EP0632139B1 - Application of a hot working steel - Google Patents

Application of a hot working steel Download PDF

Info

Publication number
EP0632139B1
EP0632139B1 EP94108830A EP94108830A EP0632139B1 EP 0632139 B1 EP0632139 B1 EP 0632139B1 EP 94108830 A EP94108830 A EP 94108830A EP 94108830 A EP94108830 A EP 94108830A EP 0632139 B1 EP0632139 B1 EP 0632139B1
Authority
EP
European Patent Office
Prior art keywords
steel
thermal conductivity
hot
steels
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94108830A
Other languages
German (de)
French (fr)
Other versions
EP0632139A1 (en
Inventor
Edmund Dr. Haberling
Hans-Werner Hellmonds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
Original Assignee
Thyssen Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6491395&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0632139(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thyssen Stahl AG filed Critical Thyssen Stahl AG
Publication of EP0632139A1 publication Critical patent/EP0632139A1/en
Application granted granted Critical
Publication of EP0632139B1 publication Critical patent/EP0632139B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the invention relates to the use of hot-work steel for the primary shaping, shaping and processing of materials, e.g. in die casting, extrusion at drop forges or as a shear knife, which ensures high thermal conductivity at elevated temperatures up to 1100 ° C.
  • hot work tools In addition to high thermal stability, hot work tools must have good thermal conductivity and high resistance to hot wear. While the hot wear resistance is intended to protect the tool against premature wear, the thermal conductivity is required in order to quickly transport the amount of heat absorbed when it comes into contact with the material to be reformed from the tool surface into the interior of the tool. With good thermal conductivity, not only is there less thermal stress on the tool surface, but the flatter temperature gradient in the tool also results in lower stresses, which reduces the risk of thermal shock and stress cracks. Good thermal conductivity also enables the amount of heat absorbed by the tool to be removed from the tool via the surface or with the aid of a cooling channel system.
  • the invention is based on the object of developing a hot-working steel which, in addition to having sufficient thermal resistance and good resistance to hot wear, has better thermal conductivity than known hot-working steels.
  • This object is achieved according to the invention by using a steel with 0.30 to 0.55% C, less than 0.90% Si, to 1.0% Mn, 2.0 to 4.0% Cr. 3.5 to 7.0% Mo, 0.3 to 1.5% in total one or more of the elements vanadium, titanium, niobium, 0.005 to 0.1% Al, balance iron including unavoidable impurities.
  • this steel When tempered between 400 and 600 ° C, this steel has a tensile strength of over 700 N / mm 2 and a thermal conductivity of over 35 W / mK
  • a preferred composition of the steel to be used according to the invention is defined in claim 2.
  • a preferred composition of the steel to be used according to the invention consists of 0.4 to 0.5% C, 0.2 to 0.4% Si, 0.2 to 0.4% Mn, 2.8 to 3.2% Cr, 4.9 to 5.1% Mo, 0.9 to 1.1% V, 0.005 to 0.025% Al, balance iron and melting-related impurities.
  • the steel must have a molybdenum content of 3.5 to 7%.
  • the hardenability is guaranteed by chromium contents of at least 2%, but at most 4%. At higher chromium levels, there is a noticeable reduction in thermal conductivity.
  • additions of the monocarbide images V, Nb or Ti are required individually or in total of at least 0.3%, but at most 1.5%.
  • the carbon content is matched to the content of monocarbide images with 0.30 and 0.50%.
  • the hardening and tempering is preferably carried out in the range from 1000 to 1100 ° C and by subsequent tempering in the range from 600 to 650 ° C for 1 to 2 hours.
  • the most favorable hardening conditions were determined in the range from 1050 to 1075 ° C for 15 min / water.
  • the temper resistance is good.
  • a steel produced within the claimed analysis limits with 0.46% C, 0.21% Si, 0.31% Mn, 2.89% Cr, 5.10% Mo, 0.006% Al and 0.91% V, balance Fe 1 has a higher thermal conductivity than all previously known hot working steels, for example the steels material numbers listed in the steel insert list 201 of the Association of German Ironworkers from October 1992. 1.2343 and 1.2365. In the temperature range from 400 to 600 ° C, the thermal conductivity of the steel to be used according to the invention is clearly above 35 W / m.K, while that of the steels 1.2343 and 1.2365 listed for comparison are significantly lower.
  • the steel to be used according to the invention surpasses the conventional hot-work steels also in tempering resistance.
  • the hardness after tempering to 400 to 600 ° C is over 55 HRC, but significantly lower with the known comparative steels.
  • the steel to be used according to the invention proved to be significantly superior to the steels previously used in terms of wear resistance and tool life.
  • the steel can also be used successfully as a material for piercing mandrels due to its good thermal conductivity and its favorable scale formation when punching high-alloy chrome steels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to the use of a hot-work tool steel (die steel) for primary forming, working and machining of materials, e.g. in die casting, extrusion in the case of die forges (drop forges) or as shear blades, which steel, at elevated temperatures up to 1100 DEG C, has a high thermal conductivity of more than 35 W/m.K. The steel contains from 0.30 to 0.55% of C less than 0.90% of Si up to 1.0% of Mn from 2.0 to 4.0% of Cr from 3.5 to 7.0% of Mo from 0.3 to 1.5% overall of V, Ti, Nb from 0.005 to 0.1% of Al. ta

Description

Die Erfindung betrifft die Verwendung eines Warmarbeitsstahls für die Urformung, die Umformung und die Bearbeitung von Werkstoffen, z.B. beim Druckgießen, beim Strangpressen bei Gesenkschmieden oder als Scherenmesser, der bei erhöhten Temperaturen bis 1100 °C eine hohe Wärmeleitfähigkeit sicherstellt.The invention relates to the use of hot-work steel for the primary shaping, shaping and processing of materials, e.g. in die casting, extrusion at drop forges or as a shear knife, which ensures high thermal conductivity at elevated temperatures up to 1100 ° C.

Neben einer hohen thermischen Stabilität müssen Warmarbeitswerkzeuge gute Wärmeleitfähigkeit und einen hohen Warmverschleißwiderstand besitzen. Während der Warmverschleißwiderstand das Werkzeug vor einer vorzeitigen Abnutzung schützen soll, ist die Wärmeleitfähigkeit erforderlich, um die bei der Berührung mit dem umzuformenden Werkstoff aufgenommene Wärmemenge rasch von der Werkzeugoberfläche in das Werkzeuginnere abzutransportieren. Bei guter Wärmeleitfähigkeit wird nicht nur eine geringere thermische Beanspruchung der Werkzeugoberfläche erzielt, sondern aufgrund des flacheren Temperaturgradienten im Werkzeug kommt es auch zu geringeren Spannungen, wodurch die Gefahr von Thermoschock- und Spannungsrissen herabgesetzt wird. Eine gute Wärmeleitfähigkeit ermöglicht es ferner, die vom Werkzeug aufgenommene Wärmemenge über die Oberfläche oder mit Hilfe eines Kühlkanalsystems aus dem Werkzeug abzuführen.In addition to high thermal stability, hot work tools must have good thermal conductivity and high resistance to hot wear. While the hot wear resistance is intended to protect the tool against premature wear, the thermal conductivity is required in order to quickly transport the amount of heat absorbed when it comes into contact with the material to be reformed from the tool surface into the interior of the tool. With good thermal conductivity, not only is there less thermal stress on the tool surface, but the flatter temperature gradient in the tool also results in lower stresses, which reduces the risk of thermal shock and stress cracks. Good thermal conductivity also enables the amount of heat absorbed by the tool to be removed from the tool via the surface or with the aid of a cooling channel system.

Bei der Entwicklung thermisch beständiger und warmverschleißwiderstandsfähiger Warmarbeitswerkzeuge taucht das Problem auf, daß die verhältnismäßig gute Wärmeleitfähigkeit des reinen Eisens mit steigendem Legierungsgehalt rasch abnimmt. Damit weisen gerade die hochlegierten und daher warmverschleißbeständigen Warmarbeitsstähle die geringsten Wärmeleitfähigkeitswerte auf. Der Konstrukteur steht daher vor der Entscheidung, einen Werkstoff mit hohem Verschleißwiderstand aber geringer Wärmeleitfähigkeit einsetzen zu müssen oder zugunsten einer besseren Wärmeleitfähigkeit auf höchsten Warmverschleißwiderstand zu verzichten.
in der Praxis bedeutet dies, daß für Aluminiumdruckgießformen vorwiegend die Warmarbeitsstähle mit 5 % Cr, z.B. der Stahl X 38 CrMoV 5 1, Werkstoff-Nr. 1.2343 mit (in Masse-%) 0,36 bis 0,42 % C, 0,90 bis 1,20 % Si, 0,30 bis 0,50 % Mn, 4,8 bis 5,5 % Cr, 1,1 bis 1,4 % Mo, und 0,25 bis 0,50 % V eingesetzt werden. Diese Stähle weisen aufgrund ihrer abgestimmten Legierungsgehalte an Chrom, Molybdän und Vanadium bereits einen guten Warmverschleißwiderstand auf, sind aber noch nicht so hoch legiert, daß die Wärmeleitfähigkeit wesentlich vermindert wird. Für Gesenke in schnellaufenden wassergekühlten Schmiedepressen werden dagegen Stähle mit einem auf 3 % abgesenkten Chromgehalt, z.B. der Stahl X 32 Cr MoV 3 3, Werkstoff-Nr. 1.2365 mit (in Masse-%) 0,28 bis 0,35 % C, 0,10 bis 0,40 % Si, 0,15 bis 0,45 % Mn, 2,7 bis 3,2 % Cr, 2,6 bis 3,0 % Mo und 0,40 bis 0,70 % V eingesetzt. Diese Stähle haben die höchste Wärmeleitfähigkeit.
When developing thermally stable and heat-wear-resistant hot work tools, the problem arises that the relatively good thermal conductivity of pure iron increases with increasing Alloy content decreases rapidly. This means that the high-alloy and therefore wear-resistant hot working steels have the lowest thermal conductivity values. The designer is therefore faced with the decision to use a material with high wear resistance but low thermal conductivity or to forego the highest thermal wear resistance in favor of better thermal conductivity.
in practice this means that for aluminum die casting molds mainly the hot working steels with 5% Cr, eg the steel X 38 CrMoV 5 1, material no. 1.2343 with (in mass%) 0.36 to 0.42% C, 0.90 to 1.20% Si, 0.30 to 0.50% Mn, 4.8 to 5.5% Cr, 1, 1 to 1.4% Mo, and 0.25 to 0.50% V can be used. Due to their coordinated alloy contents of chromium, molybdenum and vanadium, these steels already have a good resistance to hot wear, but are not yet alloyed so high that the thermal conductivity is significantly reduced. For dies in high-speed, water-cooled forging presses, on the other hand, steels with a chromium content reduced to 3% are used, eg steel X 32 Cr MoV 3 3, material no. 1.2365 with (in mass%) 0.28 to 0.35% C, 0.10 to 0.40% Si, 0.15 to 0.45% Mn, 2.7 to 3.2% Cr, 2, 6 to 3.0% Mo and 0.40 to 0.70% V are used. These steels have the highest thermal conductivity.

Der Erfindung liegt nun die Aufgabe zugrunde, einen Warmarbeitsstahl zu entwickeln, der neben ausreichender thermischer Beständigkeit und gutem Warmverschleißwiderstand eine bessere Wärmeleitfähigkeit aufweist als bekannte Warmarbeitsstähle.The invention is based on the object of developing a hot-working steel which, in addition to having sufficient thermal resistance and good resistance to hot wear, has better thermal conductivity than known hot-working steels.

Diese Aufgabe wird erfindungsgemäß gelöst durch die Verwendung eines Stahls mit 0,30 bis 0,55 % C, weniger als 0,90 % Si, bis 1,0 % Mn, 2,0 bis 4,.0 % Cr. 3,5 bis 7,0 % Mo, 0,3 bis 1,5 % insgesamt eines oder mehrerer der Elemente Vanadium, Titan, Niob, 0,005 bis 0,1 % Al, Rest Eisen einschließlich unvermeidbarer Verunreinigungen, gelöst. Dieser Stahl hat im vergüteten Zustand zwischen 400 und 600 °C eine Zugfestigkeit von über 700 N/mm2 und eine Wärmeleitfähigkeit von über 35 W/m.K.This object is achieved according to the invention by using a steel with 0.30 to 0.55% C, less than 0.90% Si, to 1.0% Mn, 2.0 to 4.0% Cr. 3.5 to 7.0% Mo, 0.3 to 1.5% in total one or more of the elements vanadium, titanium, niobium, 0.005 to 0.1% Al, balance iron including unavoidable impurities. When tempered between 400 and 600 ° C, this steel has a tensile strength of over 700 N / mm 2 and a thermal conductivity of over 35 W / mK

Eine bevorzugte Zusammensetzung des erfindungsgemäß zu verwendeden Stahls ist in Anspruch 2 definiert.A preferred composition of the steel to be used according to the invention is defined in claim 2.

Eine bevorzugte Zusammensetzung des erfindungsgemäß zu verwendenden Stahls besteht aus 0,4 bis 0,5 % C, 0,2 bis 0,4 % Si, 0,2 bis 0,4 % Mn, 2,8 bis 3,2 % Cr, 4,9 bis 5,1 % Mo, 0,9 bis 1,1 % V, 0,005 bis 0,025 % Al, Rest Eisen und erschmelzungsbedingte Verunreinigungen.A preferred composition of the steel to be used according to the invention consists of 0.4 to 0.5% C, 0.2 to 0.4% Si, 0.2 to 0.4% Mn, 2.8 to 3.2% Cr, 4.9 to 5.1% Mo, 0.9 to 1.1% V, 0.005 to 0.025% Al, balance iron and melting-related impurities.

Um die hohe Wärmeleitfähigkeit zu gewährleisten, muß der Stahl einen Molybdängehalt von 3,5 bis 7 % besitzen. Die Härtbarkeit wird durch Chromgehalte von mindestens 2 %, höchstens jedoch 4 %, gewährleistet. Bei höheren Chromgehalten tritt eine nennenswerte Verringrung der Wärmeleitfähigkeit ein. Zur Gewährleistung eines hohen Verschleißwiderstandes sind Zusätze der Monocarbidbilder V, Nb oder Ti einzeln oder in Summe von mindestens 0,3 %, höchstens jedoch 1,5 %, erforderlich. Der Kohlenstoffgehalt ist mit 0,30 und 0,50 % auf den Gehalt an Monocarbidbildern abgestimmt.To ensure the high thermal conductivity, the steel must have a molybdenum content of 3.5 to 7%. The hardenability is guaranteed by chromium contents of at least 2%, but at most 4%. At higher chromium levels, there is a noticeable reduction in thermal conductivity. To ensure high wear resistance, additions of the monocarbide images V, Nb or Ti are required individually or in total of at least 0.3%, but at most 1.5%. The carbon content is matched to the content of monocarbide images with 0.30 and 0.50%.

Die Vergütung erfolgt durch Härten bevorzugt im Bereich von 1000 bis 1100 °C und durch nachfolgendes Anlassen im Bereich von 600 bis 650 °C für 1 bis 2 h. Die günstigsten Härtebedingungen wurden im Bereich von 1050 bis 1075 °C 15 min/Wasser ermittelt. Die Anlaßbeständigkeit ist gut.The hardening and tempering is preferably carried out in the range from 1000 to 1100 ° C and by subsequent tempering in the range from 600 to 650 ° C for 1 to 2 hours. The most favorable hardening conditions were determined in the range from 1050 to 1075 ° C for 15 min / water. The temper resistance is good.

Ein innerhalb der beanspruchten Analysengrenzen erzeugter Stahl mit 0,46 % C, 0,21 % Si, 0,31 % Mn, 2,89 % Cr, 5,10 % Mo, 0,006 % Al und 0,91 % V, Rest Fe weist nach Fig. 1 eine höhere Wärmeleifähigkeit auf als alle bisher bekannten Warmarbeitstähle, z.B. die in der Stahleinsatzliste 201 des Vereins Deutscher Eisenhüttenleute von Oktober 1992 aufgeführten Stähle Werkstoff-Nrn. 1.2343 udn 1.2365. Im Temperaturbereich von 400 bis 600 °C liegt die Wärmeleitfähigkeit des erfindungsgemäß zu verwendenden Stahls deutlich oberhalb von 35 W/m.K, während die der zum Vergleich angeführten Stähle 1.2343 und 1.2365 deutlich darunter liegen.A steel produced within the claimed analysis limits with 0.46% C, 0.21% Si, 0.31% Mn, 2.89% Cr, 5.10% Mo, 0.006% Al and 0.91% V, balance Fe 1 has a higher thermal conductivity than all previously known hot working steels, for example the steels material numbers listed in the steel insert list 201 of the Association of German Ironworkers from October 1992. 1.2343 and 1.2365. In the temperature range from 400 to 600 ° C, the thermal conductivity of the steel to be used according to the invention is clearly above 35 W / m.K, while that of the steels 1.2343 and 1.2365 listed for comparison are significantly lower.

Ferner übertrifft der erfindungsgemäß zu verwendende Stahl wie Fig. 2 zeigt, die herkömmlichen Warmarbeitstähle auch in der Anlaßbeständigkeit. Die Härte liegt nach dem Anlassen auf 400 bis 600 °C über 55 HRC, bei den bekannten Vergleichsstählen aber deutlich niedriger.Furthermore, the steel to be used according to the invention, as shown in FIG. 2, surpasses the conventional hot-work steels also in tempering resistance. The hardness after tempering to 400 to 600 ° C is over 55 HRC, but significantly lower with the known comparative steels.

Auch die Warmfestigkeit ist gemäß Fig. 3 im genannten Temperaturbereich besser als die der Vergleichstähle und liegt bei 600 °C noch bei 800 N/mm2 gegenüber 700 N/mm2 für den Vergleichsstahl 1.2365 und 600 N/mm2 bei dem Stahl 1.2343.3 in the temperature range mentioned is better than that of the comparative steels and at 600 ° C. is still 800 N / mm 2 compared to 700 N / mm 2 for the comparative steel 1.2365 and 600 N / mm 2 for the steel 1.2343.

Beim Einsatz als Werkstoff für Schmiedegesenke erwies sich der efindungsgemäß zu verwendende Stahl gegenüber den bisher verwendeten Stählen auch im Hinblick auf Verschleißwiderstand und Standzeit deutlich überlegen.When used as a material for forging dies, the steel to be used according to the invention proved to be significantly superior to the steels previously used in terms of wear resistance and tool life.

Der Stahl kann auch als Werkstoff für Lochdorne wegen seiner guten Wärmeleitfähigkeit und seiner günstigen Zunderausbildung beim Lochen hochlegierter Chromstähle erfolgreich eingesetzt werden.The steel can also be used successfully as a material for piercing mandrels due to its good thermal conductivity and its favorable scale formation when punching high-alloy chrome steels.

Claims (2)

  1. Use of a hot work tool steel which in the hardened and tempered state has in the temperature range of 400 to 600°C a tensile strength of over 700 N/mm2 and a thermal conductivity of over 35 W/m.K and which consists of
    0.30 to 0.55 % C
    less than 0.90 % Si up to 1.0 % Mn
    2.0 to 4.0 % Cr
    3.5 to 7.0 % Mo
    0.3 to 1.5 % in total of one or more of the elements vanadium, titanium, niobium
    0.005 to 0.1 % Al
       residue iron, including unavoidable impurities,
    as a material for hot-work tools which must have a thermal conductivity of over 35 W/m.K.
  2. Use of a steel according to claim 1, but obtaining
    0.4 to 0.5 % C
    0.1 to 0.4 % Si
    0.2 to 0.4 % Mn
    2.8 to 3.2 % Cr
    4.9 to 5.1 % Mo
    0.9 to 1.1 % V
    0.005 to 0.025 % Al
       residue iron and contaminations due to melting, for the purpose set forth in Claim 1.
EP94108830A 1993-06-28 1994-06-09 Application of a hot working steel Expired - Lifetime EP0632139B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4321433 1993-06-28
DE4321433A DE4321433C1 (en) 1993-06-28 1993-06-28 Use of hot work steel

Publications (2)

Publication Number Publication Date
EP0632139A1 EP0632139A1 (en) 1995-01-04
EP0632139B1 true EP0632139B1 (en) 1997-08-13

Family

ID=6491395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108830A Expired - Lifetime EP0632139B1 (en) 1993-06-28 1994-06-09 Application of a hot working steel

Country Status (3)

Country Link
EP (1) EP0632139B1 (en)
AT (1) ATE156865T1 (en)
DE (2) DE4321433C1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410447B (en) 2001-10-03 2003-04-25 Boehler Edelstahl HOT STEEL SUBJECT
SE529809C2 (en) 2006-04-06 2007-11-27 Uddeholm Tooling Ab Hot work tool steel
EP1887096A1 (en) * 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
DK2236639T3 (en) * 2009-04-01 2012-07-23 Rovalma Sa Hot work steel with exceptional hardness and heat conductivity
BRPI0904607A2 (en) * 2009-11-17 2013-07-02 Villares Metals Sa high resistance to tempering action
IT1401998B1 (en) 2010-09-30 2013-08-28 Danieli Off Mecc CUTTING SHEET OF LAMINATED PRODUCTS AND ITS PRODUCTION PROCESS
JP5744300B1 (en) * 2014-11-11 2015-07-08 日本高周波鋼業株式会社 Hot work tool steel
DE102016103283A1 (en) 2016-02-24 2017-08-24 Buderus Edelstahl Gmbh Method for producing a thermoforming tool and thermoforming tool thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB132082A (en) * 1900-01-01
DE898316C (en) * 1938-12-07 1953-11-30 Boehler & Co Ag Geb Hot work tools
AT162908B (en) * 1946-11-04 1949-04-25 Boehler & Co Ag Geb Steel alloys for hot work tools
FR968547A (en) * 1948-06-30 1950-11-29 Bohler & Cie A G Geb Steel alloys for hot working tools, especially for press dies
US3044872A (en) * 1959-11-02 1962-07-17 North American Aviation Inc Steel alloy composition
US2986463A (en) * 1960-03-29 1961-05-30 Crucible Steel Co America High strength heat resistant alloy steel
US3128175A (en) * 1960-07-15 1964-04-07 Universal Cyclops Steel Corp Low alloy, high hardness, temper resistant steel
JPH0765141B2 (en) * 1985-09-18 1995-07-12 日立金属株式会社 Tool steel for hot working
JP2507765B2 (en) * 1987-11-30 1996-06-19 日立金属株式会社 High speed tool steel
JP2539969B2 (en) * 1991-09-12 1996-10-02 三菱製鋼株式会社 Roughing roll for cold rolling
JP2522868B2 (en) * 1991-09-12 1996-08-07 三菱製鋼株式会社 Roughing roll for cold rolling

Also Published As

Publication number Publication date
DE4321433C1 (en) 1994-12-08
DE59403705D1 (en) 1997-09-18
ATE156865T1 (en) 1997-08-15
EP0632139A1 (en) 1995-01-04

Similar Documents

Publication Publication Date Title
EP3228724B1 (en) Tool steel, in particular hot-work steel, and steel object
DE60300867T2 (en) BLOCK STEEL FOR MANUFACTURING INJECTION MOLDING FOR PLASTIC MATERIAL OR FOR PRODUCING WORKPIECES FOR METAL WORKING
DE69908124T2 (en) STEEL MATERIAL FOR HOT TOOLS
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
DE3628862A1 (en) METHOD FOR PRODUCING STEEL
EP0425471B1 (en) Cold work tool steel with high compression strength and use of these steels
EP1300482B1 (en) Hot-work tool-steel article
EP3412790B1 (en) Precipitation hardening steel and use of such a steel for thermoforming tools
DE2800444C2 (en) Use of a Cr-Mo steel
EP0632139B1 (en) Application of a hot working steel
EP3186405B1 (en) Steel with high wear resistance, hardness and corrosion resistance and low thermal conductivity, and use of such a steel
AT393642B (en) USE OF AN IRON BASED ALLOY FOR THE POWDER METALLURGICAL PRODUCTION OF PARTS WITH HIGH CORROSION RESISTANCE, HIGH WEAR RESISTANCE AND HIGH TENSITY AND PRESSURE STRENGTH, ESPECIALLY FOR THE PROCESS
DE10219350B4 (en) Part for use at high temperature
EP1251187A1 (en) Tool steel for plastic material molds
DE69909718T2 (en) BN REINFORCEMENT, FERRITIC HEAT RESISTANT STEEL WITH LOW CARBON CONTENT AND HIGH WELDING PROPERTIES
DE19531260C5 (en) Process for producing a hot-work tool steel
EP0939140B1 (en) Steel for use at high temperatures
DE69907358T2 (en) COMPOSITION OF TOOL STEEL
DE2105745A1 (en) Age-hardenable nickel-chromium steel alloy
AT413544B (en) HIGH-HARD NICKEL BASE ALLOY FOR WEAR-RESISTANT HIGH-TEMPERATURE TOOLS
DE19853259B4 (en) Steel for use in machine structures and machine parts made from such steel
EP1471160B1 (en) Cold-worked Steel Object
DE2758330B1 (en) High speed steel
DE4436670C2 (en) Objects made of nickel-based superalloys with improved machinability and method for producing a machined workpiece from such a superalloy
EP4000762A1 (en) Steel powder, use of a steel for producing a steel powder and method of manufacturing a component from a steel powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR IT SE

17P Request for examination filed

Effective date: 19950221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19961216

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR IT SE

REF Corresponds to:

Ref document number: 156865

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59403705

Country of ref document: DE

Date of ref document: 19970918

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: UDDEHOLM TOOLING AKTIEBOLAG

Effective date: 19980508

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19990429

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120621

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130620

Year of fee payment: 20

Ref country code: SE

Payment date: 20130620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 20

Ref country code: IT

Payment date: 20130624

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403705

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 156865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140609

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140611