EP0626988B1 - Method and device for heating a low-temperature distillation drum - Google Patents

Method and device for heating a low-temperature distillation drum Download PDF

Info

Publication number
EP0626988B1
EP0626988B1 EP93903164A EP93903164A EP0626988B1 EP 0626988 B1 EP0626988 B1 EP 0626988B1 EP 93903164 A EP93903164 A EP 93903164A EP 93903164 A EP93903164 A EP 93903164A EP 0626988 B1 EP0626988 B1 EP 0626988B1
Authority
EP
European Patent Office
Prior art keywords
gas
heating gas
low temperature
heating
temperature carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93903164A
Other languages
German (de)
French (fr)
Other versions
EP0626988A1 (en
Inventor
Herbert Tratz
Reiner Engelhardt
Georg Lösel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19924204728 external-priority patent/DE4204728A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0626988A1 publication Critical patent/EP0626988A1/en
Application granted granted Critical
Publication of EP0626988B1 publication Critical patent/EP0626988B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/10Rotary retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Definitions

  • the invention relates to a method for heating a smoldering drum according to the preamble of claim 1.
  • the invention further relates to a device for carrying out the method and also to a smoldering and firing system operating according to this method.
  • the charring of waste at a low temperature is an endothermic process.
  • the heat required for the reaction is fed indirectly to the waste via heat exchanger heating surfaces which are arranged in the form of tubes in the wall of a rotating drum or smoldering drum.
  • a heating gas is fed to the smoldering drum, which is conducted in a heating gas circuit.
  • the heating gas circuit in a smoldering-firing system operating according to this method comprises a heat exchanger which is arranged on a combustion chamber of the firing system and absorbs thermal energy from the hot flue gas there.
  • the carbonization system is practically always operated together with the combustion system, the carbonization gas generated being burned in the combustion system to produce steam.
  • An independently heatable smoldering system is known from DE-OS 30 18 572.
  • a partial stream of the smoldering gas generated is burned in a combustion chamber.
  • the resulting flue gas is used as heating gas for the smoldering drum and is released into the environment after flowing through a heat exchanger.
  • a self-sufficient smoldering system is also from the publication "Pyrolysis of waste” by Karl J. Thomé-Kozmiensky, EF-Verlag für Energy- undmaschinetechnik GmbH, 1985, pages 97 to 120, especially picture 2 on page 101 and text on page 103.
  • the entire carbonization gas generated is converted into a clean gas in a gas converter with a downstream scrubber. Part of this clean gas is burned in a combustion chamber. The resulting flue gas is conducted in an essentially open circuit and used as heating gas for the smoldering drum.
  • this process is particularly complex and uneconomical, especially since an already economically usable clean gas is used to generate heating gas.
  • the invention is therefore based on the object of specifying an economical method for heating a smoldering drum, with the heating gas always being used to introduce a sufficient amount of heat into the smoldering drum. This is to be achieved with a largely simplified device that ensures the provision of a heating gas required for the autonomous operation of the carbonization system.
  • a controllable partial stream of the heating gas flowing out of the carbonization drum and thus cooled is returned to the carbonization drum in a closed partial circuit and mixed with the hot heating gas again.
  • the partial flow of the carbonization gas is expediently dedusted before the combustion, there is the possibility that dust will be deposited in the heating gas circuit, in particular in the carbonization drum, during operation of the carbonization system.
  • the amount of dust deposited can be reduced by reducing the partial flow of the carbonization gas to be burned.
  • this leads to a reduction in the amount of heat introduced into the smoldering drum with the heating gas.
  • the cooled heating gas flowing out of the carbonization drum is first preheated.
  • the preheated heating gas is then fed back to the carbonization drum together with the burned partial stream of the carbonization gas.
  • a partial flow of the heating gas flowing out of the smoldering drum is branched off from the heating gas circuit before or after preheating.
  • the partial flow of the carbonization gas is expediently carried out in the presence of negative pressure in the heating gas circuit. This measure serves on the one hand to promote the partial flow of the carbonization gas and the heating gas generated in the heating gas circuit. On the other hand, escape of carbonization gas or heating gas into the environment in the event of a leak is avoided.
  • the cooled heating gas is advantageously preheated by indirect heat exchange with steam.
  • the cooled heating gas is expediently dedusted before preheating.
  • a partial stream, preferably 20 to 50%, of the carbonization gas generated can be fed to a first combustion chamber for generating the heating gas for the carbonization drum.
  • the residual stream of the carbonization gas generated can be fed to a second combustion chamber of the combustion system for steam generation.
  • Steam generated in the combustion system is fed to a heat exchanger connected upstream in the heating gas circuit of the first combustion chamber.
  • the advantages achieved by the invention are, in particular, that by using a partial stream of the carbonization gas to generate the heating gas required for the carbonization, the carbonization system can be operated in a particularly economical manner.
  • This carbonization system can therefore be used to retrofit an existing combustion or firing system, the excess carbonization gas and the residual material from the smoldering drum can be burned.
  • no heat and mass transport with the cross connections required for example, in the prior art according to EP-OS 0 340 537 between the existing combustion plant and the supplied or retrofitted smoldering plant for heating them are required.
  • FIG. 1 shows a schematic representation of a smoldering-firing plant with a device for generating hot gas with a heat exchanger connected to two hot spots in a hot gas circuit.
  • the smoldering plant shown comprises a smoldering plant 1 with a downstream combustion plant 2.
  • the smoldering plant 1 comprises a smoldering drum 4 with a feed device 6 for waste a and a discharge chamber 8 for separating the smoldering gas s produced from the outgassed residue r.
  • heating pipes 10 are arranged which are charged with a heating gas g.
  • An inflow line 12 and an outflow line 14 are connected to the carbonization drum 4.
  • the inflow line 12 is connected to a mixing chamber 16, which is preceded by a combustion chamber 18.
  • a blower or suction draft 20 is located in the outflow line 14.
  • a first branch 22 of the outflow line 14 is connected to the mixing chamber 16.
  • a second branch 24 of the discharge line 14 is connected to the combustion chamber 18.
  • the discharge chamber 8 is connected via a line 26 to a device 28 for dust separation, for example a cyclone.
  • the device 28 is connected to the combustion chamber 18 via a line 30.
  • An outlet 27 of the device 28 is connected via a line 32 to a combustion chamber 34 of the combustion system 2.
  • the combustion chamber 34 is followed by a waste heat boiler or flue gas cooler 36 with heating surfaces 38.
  • a device 42 for flue gas cleaning and a further fan or a suction 44 are connected in a flue gas line 40.
  • the flue gas line 40 opens into a chimney (not shown).
  • the outflow line 14 of the smoldering drum 4 opens into the flue gas line 40 via a valve 46 in the area between the waste heat boiler 36 and the cleaning device 42.
  • a parallel branch 43 with a valve 45 ends in the waste heat boiler 36 in the area between adjacent heating surfaces 38.
  • the flue gas line 40 is over a line 47 and valves 48 and 50 are connected to branch 22 and branch 24 of outflow line 14, respectively.
  • the smoldering drum 4 is fed the waste a via a conveyor 52.
  • the waste a is pyrolyzed or carbonized in the smoldering drum 4 by the pipes 10 heated by hot flue gas or heating gas g.
  • the resulting carbonization gas s and the outgassed residual material r are separated from one another in the discharge chamber 8.
  • the residue r is fed to further processing via a discharge opening 54. He can e.g. be burned in the combustion chamber 34.
  • the carbonization gas s is roughly cleaned by means of a sieve or filter 55 by separating fibers and large pieces and then sucked into the device 28 via the line 26.
  • the carbonization gas s contains several% by weight of fine dust with a larger proportion of combustible material.
  • the carbonization gas s enters the device 28 at the top tangentially via an inlet opening 56, which is designed in the form of a relatively high narrow slot (not shown in any more detail). Due to the centrifugal force, dust particles become inside when deflected the device 28 pressed against the wall. As a result, dust is reduced in the center.
  • a low-dust partial stream t 1 of 20 to 50%, preferably 30%, of the carbonization gas s is removed from the device 28 via a suction pipe 62 extending far beyond the inlet opening 56 and fed to the combustion chamber 18 for combustion.
  • the dust content of the partial stream t1 of the carbonization gas s can be further reduced.
  • Longitudinal slots in the suction pipe 62 have a positive influence on the dust separation, because the entry speed is thereby reduced and made more uniform.
  • the partial stream t1 of the dedusted or dust-depleted carbonization gas s is used for heating gas generation.
  • the partial stream t1 of the carbonization gas s is burned in the combustion chamber 18 at a temperature T1 of approximately 1250 ° C.
  • the outflowing from the smoldering drum 4 and cooled to a temperature T2 'of about 250 ° C heating gas g is first preheated to a temperature T2 "of about 360 ° C in a heat exchanger 80 connected to the discharge side of the blower 20 in the outflow line 14 Then an adjustable partial flow t3 of the preheated heating gas g is fed via the branch 22 into the mixing chamber 16.
  • a partial flow t4 of the preheated heating gas g that can be adjusted by means of the valve 25 can be fed directly to the combustion chamber 18. At least part of the heating gas g thus flows via the mixing chamber 16 and the inflow line 12 as well as through the heating pipes 10 and the heat exchanger 80 and above the branches 22, 24 of the outflow line 14 in a closed pitch circle 70.
  • the outlet opening 27 of the device 28 for the main or residual stream t2 of the carbonization gas s is also tangential in the lower region of the device 28.
  • the dust concentrated towards the wall reaches the residual stream t2 via the line 32 to the combustion chamber 34.
  • the direction of rotation of the flow is of the carbonization gas s after entering the device 28 and before leaving the device 28 the same.
  • the bottom area 60 of the device 28 is raised conically or parabolically towards the center, so that no dust deposits can form there.
  • the hot flue gas resulting from the combustion of the residual current t2 of the carbonization gas s in the combustion chamber 34 is used in the waste heat boiler 36 to generate steam.
  • the transport of this residual stream t2 of the carbonization gas s from the carbonization drum 4 via the device 28 and the combustion chamber 30 as well as via the waste heat boiler 36 and the cleaning system 42 takes place via the suction fan 44.
  • the heating gas g not required for the heating gas generation flows in an open circuit 72 via the valve 46 and is mixed with the flue gas flowing out of the combustion chamber 34 in front of the cleaning device 42. In the cleaning device 42, therefore, only completely burned flue gas is cleaned.
  • Steam from the waste heat boiler 36 serves as the heat transfer medium for the heat exchanger 80.
  • the steam is removed from the heating surfaces 38 at point A and fed to the heat exchanger 80 at an inlet temperature of approximately 390 ° C.
  • the cooled steam exiting the heat exchanger 80 at point B flows back to the heating surfaces 38 at a temperature of approximately 330 ° C.
  • a dust separator 82 is arranged on the suction side of the blower 20 in the outflow line 14.
  • the heating gas g is led out of the carbonization drum 4 in the circuit 72 and is mixed with the flue gas via the valve 49 upstream and via the valve 46 downstream of the waste heat boiler 36. In this case, the gas mixture is cleaned solely in the device 42.
  • the heating gas circuit 72 is now closed via the line 47 and the valves 48 and 50, the heat exchanger 80 ′ then being located in the line 47. In this case, clean flue gas is removed from the pressure side of the fan 44 and preheated in the heat exchanger 80 ′ arranged in the line 47. The preheated flue gas is then mixed into the heating gas g again.
  • the independently operated smoldering system 1 is particularly advantageously suitable for retrofitting an existing combustion system 2. For this purpose, essentially only a connection has to be made via the line 32.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Air Supply (AREA)
  • Drying Of Solid Materials (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

To heat a drum (4) designed to generate low-temperature distillation gases (s), a heating gas (g) which passes round a heating-gas circuit (70, 72) is used. In order to enable the distillation plant (1) to be operated particularly efficiently, and also autonomously, the invention calls for the heating gas (g) to be produced by burning a part (t1?) of the distillation gases (s). In a distillation/combustion plant, in particular a combustion plant (2) retrofitted with a distillation plant (1), the remainder (t2?) of the distillation gases (s) produced is fed to the combustion chamber (34) of the combustion plant (2).

Description

Die Erfindung bezieht sich auf ein Verfahren zum Beheizen einer Schweltrommel gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung bezieht sich weiter auf eine Einrichtung zur Durchführung des Verfahrens und ferner auf eine nach diesem Verfahren arbeitende Schwel-Brenn-Anlage.The invention relates to a method for heating a smoldering drum according to the preamble of claim 1. The invention further relates to a device for carrying out the method and also to a smoldering and firing system operating according to this method.

Die Verschwelung von Abfall bei einer niedrigen Temperatur ist ein endothermer Vorgang. Die für die Reaktion benötigte Wärme wird dem Abfall indirekt über Wärmetauscher-Heizflächen zugeführt, die in Form von Rohren in der Wand einer Drehtrommel oder Schweltrommel angeordnet sind.The charring of waste at a low temperature is an endothermic process. The heat required for the reaction is fed indirectly to the waste via heat exchanger heating surfaces which are arranged in the form of tubes in the wall of a rotating drum or smoldering drum.

Bei einem aus der europäischen Patentschrift 0 340 537 bekannten Verfahren zur thermischen Abfallentsorgung wird der Schweltrommel ein Heizgas zugeleitet, das in einem Heizgaskreis geführt wird. Der Heizgaskreis umfaßt in einer nach diesem Verfahren arbeitenden Schwel-Brenn-Anlage einen Wärmetauscher, der an einer Brennkammer der Brennanlage angeordnet ist und dort Wärmeenergie vom heißen Rauchgas aufnimmt. Die Schwelanlage wird praktisch immer zusammen mit der Brennanlage betrieben, wobei in der Brennanlage das erzeugte Schwelgas zum Erzeugen von Dampf verbrannt wird.In a method for thermal waste disposal known from European Patent Specification 0 340 537, a heating gas is fed to the smoldering drum, which is conducted in a heating gas circuit. The heating gas circuit in a smoldering-firing system operating according to this method comprises a heat exchanger which is arranged on a combustion chamber of the firing system and absorbs thermal energy from the hot flue gas there. The carbonization system is practically always operated together with the combustion system, the carbonization gas generated being burned in the combustion system to produce steam.

Eine autark beheizbare Schwelanlage ist aus der DE-OS 30 18 572 bekannt. In der dort beschriebenen Schwel- oder Pyrolyseanlage wird ein Teilstrom des erzeugten Schwelgases in einer Brennkammer verbrannt. Das dabei entstandene Rauchgas wird als Heizgas für die Schweltrommel verwendet und nach Durchströmen eines Wärmetauschers an die Umgebung abgegeben.An independently heatable smoldering system is known from DE-OS 30 18 572. In the smoldering or pyrolysis plant described there, a partial stream of the smoldering gas generated is burned in a combustion chamber. The resulting flue gas is used as heating gas for the smoldering drum and is released into the environment after flowing through a heat exchanger.

Eine autark betreibbare Schwelanlage ist auch aus der Druckschrift "Pyrolyse von Abfällen" von Karl J. Thomé-Kozmiensky, EF-Verlag für Energie- und Umwelttechnik GmbH, 1985, Seiten 97 bis 120, insbesondere Bild 2 auf Seite 101 und Text auf Seite 103, bekannt. Bei der bekannten Anlage wird das gesamte erzeugte Schwelgas in einem Gaswandler mit nachgeschalteter Waschstraße in ein Reingas umgewandelt. Ein Teil dieses Reingases wird in einer Brennkammer verbrannt. Das dabei entstehende Rauchgas wird in einem im wesentlichen offenen Kreis geführt und als Heizgas für die Schweltrommel verwendet. Dieses Verfahren ist allerdings besonders aufwendig und unwirtschaftlich, zumal ein bereits wirtschaftlich nutzbares Reingas zur Heizgaserzeugung verwendet wird.A self-sufficient smoldering system is also from the publication "Pyrolysis of waste" by Karl J. Thomé-Kozmiensky, EF-Verlag für Energie- und Umwelttechnik GmbH, 1985, pages 97 to 120, especially picture 2 on page 101 and text on page 103. In the known system, the entire carbonization gas generated is converted into a clean gas in a gas converter with a downstream scrubber. Part of this clean gas is burned in a combustion chamber. The resulting flue gas is conducted in an essentially open circuit and used as heating gas for the smoldering drum. However, this process is particularly complex and uneconomical, especially since an already economically usable clean gas is used to generate heating gas.

Der Erfindung liegt daher die Aufgabe zugrunde, ein wirtschaftliches Verfahren zum Beheizen einer Schweltrommel anzugeben, wobei mit dem Heizgas stets eine ausreichende Wärmemenge in die Schweltrommel eingebracht werden soll. Dies soll mit einer weitgehend vereinfachten Einrichtung erreicht werden, die die Bereitstellung eines für den autarken Betrieb der Schwelanlage erforderlichen Heizgases gewährleistet.The invention is therefore based on the object of specifying an economical method for heating a smoldering drum, with the heating gas always being used to introduce a sufficient amount of heat into the smoldering drum. This is to be achieved with a largely simplified device that ensures the provision of a heating gas required for the autonomous operation of the carbonization system.

Bezüglich des Verfahrens wird die genannte Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1.With regard to the method, the stated object is achieved according to the invention by the features of claim 1.

Zur Einstellung der Temperatur des Heizgases, das durch Verbrennung eines Teilstroms des Schwelgases erzeugt wird, wird ein steuerbarer Teilstrom des aus der Schweltrommel abströmenden und somit abgekühlten Heizgases in einem geschlossenen Teilkreis zur Schweltrommel zurückgeführt und dabei dem heißen Heizgas wieder zugemischt.In order to adjust the temperature of the heating gas, which is generated by combustion of a partial stream of the carbonization gas, a controllable partial stream of the heating gas flowing out of the carbonization drum and thus cooled is returned to the carbonization drum in a closed partial circuit and mixed with the hot heating gas again.

Da der Teilstrom des Schwelgases zweckmäßigerweise vor der Verbrennung entstaubt wird, besteht die Möglichkeit, daß sich während des Betriebs der Schwelanlage Staub im Heizgaskreis, insbesondere in der Schweltrommel, ablagert. Die sich ablagernde Staubmenge kann durch Verringern des zu verbrennenden Teilstroms des Schwelgases verkleinert werden. Dies führt allerdings zu einer Verminderung der mit dem Heizgas in die Schweltrommel eingebrachten Wärmemenge. Um dem Heizgas die fehlende Wärmemenge zuzuführen, wird das aus der Schweltrommel abströmende abgekühlte Heizgas zunächst vorgewärmt.Since the partial flow of the carbonization gas is expediently dedusted before the combustion, there is the possibility that dust will be deposited in the heating gas circuit, in particular in the carbonization drum, during operation of the carbonization system. The amount of dust deposited can be reduced by reducing the partial flow of the carbonization gas to be burned. However, this leads to a reduction in the amount of heat introduced into the smoldering drum with the heating gas. In order to supply the heating gas with the missing amount of heat, the cooled heating gas flowing out of the carbonization drum is first preheated.

Anschließend wird das vorgewärmte Heizgas zusammen mit dem verbrannten Teilstrom des Schwelgases der Schweltrommel wieder zugeführt. Ein Teilstrom des aus der Schweltrommel abströmenden Heizgases wird vor oder nach der Vorwärmung aus dem Heizgaskreis abgezweigt.The preheated heating gas is then fed back to the carbonization drum together with the burned partial stream of the carbonization gas. A partial flow of the heating gas flowing out of the smoldering drum is branched off from the heating gas circuit before or after preheating.

Der Teilstrom des Schwelgases wird zweckmäßigerweise bei in dem Heizgaskreis herrschenden Unterdruck geführt. Diese Maßnahme dient einerseits zur Förderung des Teilstroms des Schwelgases und des erzeugten Heizgases im Heizgaskreis. Andererseits wird ein Entweichen von Schwelgas oder Heizgas in die Umgebung im Fall einer Leckage vermieden.The partial flow of the carbonization gas is expediently carried out in the presence of negative pressure in the heating gas circuit. This measure serves on the one hand to promote the partial flow of the carbonization gas and the heating gas generated in the heating gas circuit. On the other hand, escape of carbonization gas or heating gas into the environment in the event of a leak is avoided.

Die Vorwärmung des abgekühlten Heizgases erfolgt zweckmäßigerweise durch indirekten Wärmetausch mit Dampf. Dabei wird das abgekühlte Heizgas zweckmäßigerweise vor der Vorwärmung entstaubt.The cooled heating gas is advantageously preheated by indirect heat exchange with steam. The cooled heating gas is expediently dedusted before preheating.

Bezüglich der Einrichtung wird die genannte Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 6.With regard to the device, the stated object is achieved according to the invention by the features of claim 6.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen 7 bis 11 angegeben.Advantageous refinements are specified in subclaims 7 to 11.

Bei einer nach dem erfindungsgemäßen Verfahren arbeitenden Schwel-Brenn-Anlage mit einer Schweltrommel zum Erzeugen von Schwelgas ist ein Teilstrom, vorzugsweise 20 bis 50 %, des erzeugten Schwelgases einer ersten Brennkammer zum Erzeugen des Heizgases für die Schweltrommel zuführbar. Der Reststrom des erzeugten Schwelgases ist einer zweiten Brennkammer der Brennanlage zur Dampferzeugung zuführbar. Einem im Heizgaskreis der ersten Brennkammer vorgeschalteten Wärmetauscher wird in der Brennanlage erzeugter Dampf zugeführt. Dadurch wird das abgekühlte Heizgas durch indirekten Wärmetausch mit dem Dampf vorgewärmt.In a carbonization plant with a carbonization drum for generating carbonization gas, which operates according to the method of the invention, a partial stream, preferably 20 to 50%, of the carbonization gas generated can be fed to a first combustion chamber for generating the heating gas for the carbonization drum. The residual stream of the carbonization gas generated can be fed to a second combustion chamber of the combustion system for steam generation. Steam generated in the combustion system is fed to a heat exchanger connected upstream in the heating gas circuit of the first combustion chamber. As a result, the cooled heating gas is preheated by indirect heat exchange with the steam.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch Verwendung eines Teilstroms des Schwelgases zur Erzeugung des für die Verschwelung erforderlichen Heizgases die Schwelanlage in besonders wirtschaftlicher Weise autark betrieben werden kann. Diese Schwelanlage kann daher zur Nachrüstung einer bereits vorhandenen Brenn- oder Feuerungsanlage eingesetzt werden, wobei in der Brennanlage das überschüssige Schwelgas und der anfallende Reststoff aus der Schweltrommel verbrannt werden können. Dabei sind kein Wärme- und Stofftransport mit den z.B. im Stande der Technik nach der EP-OS 0 340 537 erforderlichen Querverbindungen zwischen der vorhandenen Brennanlage und der zugestellten oder nachgerüsteten Schwelanlage zu deren Beheizung erforderlich.The advantages achieved by the invention are, in particular, that by using a partial stream of the carbonization gas to generate the heating gas required for the carbonization, the carbonization system can be operated in a particularly economical manner. This carbonization system can therefore be used to retrofit an existing combustion or firing system, the excess carbonization gas and the residual material from the smoldering drum can be burned. In this case, no heat and mass transport with the cross connections required, for example, in the prior art according to EP-OS 0 340 537 between the existing combustion plant and the supplied or retrofitted smoldering plant for heating them are required.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Sie zeigt in einer schematischen Darstellung eine Schwel-Brenn-Anlage mit einer Einrichtung zur Heizgaserzeugung mit einem an zwei alternativen Stellen in einen Heizgaskreis geschalteten Wärmetauscher.An embodiment of the invention is explained in more detail with reference to a drawing. It shows a schematic representation of a smoldering-firing plant with a device for generating hot gas with a heat exchanger connected to two hot spots in a hot gas circuit.

Die gezeigte Schwel-Brenn-Anlage umfaßt eine Schwelanlage 1 mit nachgeschalteter Brennanlage 2. Die Schwelanlage 1 umfaßt eine Schweltrommel 4 mit einer Zuführeinrichtung 6 für Abfall a und eine Austragskammer 8 zum Trennen des erzeugten Schwelgases s vom ausgegasten Reststoff r. In der Schweltrommel 4 sind Heizrohre 10 angeordnet, die mit einem Heizgas g beaufschlagt sind. An die Schweltrommel 4 ist eine Zuströmleitung 12 und eine Abströmleitung 14 angeschlossen. Die Zuströmleitung 12 ist mit einer Mischkammer 16 verbunden, der eine Brennkammer 18 vorgeschaltet ist. In der Abströmleitung 14 liegt ein Gebläse oder Saugzug 20. Ein erster Zweig 22 der Abströmleitung 14 ist mit der Mischkammer 16 verbunden. Ein zweiter Zweig 24 der Abströmleitung 14 ist mit der Brennkammer 18 verbunden. In den Zweigen 22 und 24 liegt jeweils ein Ventil 23 bzw. 25.The smoldering plant shown comprises a smoldering plant 1 with a downstream combustion plant 2. The smoldering plant 1 comprises a smoldering drum 4 with a feed device 6 for waste a and a discharge chamber 8 for separating the smoldering gas s produced from the outgassed residue r. In the smoldering drum 4, heating pipes 10 are arranged which are charged with a heating gas g. An inflow line 12 and an outflow line 14 are connected to the carbonization drum 4. The inflow line 12 is connected to a mixing chamber 16, which is preceded by a combustion chamber 18. A blower or suction draft 20 is located in the outflow line 14. A first branch 22 of the outflow line 14 is connected to the mixing chamber 16. A second branch 24 of the discharge line 14 is connected to the combustion chamber 18. In branches 22 and 24 there is a valve 23 and 25, respectively.

Die Austragskammer 8 ist über eine Leitung 26 mit einer Einrichtung 28 zur Staubabscheidung, z.B. einem Zyklon, verbunden. Die Einrichtung 28 ist über eine Leitung 30 mit der Brennkammer 18 verbunden. Ein Ausgang 27 der Einrichtung 28 ist über eine Leitung 32 mit einer Brennkammer 34 der Brennanlage 2 verbunden.The discharge chamber 8 is connected via a line 26 to a device 28 for dust separation, for example a cyclone. The device 28 is connected to the combustion chamber 18 via a line 30. An outlet 27 of the device 28 is connected via a line 32 to a combustion chamber 34 of the combustion system 2.

Der Brennkammer 34 ist ein Abhitzekessel oder Rauchgaskühler 36 mit Heizflächen 38 nachgeschaltet. In eine Rauchgasleitung 40 sind eine Vorrichtung 42 zur Rauchgasreinigung und ein weiteres Gebläse oder ein Saugzug 44 geschaltet. Die Rauchgasleitung 40 mündet in einen (nicht dargestellten) Kamin.The combustion chamber 34 is followed by a waste heat boiler or flue gas cooler 36 with heating surfaces 38. In a flue gas line 40, a device 42 for flue gas cleaning and a further fan or a suction 44 are connected. The flue gas line 40 opens into a chimney (not shown).

Die Abströmleitung 14 der Schweltrommel 4 mündet über ein Ventil 46 im Bereich zwischen dem Abhitzekessel 36 und der Reingigungseinrichtung 42 in die Rauchgasleitung 40. Ein paralleler Zweig 43 mit einem Ventil 45 endet im Abhitzekessel 36 im Bereich zwischen benachbarten Heizflächen 38. Die Rauchgasleitung 40 ist über eine Leitung 47 und Ventile 48 und 50 mit dem Zweig 22 bzw. dem Zweig 24 der Abströmleitung 14 verbunden.The outflow line 14 of the smoldering drum 4 opens into the flue gas line 40 via a valve 46 in the area between the waste heat boiler 36 and the cleaning device 42. A parallel branch 43 with a valve 45 ends in the waste heat boiler 36 in the area between adjacent heating surfaces 38. The flue gas line 40 is over a line 47 and valves 48 and 50 are connected to branch 22 and branch 24 of outflow line 14, respectively.

Der Schweltrommel 4 wird der Abfall a über eine Fördereinrichtung 52 zugeführt. Der Abfall a wird in der Schweltrommel 4 durch die von heißem Rauchgas oder Heizgas g beheizten Rohre 10 pyrolisiert oder verschwelt. Das dabei entstehende Schwelgas s und der ausgegaste Reststoff r werden in der Austragskammer 8 voneinander getrennt. Der Reststoff r wird über eine Austragsöffnung 54 einer Weiterverarbeitung zugeführt. Er kann z.B. in der Brennkammer 34 verbrannt werden. Das Schwelgas s wird mittels eines Siebes oder Filters 55 durch Abtrennung von Fasern und großen Stücken grob gereinigt und anschließend über die Leitung 26 in die Einrichtung 28 gesaugt. Das Schwelgas s enthält mehrere Gew.-% Feinstaub mit einem größeren Anteil an brennbarem Material.The smoldering drum 4 is fed the waste a via a conveyor 52. The waste a is pyrolyzed or carbonized in the smoldering drum 4 by the pipes 10 heated by hot flue gas or heating gas g. The resulting carbonization gas s and the outgassed residual material r are separated from one another in the discharge chamber 8. The residue r is fed to further processing via a discharge opening 54. He can e.g. be burned in the combustion chamber 34. The carbonization gas s is roughly cleaned by means of a sieve or filter 55 by separating fibers and large pieces and then sucked into the device 28 via the line 26. The carbonization gas s contains several% by weight of fine dust with a larger proportion of combustible material.

Das Schwelgas s tritt tangential über eine Eintrittsöffnung 56, die in nicht näher dargestellter Art und Weise in Form eines relativ hohen schmalen Schlitzes ausgebildet ist, oben in die Einrichtung 28 ein. Infolge der Zentrifugalkraft werden Staubpartikel bei der Umlenkung innerhalb der Einrichtung 28 gegen die Wand gedrückt. Dadurch wird im Zentrum eine Staubabreicherung erreicht.The carbonization gas s enters the device 28 at the top tangentially via an inlet opening 56, which is designed in the form of a relatively high narrow slot (not shown in any more detail). Due to the centrifugal force, dust particles become inside when deflected the device 28 pressed against the wall. As a result, dust is reduced in the center.

Ein staubarmer Teilstrom t₁ von 20 bis 50 %, vorzugsweise 30%, des Schwelgases s wird der Einrichtung 28 über ein weit über die Eintrittsöffnung 56 hinabreichendes Absaugrohr 62 entnommen und der Brennkammer 18 zur Verbrennung zugeführt.A low-dust partial stream t 1 of 20 to 50%, preferably 30%, of the carbonization gas s is removed from the device 28 via a suction pipe 62 extending far beyond the inlet opening 56 and fed to the combustion chamber 18 for combustion.

Durch verschiedenartige Gestaltung des Absaugrohrs 62 kann der Staubgehalt des Teilstroms t₁ des Schwelgases s weiter verringert werden. So haben z.B. Längsschlitze im Absaugrohr 62 einen positiven Einfluß auf die Staubtrennung, weil dadurch die Eintrittsgeschwindigkeit verringert und vergleichmäßigt wird.By different design of the suction tube 62, the dust content of the partial stream t₁ of the carbonization gas s can be further reduced. For example, Longitudinal slots in the suction pipe 62 have a positive influence on the dust separation, because the entry speed is thereby reduced and made more uniform.

Der Teilstrom t₁ des entstaubten oder staubabgereicherten Schwelgases s wird zur Heizgaserzeugung verwendet. Dazu wird der Teilstrom t₁ des Schwelgases s in der Brennkammer 18 bei einer Temperatur T₁ von ca. 1250°C verbrannt. Das aus der Schweltrommel 4 abströmende und auf eine Temperatur T₂' von ca. 250° C abgekühlte Heizgas g wird zunächst in einem auf der Druckseite des Gebläses 20 in die Abströmleitung 14 geschalteten Wärmetauscher 80 auf eine Temperatur T₂" von ca. 360°C vorgewärmt. Anschließend wird ein einstellbarer Teilstrom t₃ des vorgewärmten Heizgases g über den Zweig 22 in die Mischkammer 16 geführt. Dort wird es mit dem Heizgas g aus der Brennkammer 18 vermischt, so daß bei Eintritt in die Schweltrommel 4 eine Mischtemperatur T₃ von ca. 520°C eingestellt ist. Eine mittels des Ventils 25 einstellbarer Teilstrom t₄ des vorgewärmten Heizgases g ist der Brennkammer 18 direkt zuführbar. Mindestens ein Teil des Heizgases g strömt somit über die Mischkammer 16 und die Zuströmleitung 12 sowie durch die Heizrohre 10 und den Wärmetauscher 80 und über die Zweige 22, 24 der Abströmleitung 14 in einem geschlossenen Teilkreis 70.The partial stream t₁ of the dedusted or dust-depleted carbonization gas s is used for heating gas generation. For this purpose, the partial stream t₁ of the carbonization gas s is burned in the combustion chamber 18 at a temperature T₁ of approximately 1250 ° C. The outflowing from the smoldering drum 4 and cooled to a temperature T₂ 'of about 250 ° C heating gas g is first preheated to a temperature T₂ "of about 360 ° C in a heat exchanger 80 connected to the discharge side of the blower 20 in the outflow line 14 Then an adjustable partial flow t₃ of the preheated heating gas g is fed via the branch 22 into the mixing chamber 16. There it is mixed with the heating gas g from the combustion chamber 18, so that a mixing temperature T₃ of approximately 520 ° when entering the carbonization drum 4 C. A partial flow t₄ of the preheated heating gas g that can be adjusted by means of the valve 25 can be fed directly to the combustion chamber 18. At least part of the heating gas g thus flows via the mixing chamber 16 and the inflow line 12 as well as through the heating pipes 10 and the heat exchanger 80 and above the branches 22, 24 of the outflow line 14 in a closed pitch circle 70.

Die Austrittsöffnung 27 der Einrichtung 28 für den Hauptoder Reststrom t₂ des Schwelgases s befindet sich ebenfalls tangential im unteren Bereich der Einrichtung 28. Der zur Wand hin konzentrierte Staub gelangt mit dem Reststrom t₂ über die Leitung 32 zur Brennkammer 34. Dabei ist der Drehsinn der Strömung des Schwelgases s nach Eintritt in die Einrichtung 28 und vor Austritt aus der Einrichtung 28 gleich. Der Bodenbereich 60 der Einrichtung 28 ist konus- oder parabelförmig zur Mitte hin erhöht, so daß sich dort keine Staubablagerungen bilden können.The outlet opening 27 of the device 28 for the main or residual stream t₂ of the carbonization gas s is also tangential in the lower region of the device 28. The dust concentrated towards the wall reaches the residual stream t₂ via the line 32 to the combustion chamber 34. The direction of rotation of the flow is of the carbonization gas s after entering the device 28 and before leaving the device 28 the same. The bottom area 60 of the device 28 is raised conically or parabolically towards the center, so that no dust deposits can form there.

Das bei der Verbrennung des Reststroms t₂ des Schwelgases s in der Brennkammer 34 entstehende heiße Rauchgas wird im Abhitzekessel 36 zur Dampferzeugung genutzt. Der Transport dieses Reststroms t₂ des Schwelgases s aus der Schweltrommel 4 über die Einrichtung 28 und die Brennkammer 30 sowie über den Abhitzekessel 36 und die Reinigungsanlage 42 erfolgt über das Sauggebläse 44.The hot flue gas resulting from the combustion of the residual current t₂ of the carbonization gas s in the combustion chamber 34 is used in the waste heat boiler 36 to generate steam. The transport of this residual stream t₂ of the carbonization gas s from the carbonization drum 4 via the device 28 and the combustion chamber 30 as well as via the waste heat boiler 36 and the cleaning system 42 takes place via the suction fan 44.

Das für die Heizgaserzeugung nicht benötigte Heizgas g strömt in einem offenen Kreis 72 über das Ventil 46 und wird dem aus der Brennkammer 34 abströmenden Rauchgas vor der Reinigungseinrichtung 42 zugemischt. In der Reinigungseinrichtung 42 wird somit lediglich vollständig verbranntes Rauchgas gereinigt.The heating gas g not required for the heating gas generation flows in an open circuit 72 via the valve 46 and is mixed with the flue gas flowing out of the combustion chamber 34 in front of the cleaning device 42. In the cleaning device 42, therefore, only completely burned flue gas is cleaned.

Als Wärmeträger für den Wärmetauscher 80 dient Dampf aus dem Abhitzekessel 36. Der Dampf wird den Heizflächen 38 an der Stelle A entnommen und dem Wärmetauscher 80 mit einer Eintrittstemperatur von ca. 390°C zugeführt. Der an der Stelle B aus dem Wärmetauscher 80 austretende abgekühlte Dampf strömt den Heizflächen 38 mit einer Temperatur von etwa 330°C wieder zu.Steam from the waste heat boiler 36 serves as the heat transfer medium for the heat exchanger 80. The steam is removed from the heating surfaces 38 at point A and fed to the heat exchanger 80 at an inlet temperature of approximately 390 ° C. The cooled steam exiting the heat exchanger 80 at point B flows back to the heating surfaces 38 at a temperature of approximately 330 ° C.

Um eine weitere Staubabreicherung des Heizgases g zu erreichen, ist auf der Saugseite des Gebläses 20 in der Abströmleitung 14 ein Staubabscheider 82 angeordnet.In order to achieve a further dust depletion of the heating gas g, a dust separator 82 is arranged on the suction side of the blower 20 in the outflow line 14.

Bei geschlossenen Ventilen 23 und 25 wird das Heizgas g aus der Schweltrommel 4 im Kreis 72 geführt und dabei dem Rauchgas über das Ventil 49 vor und über das Ventil 46 hinter dem Abhitzekessel 36 zugemischt. Dabei erfolgt die Reinigung des Gasgemisches allein in der Vorrichtung 42. Der Heizgaskreis 72 ist nun über die Leitung 47 und die Ventile 48 und 50 geschlossen, wobei dann der Wärmetauscher 80' in der Leitung 47 liegt. In diesem Fall wird auf der Druckseite des Gebläses 44 sauberes Rauchgas entnommen und im in der Leitung 47 angeordneten Wärmetauscher 80' vorgewärmt. Anschließend wird das vorgewärmte Rauchgas dem Heizgas g wieder zugemischt.When the valves 23 and 25 are closed, the heating gas g is led out of the carbonization drum 4 in the circuit 72 and is mixed with the flue gas via the valve 49 upstream and via the valve 46 downstream of the waste heat boiler 36. In this case, the gas mixture is cleaned solely in the device 42. The heating gas circuit 72 is now closed via the line 47 and the valves 48 and 50, the heat exchanger 80 ′ then being located in the line 47. In this case, clean flue gas is removed from the pressure side of the fan 44 and preheated in the heat exchanger 80 ′ arranged in the line 47. The preheated flue gas is then mixed into the heating gas g again.

Die autark betreibbare Schwelanlage 1 eignet sich besonders vorteilhaft für eine Nachrüstung einer bestehenden Brennanlage 2. Dazu ist im wesentlichen lediglich eine Verbindung über die Leitung 32 herzustellen.The independently operated smoldering system 1 is particularly advantageously suitable for retrofitting an existing combustion system 2. For this purpose, essentially only a connection has to be made via the line 32.

Claims (13)

  1. A method for heating a low temperature carbonization drum for generating a low temperature carbonization gas (s), wherein a heating gas (g) carried in a heating gas circuit (70, 72) is used which is generated by combusting a partial flow (t₁) of the low temperature carbonization gas (s),
    characterised in that
    a controllable partial flow (t₃, t₄) of the cooled heating gas (g) is returned to the low temperature carbonization drum (4) and re-admixed with the heating gas (g), after first preheating the cooled heating gas (g) flowing out of the low temperature carbonization drum (4).
  2. A method according to claim 1, characterised in that the partial flow (t₁) of the low temperature carbonization gas (g) is carried at a reduced pressure prevailing in the heating gas circuit (70, 72).
  3. A method according to claim 1 or claim 2, characterised in that dust is removed from the partial flow (t₁) of the low temperature carbonization gas (s) prior to the combustion.
  4. A method according to one of claims 1 to 3, characterised in that the preheating of the cooled heating gas (g) is effected by indirect heat exchange with steam.
  5. A method according to one of claims 1 to 4, characterised in that dust is removed from the cooled heating gas (g) prior to the preheating.
  6. Apparatus for heating a low temperature carbonization drum (4) which is connected in a heating gas circuit (70, 72) through an inflow line (12) and an outflow line (14), the heating gas circuit (70, 72) having a combustion chamber (18) for generating the heating gas (g), wherein a partial flow (t₁) of the low temperature carbonization gas (s) produced in the low temperature carbonization drum (4) can be delivered to the combustion chamber (18),
    characterised by a heat exchanger (80, 80' incorporated in the heating gas circuit (70, 72) upstream of the combustion chamber (18) for preheating the cooled heating gas.
  7. Apparatus according to claim 6, characterised in that a dust separation device (28) is incorporated upstream of the combustion chamber (18).
  8. Apparatus according to claim 6 or claim 7, characterised in that an exhaust fan (20) is incorporated in the outflow line (14) of the heating gas circuit (70, 72).
  9. Apparatus according to claim 8, characterised in that the pressure side of the exhaust fan (20) communicates with the combustion chamber (18).
  10. Apparatus according to claim 8 or claim 9, characterised in that the pressure side of the exhaust fan (20) communicates with a mixing chamber (16) connected downstream of the combustion chamber (18).
  11. Apparatus according to one of claims 6 to 10, characterised by a dust separation device (82) incorporated upstream of the heat exchanger (80, 80') in said outflow line (14).
  12. A low temperature carbonization/combustion plant comprising apparatus according to one of claims 6 to 11, wherein the remaining flow (t₂) of the low temperature carbonization gas (s) generated is supplied to a combustion chamber (34) of the combustion system (2).
  13. A low temperature carbonization/combustion plant comprising apparatus according to one of claims 6 to 11 wherein steam generated in the combustion system (2) can be supplied to the heat exchanger (80, 80').
EP93903164A 1992-02-17 1993-02-11 Method and device for heating a low-temperature distillation drum Expired - Lifetime EP0626988B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19924204728 DE4204728A1 (en) 1992-02-17 1992-02-17 Self contained plant drum heating for prodn. of low temp. gas - by using heating gas obtd. from carbonisation gas, for economy and simple gas prepn.
DE4204728 1992-02-17
DE4217301 1992-05-25
DE4217301A DE4217301A1 (en) 1992-02-17 1992-05-25 Method and device for heating a smoldering drum
PCT/DE1993/000119 WO1993016147A1 (en) 1992-02-17 1993-02-11 Method and device for heating a low-temperature distillation drum

Publications (2)

Publication Number Publication Date
EP0626988A1 EP0626988A1 (en) 1994-12-07
EP0626988B1 true EP0626988B1 (en) 1996-04-24

Family

ID=25911934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93903164A Expired - Lifetime EP0626988B1 (en) 1992-02-17 1993-02-11 Method and device for heating a low-temperature distillation drum

Country Status (9)

Country Link
EP (1) EP0626988B1 (en)
JP (1) JP3299967B2 (en)
KR (1) KR100234226B1 (en)
CN (1) CN1038942C (en)
AT (1) ATE137257T1 (en)
CZ (1) CZ282500B6 (en)
DE (2) DE4217301A1 (en)
ES (1) ES2086926T3 (en)
WO (1) WO1993016147A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001569A1 (en) * 2005-01-13 2006-07-27 Strohmenger, Patrick, Dipl.-Ing. Plant for low temperature carbonization of pyrolysis material, comprises cuboid pyrolysis chamber located with burner with fuel agent and filled with pyrolysis gas, heating room, and cavity arranged between chamber and room
DE202007016421U1 (en) 2006-11-22 2009-04-02 Morschett, Peter Plant for the treatment and treatment of waste materials from composite materials, in particular composite cartons (tetrapacks)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029542A1 (en) * 1995-03-21 1996-09-26 Metallgesellschaft Aktiengesellschaft Process and device for processing domestic waste
DE19512785A1 (en) * 1995-04-05 1996-10-17 Siemens Ag Process for the thermal treatment of waste materials
FR2734343A1 (en) * 1995-05-16 1996-11-22 Ostan Raffaele Rotary furnace for destroying waste by pyrolysis, for disposal of urban, industrial, hospital and agricultural waste
CN104315524B (en) * 2014-09-11 2016-06-29 中复神鹰碳纤维有限责任公司 A kind of carbon fiber low-temperature carbonization exhaust treatment system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244753B1 (en) * 1972-09-08 1973-10-18 Mannesmann Ag, 4000 Duesseldorf Method and device for reinforcing gauze
DE3018572C2 (en) * 1980-05-14 1983-07-21 Deutsche Kommunal-Anlagen Miete GmbH, 8000 München Indirectly heated rotary kiln for the pyrolysis of waste materials, in which the pyrolysis gases are fed to the burner of the rotary kiln for combustion
DE3815187A1 (en) * 1988-05-04 1989-11-16 Siemens Ag Temperature-controlled installation for thermal waste disposal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001569A1 (en) * 2005-01-13 2006-07-27 Strohmenger, Patrick, Dipl.-Ing. Plant for low temperature carbonization of pyrolysis material, comprises cuboid pyrolysis chamber located with burner with fuel agent and filled with pyrolysis gas, heating room, and cavity arranged between chamber and room
DE102005001569B4 (en) * 2005-01-13 2008-11-13 Strohmenger, Patrick, Dipl.-Ing. Plant for polluting a pyrolysis product
DE202007016421U1 (en) 2006-11-22 2009-04-02 Morschett, Peter Plant for the treatment and treatment of waste materials from composite materials, in particular composite cartons (tetrapacks)

Also Published As

Publication number Publication date
KR100234226B1 (en) 1999-12-15
WO1993016147A1 (en) 1993-08-19
CZ195594A3 (en) 1994-12-15
ES2086926T3 (en) 1996-07-01
CN1038942C (en) 1998-07-01
DE4217301A1 (en) 1993-12-02
ATE137257T1 (en) 1996-05-15
DE59302381D1 (en) 1996-05-30
CN1076472A (en) 1993-09-22
JP3299967B2 (en) 2002-07-08
JPH07503743A (en) 1995-04-20
EP0626988A1 (en) 1994-12-07
KR950700378A (en) 1995-01-16
CZ282500B6 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
EP0120397B1 (en) Device for recovering energy from pyrolysable carbonaceous waste products of variable compositions
EP0067299B1 (en) Process and apparatus for operating a coke oven plant
EP0459603A1 (en) Process and apparatus for continuous drying of wood chips, wood fibres or other bulk materials
DE4327953A1 (en) Plant for thermal waste disposal and method for operating such a plant
DE112007003336B4 (en) Fuel gasification system
DE3118931A1 (en) METHOD AND DEVICE FOR OPERATING A COOKING PLANT
DE3625992C2 (en)
EP0297420B1 (en) Installation for the pyrolysis of waste
EP0626988B1 (en) Method and device for heating a low-temperature distillation drum
DE2921042A1 (en) PROCESS FOR RECOVERY AND USE OF THE HEAT OF COOK OVEN GAS
EP0098481B1 (en) Method for generating electric power in a combined power plant with fluidised bed combustion
EP1377649B1 (en) Installation and method for producing energy using pyrolysis
DE511792C (en) Method and device for the heat treatment of crushed coal
DE3142993A1 (en) METHOD AND DEVICE FOR PREHEATING A PRESSURE FLUID BED COMBUSTION CHAMBER AND A CLEANING SUBSYSTEM IN A GAS TURBINE POWER PLANT
DE2842477C2 (en) Method and device for reducing fine dust emissions when filling pre-dried and pre-heated coal in coking ovens
DE4204728A1 (en) Self contained plant drum heating for prodn. of low temp. gas - by using heating gas obtd. from carbonisation gas, for economy and simple gas prepn.
US5935387A (en) Method and device for heating a low temperature carbonization drum and low temperature carbonization/combustion plant having the device
DE3307737A1 (en) METHOD AND DEVICE FOR DESTROYING LIQUID OR PASTE-SHAPED WASTE
DE4218016A1 (en) Method and device for controlling the flue gas temperature at the outlet of a steam generator
DE4225858C2 (en) Steam gas turbine plant
DE19961437C2 (en) Process and plant for extracting flammable gas from sewage sludge
WO1999010682A1 (en) Installation and method for thermal removal of waste
EP0085833B1 (en) Process for the dry cooling of coke and apparatus for carrying out the process
DE3714854C2 (en)
DE102004063795B3 (en) Gas preparation process for gas turbines involves sending gas produced by combustion through spiral separator tube, cyclone and energy converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19951011

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 137257

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59302381

Country of ref document: DE

Date of ref document: 19960530

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086926

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960611

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050208

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050209

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20050211

Year of fee payment: 13

Ref country code: BE

Payment date: 20050211

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050216

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050509

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE) -TRANSFER TO- MITSUI ENGINEERING & SHIPBUILDING CO., LTD.#64, TSUKIJI 5-CHOME, CHUO-KU#TOKYO 104-8439 (JP) $ TAKUMA CO., LTD.#1-3-23 DOJIMAHAMA , KITA -KU#OSAKA 530-004 (JP)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

NLS Nl: assignments of ep-patents

Owner name: TAKUMA CO., LTD.

Effective date: 20060718

Owner name: MITSUI ENGINEERING & SHIPBUILDING CO., LTD

Effective date: 20060718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060213

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080228

Year of fee payment: 16

Ref country code: GB

Payment date: 20080208

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080118

Year of fee payment: 16

Ref country code: DE

Payment date: 20080419

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211