EP0630453A1 - Magnetventil - Google Patents

Magnetventil

Info

Publication number
EP0630453A1
EP0630453A1 EP94900475A EP94900475A EP0630453A1 EP 0630453 A1 EP0630453 A1 EP 0630453A1 EP 94900475 A EP94900475 A EP 94900475A EP 94900475 A EP94900475 A EP 94900475A EP 0630453 A1 EP0630453 A1 EP 0630453A1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
frustoconically
valve assembly
mateable
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94900475A
Other languages
English (en)
French (fr)
Other versions
EP0630453B1 (de
Inventor
Charles N. Goloff
Joseph Reilly
Ronald E. Trost
Zilek Liberfarb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Fluid Power Industries Inc
Original Assignee
Caterpillar Inc
Fluid Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc, Fluid Power Industries Inc filed Critical Caterpillar Inc
Publication of EP0630453A1 publication Critical patent/EP0630453A1/de
Application granted granted Critical
Publication of EP0630453B1 publication Critical patent/EP0630453B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides

Definitions

  • This invention relates generally to solenoid valves. In one of its aspects it relates to the assembly of solenoid valves. In another of its aspects it relates to improving the resistance to failure of solenoid valve assemblies which encounter mechanical stress.
  • Solenoid valves have become a mainstay in the everyday operation of machinery. They find use in items ranging from household heating and cooling systems to automobile engines to control systems for the largest of modern construction equipment. They are particularly important in uses requiring instant response.
  • Solenoid valves provided with replaceable solenoid assemblies have in recent years been designed utilizing computers to optimize the size, weight, material of construction and all other aspects that contribute to their improved usefulness in specialized applications.
  • valves designed for specific purposes can meet conditions in operation that involve stresses that approach the stress limitations of their design.
  • the valves can be subjected to high vibrational frequencies _greatly exceeding those encountered in previous applications, with the result that even small design gaps resulting from machine tolerances can result in large stresses threatening the mechanical integrity of the components.
  • solenoid valves used in such equipment installed in a standard configuration with the solenoid housing shell extending from the mounting and assembled with industry standard internal tolerances, can be subjected to conditions that cause excessive vibration, acting much like a bell vibrating on a fixed clapper, that builds up cantilever-type stress forces that result in mechanical failure of the coil and valve assembly.
  • a mounting adapter attached to a solenoid valve train is juxtaposed at an external surface with an internal surface of a flux ring.
  • the fit is within specified tolerances to leave a minimum air gap between the mounting adapter and the bobbin, but the axial pressure applied by tightening a nut at the top of the valve train is not sufficient in combination with the tolerance allowed between the mounting adapter and the flux ring at the open end of the housing shell to provide alignment and stability to prevent bell ⁇ like vibration of the housing shell against the valve train acting as a fixed clapper thereby producing cantilever stress which can be sufficient to cause failure of the valve train, for example, at the joint of the mounting adapter and the tube.
  • This invention provides means by which the mechanical integrity of a solenoid valve assembly can be better secured in an economical manner.
  • This invention provides means for reducing the possibility of vibrational stresses in a solenoid valve assembly.
  • This invention provides means by which compression can be applied to a solenoid valve assembly along its longitudinal axis without damage to the solenoid.
  • This invention also provides changes to solenoid valve assemblies that can be made to existing assemblies, in the field, without replacement of the entire assembly.
  • the invention provides a solenoid valve assembly that has among its components: (A) a solenoid assembly which has as components (1) a central, open, cylindrical shaft adapted to accommodate a solenoid valve train, (2) a hollow, cylindrical solenoid coil surrounding and co-axial with the shaft and (3) a hollow, cylindrical housing shell surrounding and co-axial with the solenoid coil with the housing shell open at one end and closed at the other except for the central shaft that passes therethrough; (B) a solenoid valve train; (C) a first means for releasably attaching the solenoid assembly to the solenoid valve train at the closed end of the housing shell; and (D) a second means for attaching the solenoid assembly to the solenoid valve train at the open end of the housing shell.
  • A a solenoid assembly which has as components (1) a central, open, cylindrical shaft adapted to accommodate a solenoid valve train, (2) a hollow, cylindrical solenoid coil surrounding and co-axial with the shaft and (3) a hollow, cylindrical housing shell surrounding and
  • the second means for attaching the solenoid assembly to the valve train at the open end of the housing shell comprises:
  • a mounting adapter attached to the solenoid valve train with the mounting adapter having an external surface mateably interactable with a flux ring at the open end of the housing shell, and (2) a flux ring mateably interactable on a first surface with the external surface of the mounting adapter, and juxtaposable on a second surface with the internal surface of the housing shell.
  • FIG. 1 is a diagrammatic section of a solenoid valve assembly of this invention showing frustroconically mateable surfaces and shouldered flux ring.
  • FIG. 2 is a diagrammatic section of a split flux ring.
  • FIG. 3 is a diagrammatic section of a portion of a solenoid valve assembly of this invention showing a grooved, shouldered flux ring.
  • FIG. 4 is a diagrammatic section of a bellville washer.
  • FIG. 5 is a diagrammatic section of a portion of a solenoid valve assembly of this invention showing frustoconically mateable surfaces.
  • the solenoid valve assembly 1 will be described as having two major parts: (A) the solenoid assembly 3 which includes the housing shell 5 and the solenoid coil 9 which is made up of a polymeric bobbin 11 on which the conductive metal windings 13 are wound and which has a central, open, cylindrical bore 15, with the remainder of the interior of the housing being filled with a light weight, non-conductive, resin material 17, and (B) the solenoid valve train 19 which includes the cage 21 which forms the body of the train, the spool 23 which slides within the cage providing the opening or closing of the ports 25 and drain 26, the tube 29 which defines the body of the train that is within the solenoid assembly 3 and contains the armature 31 which is acted upon by causing the flow of current through the solenoid coil 9 to produce a magnetic field within the bore 15 to move against the spring 33, pole piece 35, and metal washer 37.
  • the inlet ports 25a are uncovered and the drain 26 is closed so that fluid can enter one set of ports 25a and be directed out of the ports 25b that are always open to pressurize the system.
  • the solenoid deactivates, the inlet ports 25a are closed and the drain 26 opens allowing the fluid to escape through the drain which depressurizes the system.
  • the ports are equipped with screens to prevent dirt from entering the system.
  • the flux ring 7 and the mounting adapter 27 which operate to provide a stationary fit between the solenoid assembly 3 and the solenoid valve train 19 have, for the purposes of this invention, been characterized separately from the solenoid assembly and the solenoid valve train.
  • the mounting adapter can be a separate item that is an integral part of the machinery to which the valve assembly is to be attached, in which instance the mounting adapter can be equipped with threaded means for the valve train to be attached thereto.
  • the mounting adapter can also, as shown here, be made a part of the valve train by being threadedly attached thereto or permanently attached, as by brazing.
  • the flux ring can be fabricated as part of the solenoid assembly.
  • the first means for releasably fixedly attaching the solenoid assembly to the solenoid valve train at the closed end of the housing shell has been illustrated as a threaded end piece 39 that extends externally of the solenoid assembly to accommodate a locking means 41 which usually has a lock nut 43 and washer 45 combination; however, the first means can be any system such as a hole and cotter pin, C-ring etc. which fixedly attaches the solenoid assembly to the solenoid valve train at the closed end of the housing shell while selectively permitting the solenoid assembly to be replaced without disturbing the solenoid valve train.
  • such a means useful at the open end of the housing shell employs the combination of a mounting adapter 27 attached to the solenoid valve train 19 and a flux ring 7 which has a shoulder 47 on its surface that is adjacent to the inside of the housing shell 5.
  • This shoulder 47 acts as a base for the open end of the housing shell 5 so that when axial compression is applied from the closed end of the housing shell 5 by torquing down the nut 43 or other device on top of the housing shell the housing shell cannot slide past this shoulder and permit damage to the solenoid coil 9 (unless excessive compression is applied so as to buckle the housing shell) while sufficient axial pressure can be applied to the valve train to provide stability.
  • both the mounting adapter and the flux ring have been shaped to provide mateably interacting frustoconical abutting surfaces 49.
  • mateably interacting surfaces secure alignment is achieved without the necessity of fabricating components with excessively tight tolerances at uneconomical manufacturing costs.
  • the mateable interacting surfaces provides the additional benefit of reducing eddy currents and residual magnetism in the flux ring and solenoid assembly, resulting in faster valve response time. Referring to FIG. 1 and FIG.
  • a split flux ring 51 can be used in conjunction with the mounting adapter 27.
  • the split flux ring 51 acts as a radial clamp to prevent radial vibration while still allowing axial movement when axial pressure is being applied from the closed end of the housing shell 5.
  • FIG. 3 shows a variation with a flux ring
  • FIG. 1 shows the common means of using a lock nut 43 and washer 45 to tighten down on the valve train 19 at the closed end of the housing shell 5.
  • This means can be used with any of the means set out above to provide an improvement over the configurations formerly used for applying axial pressure on the solenoid valve assembly 1.
  • other means can also be used to attached the solenoid assembly 3 to the valve train 19 at the closed end of the housing shell.
  • frustoconically mateable surfaces has a meaning whereby either of the interacting surfaces can be the "frustoconical” surface, i.e. the protruding surface or the “frustroconically receptive” surface, i.e. the recessed surface.
  • inventive means for applying axial pressure to a solenoid valve assembly set out above do not have to be limited to use as one from the open end of the housing shell list and one from the closed end list. There can be a great advantage, for example, in simultaneously using both the frustoconically mateable surfaces and the shoulder on the housing shell side of the flux ring at the open end of the housing shell.
  • the components of the means for attaching the solenoid assembly to the solenoid valve train act in cooperation to produce an axial compression force on the components of the valve train and solenoid assembly. This force holds the solenoid valve assembly in axial alignment and prevents vibration of the valve train within the solenoid assembly either in an axial or a radial direction. At the same time care is taken to prevent the application of axial pressure on the solenoid assembly in an amount sufficient to cause damage to the solenoid coil. Axial pressure can cause the windings of the solenoid to separate or even break. Separated windings are susceptible to vibrational damage by rubbing against each other causing loss of insulation or breaking with the possible, ultimate short circuiting of the coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
EP94900475A 1992-11-10 1993-11-01 Magnetventil Expired - Lifetime EP0630453B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US97614292A 1992-11-10 1992-11-10
US976142 1992-11-10
PCT/US1993/010475 WO1994011661A1 (en) 1992-11-10 1993-11-01 Solenoid valve assembly

Publications (2)

Publication Number Publication Date
EP0630453A1 true EP0630453A1 (de) 1994-12-28
EP0630453B1 EP0630453B1 (de) 1998-01-28

Family

ID=25523776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94900475A Expired - Lifetime EP0630453B1 (de) 1992-11-10 1993-11-01 Magnetventil

Country Status (8)

Country Link
US (1) US5564676A (de)
EP (1) EP0630453B1 (de)
JP (1) JP3274468B2 (de)
KR (1) KR940703981A (de)
AU (1) AU663990B2 (de)
CA (1) CA2126859A1 (de)
DE (1) DE69316741T2 (de)
WO (1) WO1994011661A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535945A1 (de) * 1995-09-27 1997-04-03 Hydraulik Ring Gmbh Magnetventil sowie Verfahren zu dessen Herstellung
DE19700980A1 (de) * 1997-01-14 1998-07-16 Teves Gmbh Alfred Elektromagnetventil
US5918635A (en) * 1997-10-08 1999-07-06 Vickers, Incorporated Low pressure solenoid valve
DE10359364B4 (de) * 2003-12-18 2012-10-11 Schaeffler Technologies Gmbh & Co. Kg Elektromagnetisches Hydraulikventil, insbesondere 3/2-Wegeschaltventil zur Steuerung eines varialblen Ventiltriebes einer Brennkraftmaschine
US7878773B2 (en) * 2004-10-12 2011-02-01 Maztech, Inc. Dynamically tensioned peristaltic tubing pump
US7581302B2 (en) * 2005-01-13 2009-09-01 G. W. Lisk Company, Inc. Solenoid valve combining a core and cartridge in a single piece
DE102005039640A1 (de) * 2005-08-22 2007-03-01 Bürkert Werke GmbH & Co. KG Magnetventil
DE102005041395B4 (de) * 2005-09-01 2014-11-27 Schaeffler Technologies Gmbh & Co. Kg Hydraulisches Wegeventil
JP2014105757A (ja) * 2012-11-27 2014-06-09 Denso Corp 高圧流体用電磁弁装置
AU2014352888B2 (en) 2013-11-22 2019-05-09 Sabre Therapeutics Llc Autotaxin inhibitor compounds
US9051320B1 (en) 2014-08-18 2015-06-09 Pharmakea, Inc. Methods for the treatment of metabolic disorders by a selective small molecule autotaxin inhibitor
EP4026549A1 (de) 2015-05-27 2022-07-13 Sabre Therapeutics LLC Autotaxin-inhibitoren und verwendungen davon
DE102019130672A1 (de) * 2019-11-13 2021-06-17 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnetventil und Verfahren zur Herstelllung eines Elektromagnetventils

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549119A (en) * 1968-02-09 1970-12-22 Webster Electric Co Inc Valve assembly with flexible valve element
US3670768A (en) * 1970-06-08 1972-06-20 Dynak Inc Fluid flow control device
US3707992A (en) * 1970-11-09 1973-01-02 Skinner Precision Ind Inc Electromagnetic valve assembly
US4540154A (en) * 1982-06-28 1985-09-10 Imperial Clevite Inc. Solenoid valve
AU569173B2 (en) * 1984-09-20 1988-01-21 Ranco Inc. Refrigerant reversing valve pilot valve mounting
US4582294A (en) * 1985-04-01 1986-04-15 Honeywell Inc. Three-way solenoid valve
DE3630092A1 (de) * 1986-09-04 1988-03-17 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
JPH01247877A (ja) * 1988-03-30 1989-10-03 Aisin Seiki Co Ltd 電磁圧力制御弁
US5000420A (en) * 1988-04-29 1991-03-19 Spx Corporation Electromagnetic solenoid valve with variable force motor
JPH02129483A (ja) * 1988-11-09 1990-05-17 Aisin Aw Co Ltd 圧力調整弁
DE4103777A1 (de) * 1991-02-08 1992-08-13 Mueller A & K Gmbh Co Kg Eigenmediumbetaetigtes, durch ein bistabiles magnetventil gesteuertes servoventil fuer fluessige und gasfoermige medien

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9411661A1 *

Also Published As

Publication number Publication date
AU5545194A (en) 1994-06-08
EP0630453B1 (de) 1998-01-28
US5564676A (en) 1996-10-15
WO1994011661A1 (en) 1994-05-26
DE69316741D1 (de) 1998-03-05
JPH07503525A (ja) 1995-04-13
DE69316741T2 (de) 1998-09-10
AU663990B2 (en) 1995-10-26
JP3274468B2 (ja) 2002-04-15
KR940703981A (ko) 1994-12-12
CA2126859A1 (en) 1994-05-26

Similar Documents

Publication Publication Date Title
AU663990B2 (en) Solenoid valve assembly
US7077378B2 (en) Annular valve
CN107000729B (zh) 用于车辆的制动器的倾翻式衔铁阀和用于运行倾翻式衔铁阀的方法
KR101242910B1 (ko) 전기 레버 장치
CN2926619Y (zh) 电液伺服阀
EP1275874A2 (de) Lasttragendes Elektromagnetventil und Methode zu seiner Herstellung
EP0928010A2 (de) Spulenanordnung verwendbar in Elektromagnetventilen
CN105781294A (zh) 用于在墙和固定在该墙上的扇页之间无接触传输电能的装置
GB2153110A (en) A servo-valve
US5076537A (en) Electromechanical servovalve
CN112412396A (zh) 井下安全阀
US6344702B1 (en) Simplified torque motor
US20030000323A1 (en) Gear change device
CN101042201B (zh) 用于自动关闭气体管线的安全阀
CN111879340A (zh) 用于改善的抗振性的装置、系统和方法
US6225713B1 (en) Electromagnetic force motor and method of manufacturing the same
KR20100016178A (ko) 전기자 및 솔레노이드 조립체
US5781090A (en) Latching electromagnet
US5626054A (en) Load decoupler
JP4170342B2 (ja) アクチュエータの偏向伝達装置
US20020038857A1 (en) Fluid valve
GB1568180A (en) Damping spacers for conductor bundles
US5878704A (en) Electromagnetic actuator, including sound muffling means, for operating a cylinder valve
JP4533746B2 (ja) 作動液の流れを制御する制御弁
CN217272239U (zh) 螺线管装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19960603

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CATERPILLAR INC.

Owner name: FLUID POWER INDUSTRIES, INCORPORATED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 69316741

Country of ref document: DE

Date of ref document: 19980305

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001012

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: CATERPILLAR INC.

Effective date: 20011130

Owner name: FLUID POWER INDUSTRIES INC.

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021002

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021127

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051101