit einer der genannten Phasenerfassungsschaltungen verbundenes erstes Ende aufweisen und in der Lage sind, die genannten Lichtimpulse in einen, von den elektrischen Leitern entfernt angeordneten Sicherheitsbereich zu übertragen, sowie
    mindestens eine Phasenvergleichsanordnung (PSC) umfaßt, die an zweite Enden der genannten Lichtleiterkabel angeschlossen ist, um die von zwei verschiedenen Phasenerfassungsschaltungen ausgesendeten Lichtimpulse miteinander zu vergleichen,
    dadurch gekennzeichnet, daß jede Phasenerfassungsschaltung (PLS)
    Gleichrichtmittel (D1, D2, D3, D4), die von dem durch die kapazitiven Anordnungen gelieferten Strom (I) durchflossen werden und einen Zweiweg-Brückengleichrichter bilden,
    einen ersten Kondensator (C2), der in einen der Zweige zwischen zwei Gleichrichtmittel (D1, D2) geschaltet ist und dazu dient, während der negativen Halbwelle des Eingangsstroms aufgeladen zu werden,
    einen zweiten Kondensator (C3), der in den anderen Zweig zwischen zwei Gleichrichtmittel (D3, D4) geschaltet ist und dazu dient, während der positiven Halbwelle des Eingangsstroms aufgeladen zu werden,
    sowie Steuermittel umfaßt, die dazu dienen, zu einem bestimmten Zeitpunkt der Periodendauer des genannten Stroms die Entladung mindestens eines der genannten Kondensatoren über eine Lumineszensdiode (LED2) zu bewirken, wobei die genannten Steuermittel einen in Reihe mit der Lumineszensdiode (LED2) an die Klemmen des ersten Kondensators (C2) geschalteten Thyristor (SCR) sowie einen zwischen den Thyristor (SCR) und eine der Klemmen des zweiten Kondensators (C3) geschalteten Unijunction-Transistor (PUT) umfassen.
  2. Elektronische Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Unijunction-Transistor (PUT) durch eine zwischen den beiden genannten Kondensatoren bestehende Potentialdifferenz gezündet wird.
  3. Elektronische Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Entladung des ersten Kondensators (C2) über den genannten Thyristor (SCR) die Entladung des zweiten Kondensators (C3) bewirkt.
  4. Elektronische Anordnung nach Anspruch 1, dadurch gekennzeichnet daß die genannte Vergleichsanordnung (PSC)
    zwei Eingänge (5X, 5Y),
    zwei optoelektronische Schaltungen (6x, 6Y), die jeweils mit einem Eingang verbunden sind, um die Eingangslichtimpulse in entsprechende elektrische Signale umzuwandeln,
    zwei an die optoelektronischen Schaltungen angeschlossene monostabile Multivibratoren (7X, 7Y) zur Verlängerung der Dauer der genannten elektrischen Signale,
    eine an die monostabilen Multivibratoren angeschlossene Logikschaltung (8) zur Erzeugung eines Signals, dessen Dauer der Phasenabweichung zwischen den beiden genannten Signalen proportional ist,
    einen an die Logikschaltung angeschlossenen Stabilisator (9) zur Integration des genannten, die Phasenabweichung abbildenden Signals und zur Ausgabe eines kontinuierlichen Gleichspannungssignals sowie
    einen an den Stabilisator angeschlossenen Komparator (10) zum Vergleich des genannten Gleichspannungssignals mit einem Bezugsschwellwert umfaßt.
  5. Elektronische Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die genannte Vergleichsanordnung einen Leuchtmelder (11) zur Anzeige der Phasengleichheit zwischen den an den Eingängen (5X, 5Y) empfangenen Signalen sowie an die Ausgänge der monostabilen Multivibratoren (7X, 7Y) angeschlossene Visualisierungsmittel (12X, 12Y) zur Anzeige des Anstehens einer Spannung umfaßt.
  6. Elektronische Anordnung nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie
    Spannungsnachweisschaltungen (TLS), die an kapazitive Anordnungen (1) angeschlossen sind und Lichtimpulse liefern,
    sowie Lichtleiterkabel (2) umfassen, die jeweils ein, mit einer der genannten Spannungsnachweisschaltungen verbundenes erstes Ende aufweisen und in der Lage sind, die genannten Lichtimpulse in einen, von den elektrischen Leitem entfernt angeordneten Sicherheitsbereich zu übertragen.
EP94410052A 1993-07-22 1994-07-20 Elektronische Schaltung zur Kontrolle der Anwesenheit von Spannungen in elektrischen Leitungen und zum Vergleichen deren Phasenlage Expired - Lifetime EP0635725B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI931625 1993-07-22
ITMI931625A IT1272484B (it) 1993-07-22 1993-07-22 Apparecchiatura elettronica per verificare la presenza di tensione in conduttori di linee elettriche a media tensione e per compararne la fase operando a distanza di sicurezza.

Publications (3)

Publication Number Publication Date
EP0635725A2 EP0635725A2 (de) 1995-01-25
EP0635725A3 EP0635725A3 (de) 1997-04-09
EP0635725B1 true EP0635725B1 (de) 2002-06-12

Family

ID=11366659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94410052A Expired - Lifetime EP0635725B1 (de) 1993-07-22 1994-07-20 Elektronische Schaltung zur Kontrolle der Anwesenheit von Spannungen in elektrischen Leitungen und zum Vergleichen deren Phasenlage

Country Status (3)

Country Link
EP (1) EP0635725B1 (de)
DE (1) DE69430779T2 (de)
IT (1) IT1272484B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051256B1 (fr) * 2016-05-11 2021-04-09 Thomy Jessie Dispositif de detection de concordance de phase d'une tension capacitive alternative polyphasee.
FR3071927B1 (fr) * 2017-09-29 2019-09-20 Schneider Electric Industries Sas Systeme indicateur de presence tension dans un reseau haute tension

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727950A1 (de) * 1986-08-28 1988-03-10 Jordan Gmbh Georg Vorrichtung zur durchfuehrung von spannungspruefungen und -messungen an einer mittel- oder hochspannungsschaltanlage
DE4109943A1 (de) * 1991-03-26 1992-10-01 Kries Werner Schaltungsanordnung zur spannungsanzeige

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897664A (ja) * 1981-12-04 1983-06-10 Mitsubishi Electric Corp 電圧測定装置
FR2627287B1 (fr) * 1988-02-17 1990-07-20 Catu Ets Dispositif pour la reconnaissance du sens de rotation des phases d'un reseau electrique triphase
FR2648235B1 (fr) * 1989-06-09 1991-09-13 Merlin Gerin Dispositif de signalisation pour un poste de distribution electrique
DE4032689A1 (de) * 1990-10-15 1992-04-16 Transform Roentgen Matern Veb Ueberwachungsschaltung fuer eine spannung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727950A1 (de) * 1986-08-28 1988-03-10 Jordan Gmbh Georg Vorrichtung zur durchfuehrung von spannungspruefungen und -messungen an einer mittel- oder hochspannungsschaltanlage
DE4109943A1 (de) * 1991-03-26 1992-10-01 Kries Werner Schaltungsanordnung zur spannungsanzeige

Also Published As

Publication number Publication date
DE69430779D1 (de) 2002-07-18
IT1272484B (it) 1997-06-23
EP0635725A3 (de) 1997-04-09
EP0635725A2 (de) 1995-01-25
DE69430779T2 (de) 2002-12-05
ITMI931625A1 (it) 1995-01-22
ITMI931625A0 (it) 1993-07-22

Similar Documents

Publication Publication Date Title
EP2820733B1 (de) Feststellen von leckströmen mit gleichstromanteil in einem fahrzeug
EP2648008B1 (de) Isolierungskontrollsystem für gesichertes Stromnetz
FR2584345A1 (fr) Alimentation en energie electrique de circuits sur la roue pour un dispositif de surveillance des pneumatiques
WO2015150671A1 (fr) Dispositif de mesure d'au moins une grandeur physique d'une installation electrique
FR2518335A1 (fr) Procede et dispositif de teletransmission de signaux et application a la detection et/ou la mesure de la teneur en gaz combustible d'une atmosphere
EP3483999A1 (de) Elektrische verbindung für die übertragung einer hochspannung über wechselstrom an ein benutzergerät
FR2721407A1 (fr) Procédé et dispositif de contrôle de l'isolement d'un réseau électrique à courant continu.
EP0635725B1 (de) Elektronische Schaltung zur Kontrolle der Anwesenheit von Spannungen in elektrischen Leitungen und zum Vergleichen deren Phasenlage
EP0586322A1 (de) Einrichtung zum Ermitteln und Anzeigen von defekten Lampen in einer Beleuchtungsanlage
FR2671190A1 (fr) Pont de mesure de tension de reference pour dispositif de controle et de mesure de l'isolement d'un reseau electrique a tension continue.
CA2890968C (fr) Module, circuit et procede de communication pour dispositif de detection et capteur comprenant un tel module, en particulier pour atmosphere explosive
EP0715172B1 (de) Testgerät für geerdete Wandsteckdose
EP3413419B1 (de) Elektrische schaltung mit elektrischer schutzeinrichtung - integritätstest
EP0509920B1 (de) Positionsmeldevorrichtung eines beweglichen Gliedes
EP2463669B1 (de) Spannungserfassungsmodul
WO2019092107A1 (fr) Systeme de securite electronique pour robots mobiles
EP0408480B1 (de) Apparat zur Kontrolle der Dichte eines Netzes aus Kabeln mit metallischem Überzug
WO2002048724A1 (fr) Systeme de detection de defaillance d'un câble dans un reseau arborescent
FR2977035A1 (fr) Dispositif de comparaison de phases auto alimente
FR2686979A1 (fr) Detecteur de tension.
EP0169125B1 (de) Elektrischer Zaun, der aus einem Netz von von einem elektrischen Strom durchflossenen Drähten besteht
EP0694893B1 (de) Alarmdetektionsvorrichtung mit Stromschleifen und Bake zur Lokalisierung von Waterzonen für eine solche Vorrichtung
FR3136848A1 (fr) Procédé de codage de conducteurs de communication d’un capteur linéaire appartenant à un système.
EP4015901A1 (de) Stromversorgungsmodul für eine strassenbeleuchtungsanlage, strassenlampe mit einem solchen versorgungsmodul und strassenbeleuchtungsanlage mit mindestens einer solchen strassenlampe
FR2575295A1 (fr) Dispositif electrique auto-alimente et utilisant des transmissions par fibres optiques, destine a la mesure d'une grandeur physique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB SE

17P Request for examination filed

Effective date: 19970920

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SA

17Q First examination report despatched

Effective date: 20000120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01R 19/155 A

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69430779

Country of ref document: DE

Date of ref document: 20020718

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021220

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070714

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070709

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731