EP1377649B1 - Installation and method for producing energy using pyrolysis - Google Patents
Installation and method for producing energy using pyrolysis Download PDFInfo
- Publication number
- EP1377649B1 EP1377649B1 EP02708128A EP02708128A EP1377649B1 EP 1377649 B1 EP1377649 B1 EP 1377649B1 EP 02708128 A EP02708128 A EP 02708128A EP 02708128 A EP02708128 A EP 02708128A EP 1377649 B1 EP1377649 B1 EP 1377649B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- installation
- pyrolysis
- combustion
- pyrolysis zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 92
- 238000009434 installation Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 57
- 239000003546 flue gas Substances 0.000 claims abstract description 33
- 238000002485 combustion reaction Methods 0.000 claims abstract description 31
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910052799 carbon Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 26
- 238000002309 gasification Methods 0.000 claims description 15
- 239000000446 fuel Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000000567 combustion gas Substances 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 150000002240 furans Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
- F23G5/0273—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/32—Other processes in ovens with mechanical conveying means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/32—Other processes in ovens with mechanical conveying means
- C10B47/44—Other processes in ovens with mechanical conveying means with conveyor-screws
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/007—Screw type gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/34—Grates; Mechanical ash-removing devices
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/62—Processes with separate withdrawal of the distillation products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/64—Processes with decomposition of the distillation products
- C10J3/66—Processes with decomposition of the distillation products by introducing them into the gasification zone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
- C10K1/024—Dust removal by filtration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
- C10J2200/158—Screws
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0906—Physical processes, e.g. shredding, comminuting, chopping, sorting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2203/00—Furnace arrangements
- F23G2203/30—Cyclonic combustion furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2203/00—Furnace arrangements
- F23G2203/80—Furnaces with other means for moving the waste through the combustion zone
- F23G2203/801—Furnaces with other means for moving the waste through the combustion zone using conveyors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2206/00—Waste heat recuperation
- F23G2206/10—Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
Definitions
- the invention relates to a plant and a method for energy production, as described in the preambles of claims 1 and 12.
- pyrolytic processes can be used to energize waste or residual materials.
- residues such as municipal and industrial waste, recycling sorting waste, waste and residual wood, sewage sludge, animal meal, etc. in question.
- the pyrolytic processes are based on degassing of the carbonaceous residues provided as fuels under high temperatures and essentially with the exclusion of oxygen.
- the energy contained in the resulting gases can be determined, for example, by combustion, i. Oxidation, which convert gases into thermal energy.
- Thermal energy is relatively easy to use, for example, to generate heat, cold or electricity.
- Carbo-V process Another, under the name Carbo-V process, become known method provides to decompose mainly wood-containing residues in a first reactor by partial oxidation into their volatile and solid constituents.
- the solid constituents predominantly carbonaceous coke, are ground.
- the resulting, very tar-containing gas is post-oxidized in the upper part of a combustion chamber, while in the lower part of the combustion chamber, the coke dust is converted into gasification gas.
- This gas is cooled and purified several times along with the first stage synthesis gas.
- the purified gas is then provided for generating useful energy.
- the complex wet cleaning can be seen as a disadvantage.
- the system required for this process must also be relatively large and complex for economical operation. Moreover, this process is essentially intended only for the energy recovery of wood.
- a plant according to the preamble of claim 1 in which the gases are first fed to an outer surface of the pyrolysis tube in order then to pass via a conduit far from the pyrolysis tube to a heat exchanger. Only the heat exchanger performs a conversion into a useful energy form, namely water vapor.
- WO-A-97/15641 also discloses a plant in which the hot combustion gases produced by degasification and pyrolysis can be used conventionally for steam generation.
- the invention is therefore an object of the invention to provide a generic system and a method that allow a good balance of energy even with small plant size.
- This object is achieved in a system of the type mentioned in the present invention that the combusting gas and / or the resulting flue gas by means of a portion of the conduit means, and with respect to their flow direction, at the same time with the passage to the pyrolysis substantially also at least one Section of a heat exchanger are passed, wherein the heat exchanger receives in a first region thermal energy of the gases and emits them in a second area to a medium of the heat utilization device.
- the object is also achieved by a method as described in claim 12.
- a portion of a stream of hot combustion or flue gases produced during combustion is not supplied, as in the prior art, exclusively to successive different recycling purposes, but preferably already during combustion and immediately thereafter substantially simultaneously is used both for heating the pyrolysis zone as well as for the release of thermal energy to a heat exchanger.
- predefined physical conditions are created. This is intended to keep the temperature prevailing in the pyrolysis zone at a value which is favorable for the pyrolysis, within a certain temperature range. This temperature range may be, for example, from 850 ° C to 950 ° C.
- This temperature range may be, for example, from 850 ° C to 950 ° C.
- the temperature of the combustion gases during combustion or immediately thereafter in a range of about 1000 ° C to 1200 ° C, preferably from 1050 ° C to 1150 ° C and more preferably about 1100 ° C, is located on the one hand to have good results in the pyrolysis process and on the other hand a sufficient amount of energy for the generation of useful energy available.
- This temperature range has also proved to be particularly advantageous because at On the one hand certainly no recombination of the combustion or flue gases to dioxins and furans takes place at these temperatures.
- the temperatures are high enough to lead the flue gases over a longer distance in the conduit means before they cool to temperatures at which such recombinations would be to be feared in significant quantities.
- the pyrolysis zone should adjoin the first boundary surface and the second boundary surface should be part of the heat exchanger.
- the pyrolysis zone has at least one substantially elongated tube which is surrounded by an annular conduit means, the longitudinal extension of which can extend substantially parallel to the longitudinal extent of the pyrolysis tube.
- an (outer) wall of the pyrolysis tube can also function as an inner wall of the conduit means, whereby a particularly good heat transfer into the pyrolysis zone is possible.
- An outer wall of the conduit means may be formed as a heat exchanger, whereby also a particularly good heat transfer to the heat exchange medium with very low heat losses is possible. This also makes it possible to realize an inventive system with a particularly low design effort.
- the pyrolysis tube and the conduit means are each circular in cross-section with the conduit means concentrically surrounding the pyrolysis tube.
- a plurality of pyrolysis tubes can also be arranged in an annular cross-sectional conduit means, wherein the cross-sectional shapes of the conduit means and the pyrolysis tubes can be optimized with regard to good heat transfer.
- the cross-sectional shapes of the tubes can be chosen almost arbitrarily.
- the heat exchanger discharges the energy to a boiler in which water vapor is generated, which in turn can be used to produce a usable form of energy, such as heat, cold or electricity.
- a boiler in which water vapor is generated
- the conduit means and thus also the heat exchanger are arranged over at least a portion of the conduit means completely within the kettle. This may have the consequence that the pyrolysis zone, at least over a section along a conveying path of the fuel through the pyrolysis zone, is also located completely within the heat exchanger and thus also the heat exchange medium.
- system according to the invention can be provided with a control circuit in which one or more parameters of the water vapor emerging from the boiler are measured. These measurement results can be used to control the feed rate of fuel into the pyrolysis tube so that the values of the vapor parameters are set to be substantially constant.
- these systems should have a modular construction.
- the systems can be provided with predefined interfaces to which system components can be interconnected by preferably detachable connections. This also makes it possible to adapt existing systems quickly and with little effort to changing conditions.
- Fig. 1 an inventive plant for the conversion of residues is shown in energy.
- the plant has an input point 1, can be given in the residual material 2 in an intermediate silo 3 of the plant.
- the intermediate silo 3 is used for intermediate storage of residues 2 before they are fed to the recovery described in more detail below.
- a arranged in a downpipe conveyor 4 follows.
- the feed wheel 4 and / or stored in the silo 3 residues 2 conclude on this side of the plant the latter substantially airtight.
- the downcomer opens in the region of one end of a horizontally oriented tube 5 in the latter.
- a rotatably driven screw conveyor 6 is arranged, which promotes the residues 2 in the region of the other end of the tube 5.
- an opening is present in the tube 5, through which the residues pass through a further downpipe 7 into a region of a front end of a pyrolysis zone designed as a pyrolysis tube 8.
- a rotatably drivable screw conveyor 9 is arranged, with which the residues 2 are conveyed from an inlet opening 8a to a provided at the other end of the pyrolysis tube lower outlet opening 8b.
- the pyrolysis tube 8 is sealed against an air inlet.
- the latter end of the pyrolysis tube opens into a silo-like container 10, in which below the pyrolysis tube 8 a gasification chamber 11 and above a gas mixing chamber 12 is formed.
- the gasification chamber 11 also belongs to a reaction part of the plant.
- the residual substances 2, which have passed through the pyrolysis tube 8 and an essentially anaerobic pyrolysis, thus fall downwards into the gasification chamber 11 provided with a lower funnel-shaped end due to gravity through the outlet opening 8b of the pyrolysis tube 8.
- the funnel-shaped end finally ends in another Pipe 14 with screw conveyor 15 through which the end products of the gasification process, essentially ash or slag, in a predetermined amount and time can be removed from the plant.
- the gasification chamber 11 is connected to the outlet opening 8b of the pyrolysis tube 8 and bypass channels arranged on both sides thereof around the pyrolysis tube with the gas mixing chamber 12.
- the resulting in the pyrolysis tube gases such as methane and carbon monoxide, thus can escape through the outlet opening 8b upwards also in the gas mixing chamber 12.
- the gas mixing chamber is connected to a burner having a ring burner 21.
- the combustion device 21 is in this case arranged over the full circumference of the pyrolysis tube 8 around the latter.
- the in Fig. 2 in a first embodiment in a cross-sectional view shown in more detail laterally arranged next to the gas mixing chamber annular burner uniformly distributed on the circumference of the conduit means a plurality of burners 22, for example, eight burners - but at least one burner on. In a manner not shown each of the burner 22 is connected to the gas supply to the supply line 20.
- the burners 22 may in this case be oriented such that the gas flowing out of them and initially burning in a flame 24 has a predetermined flow direction component 25 or a flame direction which runs tangentially to the pyrolysis tube 8, so that the pyrolysis tube is heated as evenly as possible.
- Fig. 2 it is shown that thereby an alignment of the flame 24 of each burner 22 is made possible on the flame 24 of the circumferentially subsequent burner 22. This can be achieved safely and in a structurally simple way that the individual burners 22 of the annular burner ignite each other.
- the stream of still combusting gases produced by the burners 22 and flue gases already formed by combustion may preferably also have a flow direction component which runs parallel to the longitudinal extent 8c of the pyrolysis tube 8 and opposite to the passage direction of the fuels 2 in the pyrolysis tube.
- a firing device 21 is shown in which the flame direction 25 of the individual burners 22 are inclined and directed onto the longitudinal axis 8c of the pyrolysis tube.
- a conduit means 26 described in more detail below is closed at its end 26a in the region of the firing device 21.
- FIGS. 2 and 3 show extreme positions of the individual burners 22.
- the burners 22 in FIG. 2 are aligned completely tangentially to the pyrolysis tube 8, the orientation of the flames 24 having no component parallel to the longitudinal axis 8c of the pyrolysis tube.
- the direction of the flames 24 has no tangential component.
- the flame direction 25 lies in each case in a sectional plane through the longitudinal axis 8c of the pyrolysis tube.
- the individual burners of the burner can also occupy any position between the extreme positions shown in the two figures, which can be achieved for example by pivoting the burner shown in Fig. 2 by an angle less than 90 °.
- a start / support burner 27 is provided in the peripheral region of the annular burner, with which the annular burner can be ignited on the one hand.
- the flame (not shown) generated by the start / support burner 27 may be directed to at least one of the burners 22 of the annular burner.
- the start / support burner 27 can also be used if too small amounts of energy are supplied by the ring burner.
- the start / support burner 27 may be powered by an external fuel supply.
- the annular burner 26 may be integrated at one end of the conduit means 26 in this.
- the conduit means 26 may initially be formed as a cross-sectionally annular, substantially rectilinear pipe 28.
- the annular tube 28 is in this case arranged concentrically around the pyrolysis tube 8.
- the concentric tube 28 surrounds the pyrolysis tube 8 over its entire length, the longitudinal axes of the two tubes being identical.
- they In order to allow a good heat transfer from the annular tube to the pyrolysis tube, they have a common tube wall 29 made of a material with good thermal conductivity on. For this purpose, especially metallic materials, such as alloyed steel and cast steel, in question.
- the annular tube 28 merges at an end opposite the firing device 21 into a first curved region 30 with a deflection angle of 180 °.
- the one volume of the conduit means fanned into a plurality of individual tubes in a straight line and parallel to each other and to the annular tube 28.
- this plurality of tubes is shown in FIG. 1 as only a single tube 31. By fanning the total area can be increased at which a heat transfer can take place.
- a second curvature region 32 is located at an end of the tubes 31 opposite the first curvature region 30.
- the conduit means is deflected by 180 ° and divided into a further enlarged number of individual tubes 33 (also shown as a single tube) running parallel to one another.
- a third curvature region 34 then adjoins in the direction of flow, in turn increasing the number of individual tubes. From the third curvature region 34, the conduit means extends to a so-called quenching means 36, which is provided for the shock cooling of the flue gases.
- the previously described meandering portion (reference numerals 28 to 34) of the conduit means 26 is located approximately from the combustor 21 to the third curvature region 34 in a water-filled closed vessel 37.
- This section of the conduit means and Boiler 37 thus form a so-called three-pass boiler, which serves for heat recovery.
- a steam line 38 is connected to these.
- the resulting due to the heating of the water vapor becomes a Device 39 out, in which the energy content of the water vapor for the production of useful energy, such as electricity, heat or cold, is used.
- the heat exchanger 28a serves as a heat exchanger 28 a, with which a part of the energy content of the burned gases guided in the tube 28 to the Water of the three-pass boiler is discharged.
- the heat exchanger 28a absorbs thermal energy from the hot gases on an inner surface 40 of the tube 28 and discharges it to the water on an outer surface 41 of the tube 28.
- the respective same section of the volumetric flow of the gases simultaneously emits another part of its thermal energy to the pyrolysis tube 8 on an outer surface 42 of the tube wall 29.
- This part of the thermal energy can be used via an inner surface 43 of the tube wall 29 by radiant heat or by heat transfer to heat the contents of the pyrolysis tube.
- quenching means the flue gas within a very short time, for example within 0.2 sec. From about 450 ° C to about 200 ° C, cooled.
- water can be injected into a chamber through which the flue gases are carried out.
- the quenching process avoids recombinations of the flue gases to dioxins or furans or, at the most, allows them to be harmless enough.
- the thus cooled flue gases reach a known flue gas cleaning device 45. This has filters with which particles are removed from the flue gas stream. The filtrate, essentially filter dust, is collected in a container 46 for subsequent removal.
- the thus cleaned flue gas now leaves the flue gas cleaning device 45 and passes over another section 48 of the conduit means to a trained as a suction fan 49 vacuum means.
- the induced draft fan 49 promotes, on the one hand, the flow of purified flue gas to a chimney 50 provided Rauchgasauslassstelle.
- the induced draft fan 49 generates at its installation location in the conduit means 26 a negative pressure which can act with respect to a direction opposite to the direction of flow up to the intermediate silo 3.
- the negative pressure causes a substantially constant volumetric flow of the flue gases through the line 26 closed against the entry of air.
- the oxygen required for the combustion in the region of the combustor 21 alone due to the negative pressure acting in the combustion device or at least with its support is sucked.
- the negative pressure for conveying the gas from the gas mixing chamber 12 to the combustor 21 can be used.
- the system may also be provided with a control device, not shown in the drawing, with the parameters of the emerging from the boiler 37 water vapor can be set as substantially constant.
- parameters of the steam such as pressure, quantity and temperature, can be measured in the region of the steam outlet, for which reason temperature, quantity and pressure sensors can be present at one or more locations in the steam line.
- the entry of residues can be increased in a predetermined manner. It can also be provided that in addition the start / support burner is turned on.
- the combustion temperature of the gases is approximately from 1050.degree. C. to 1150.degree.
- the temperature is kept as constant as possible within this range, for example at about 1100 ° C. This makes it possible to provide in the pyrolysis tube in a range of 850 ° C to 950 ° C as constant temperature conditions as possible to adjust the available per unit time at the Dampfauslassstelle usable amount of energy as constant as possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Gasification And Melting Of Waste (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Die Erfindung betrifft eine Anlage und ein Verfahren zur Energieerzeugung, wie sie in den Oberbegriffen der Ansprüche 1 und 12 beschrieben sind.The invention relates to a plant and a method for energy production, as described in the preambles of
Es ist bereits seit langem bekannt, dass sich mit pyrolytischen Prozessen Abfälle oder Reststoffe energetisch nutzen lassen. Als Reststoffe kommen beispielsweise kommunale und industrielle Abfälle, Recycling-Sortierabfälle, Abfall- und Restholz, Klärschlamm, Tiermehl etc. in Frage. Die pyrolytischen Prozesse basieren hierbei auf einer unter hohen Temperaturen und im wesentlichen unter Ausschluss von Sauerstoff durchgeführten Entgasung der als Brennstoffe vorgesehenen kohlenstoffhaltigen Reststoffe. Die in den hierbei entstehenden Gase enthaltene Energie lässt sich beispielsweise durch Verbrennung, d.h. Oxidation, der Gase in thermische Energie umwandeln. Thermische Energie lässt sich vergleichsweise einfach nutzen, um beispielsweise Wärme, Kälte oder Strom zu erzeugen.It has long been known that pyrolytic processes can be used to energize waste or residual materials. As residues such as municipal and industrial waste, recycling sorting waste, waste and residual wood, sewage sludge, animal meal, etc. in question. In this case, the pyrolytic processes are based on degassing of the carbonaceous residues provided as fuels under high temperatures and essentially with the exclusion of oxygen. The energy contained in the resulting gases can be determined, for example, by combustion, i. Oxidation, which convert gases into thermal energy. Thermal energy is relatively easy to use, for example, to generate heat, cold or electricity.
So sind schon verschiedene Anlagenkonzepte vorgeschlagen worden, um mittels einer pyrolytischen Verwertung von Reststoffen nutzbare Energie zu gewinnen. Eines der ersten'Anlagenkonzept ist unter dem Namen "Thermoselect" bekannt geworden. Dieses sieht vor, die Reststoffe in einem Temperaturbereich von 450°C bis 550°C zu entgasen. Die aus diesem Prozess verbleibenden ganz oder teilweise verkohlten Reststoffe gelangen danach in einen Vergaserteil der Anlage, in welchem sie unter Zufuhr von Erdgas und Sauerstoff bei 1200°C bis 2000°C vergast werden. Die entstehenden Synthesegase werden danach in einem Nassverfahren gekühlt und nach verschiedenen Reinigungsstufen zur Energiegewinnung und mit einem Teilstrom zur Beheizung der Pyrolysezone verwendet. Nachteilig an der Anlage ist deren hohe Komplexität. Insbesondere aufgrund des hohen technischen Aufwands, der für das mit dieser Anlage durchführbare Verfahren erforderlich ist, scheinen nur grosse Anlagen ab ca. 100'000 Tonnen Reststoffe pro Jahr rentabel zu sein.Thus, various plant concepts have been proposed to win usable energy by means of a pyrolytic utilization of residues. One of the first concept plants became known under the name "Thermoselect". This envisages degassing the residues in a temperature range of 450 ° C to 550 ° C. The remaining wholly or partially charred residual from this process then pass into a carburetor part of the plant, in which they are gasified with supply of natural gas and oxygen at 1200 ° C to 2000 ° C. The resulting synthesis gases are then cooled in a wet process and used after various purification stages for energy and a partial flow for heating the pyrolysis zone. The disadvantage of the system is its high complexity. Especially because of Due to the high technical effort required for the process that can be carried out with this plant, only large plants with a volume of around 100,000 tonnes of residues per year seem to be profitable.
Ein weiteres, unter dem Namen Carbo-V-Verfahren, bekannt gewordenes Verfahren sieht vor, vorwiegend holzhaltige Reststoffe in einem ersten Reaktor durch partielle Oxidation in ihre flüchtigen und festen Bestandteile zu zerlegen. Die festen Bestandteile, vorwiegend kohlehaltiger Koks, werden aufgemahlen. In einer zweiten Stufe wird das entstandene, sehr teerhaltige Gas im oberen Teil einer Brennkammer nachoxidiert, während im unteren Teil der Brennkammer der Koksstaub in Vergasungrohgas umgewandelt wird. Dieses Gas wird zusammen mit dem Synthesegas der ersten Stufe mehrmals gekühlt und gereinigt. Das gereinigte Gas ist dann zur Erzeugung von Nutzenergie vorgesehen. An diesem Verfahren kann die aufwendige Nassreinigung als Nachteil gesehen werden. Auch die für dieses Verfahren erforderliche Anlage muss für einen wirtschaftlichen Betrieb relativ gross und komplex sein. Zudem ist dieses Verfahren im wesentlichen nur zur energetischen Verwertung von Holz vorgesehen.Another, under the name Carbo-V process, become known method provides to decompose mainly wood-containing residues in a first reactor by partial oxidation into their volatile and solid constituents. The solid constituents, predominantly carbonaceous coke, are ground. In a second stage, the resulting, very tar-containing gas is post-oxidized in the upper part of a combustion chamber, while in the lower part of the combustion chamber, the coke dust is converted into gasification gas. This gas is cooled and purified several times along with the first stage synthesis gas. The purified gas is then provided for generating useful energy. In this method, the complex wet cleaning can be seen as a disadvantage. The system required for this process must also be relatively large and complex for economical operation. Moreover, this process is essentially intended only for the energy recovery of wood.
Ein weiteres Konzept ist in der EP 0 874 881 B1 gezeigt. Hier sollen ausschliesslich Festbrennstoffe benutzt werden. Die Festbrennstoffe werden nach einer Pyrolyse in einer Pyrolysezone der Anlage, unter Zufuhr von katalysatorisch wirkenden Stoffen, einer Vergasung unterzogen. Die sowohl durch die Pyrolyse als auch durch die Vergasung gewonnenen Gase werden anschliessend verbrannt, wobei ein Teil der aus der Verbrennung gewonnenen Energie zunächst dafür genutzt wird, um die Pyrolysezone mit Strahlungswärme zu beheizen. Die Verbrennungsgase werden dann in einen in Strömungsrichtung der Gase hinter der Pyrolysezone liegenden anderen Teil der Anlage geleitet, um dort den in den Gasen verbliebenen Energieinhalt zu nutzen.Another concept is shown in EP 0 874 881 B1. Here only solid fuels should be used. The solid fuels are subjected to pyrolysis in a pyrolysis zone of the plant, with the supply of catalysing substances, a gasification. The gases obtained by both pyrolysis and gasification are then burned, with some of the energy recovered from the combustion being used first to heat the pyrolysis zone with radiant heat. The combustion gases are then passed into another part of the plant downstream of the pyrolysis zone in the flow direction of the gases in order to use the energy content remaining in the gases there.
An dieser Anlage kann als nachteilig empfunden werden, dass ein grosser Aufwand für die Isolation jener Anlagenteile erforderlich ist, in denen die Verbrennungsgase bei hohen Temperaturen geführt werden. Ausserdem hat sich gezeigt, dass dieses Anlagenkonzept nur dann zu wirtschaftlichen Ergebnissen führt, wenn damit vergleichsweise grosse Anlagen realisiert werden, beispielsweise in der Grössenordnung von grösser 10MW thermischer Leistung.At this plant can be considered disadvantageous that a great effort for the isolation of those parts of the system is required, in which the combustion gases are conducted at high temperatures. In addition, it has been shown that this system concept only leads to economic results if comparatively large systems are thus realized, for example of the order of magnitude of greater than 10 MW of thermal power.
In der DE-A-2651302 wird eine Anlage entsprechend dem Oberbegriff von Anspruch 1 offenbart, bei der die Gase zuerst einer Aussenfläche des Pyrolyserohres zugeführt werden, um dann über ein Leitungsmittel weit entfernt vom Pyrolyserohr zu einem Wärmetauscher zu gelangen. Erst der Wärmetauscher führt eine Umwandlung in eine Nutzenergieform, nämlich Wasserdampf, durch.In DE-A-2651302 a plant according to the preamble of claim 1 is disclosed, in which the gases are first fed to an outer surface of the pyrolysis tube in order then to pass via a conduit far from the pyrolysis tube to a heat exchanger. Only the heat exchanger performs a conversion into a useful energy form, namely water vapor.
In der WO-A-97/15641 wird ebenfalls eine Anlage offenbart, bei der die heissen Verbrennungsgase, die durch Entgasung und Pyrolyse erzeugt werden, in konventioneller Weise für eine Dampferzeugung genutzt werden können.WO-A-97/15641 also discloses a plant in which the hot combustion gases produced by degasification and pyrolysis can be used conventionally for steam generation.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine gattungsgemässe Anlage und ein Verfahren zu schaffen, die auch bei kleiner Anlagengrösse eine gute Energiebilanz ermöglichen.The invention is therefore an object of the invention to provide a generic system and a method that allow a good balance of energy even with small plant size.
Diese Aufgabe wird bei einer Anlage der eingangs genannten Art erfindungsgemäss dadurch gelöst, dass das verbrennende Gas und/oder das resultierende Rauchgas mittels eines Abschnittes des Leitungsmittels, und in Bezug auf ihre Strömungsrichtung, gleichzeitig mit der Vorbeiführung an der Pyrolysezone im wesentlichen auch zumindest an einem Abschnitt eines Wärmetauschers vorbeigeführt werden, wobei der Wärmetauscher in einem ersten Bereich thermische Energie der Gase aufnimmt und diese in einem zweiten Bereich an ein Medium der Wärmenutzungseinrichtung abgibt. Die Aufgabe wird ausserdem durch ein Verfahren gelöst, wie es in Anspruch 12 beschrieben ist.This object is achieved in a system of the type mentioned in the present invention that the combusting gas and / or the resulting flue gas by means of a portion of the conduit means, and with respect to their flow direction, at the same time with the passage to the pyrolysis substantially also at least one Section of a heat exchanger are passed, wherein the heat exchanger receives in a first region thermal energy of the gases and emits them in a second area to a medium of the heat utilization device. The object is also achieved by a method as described in
Bei erfindungsgemässen Anlagen ist somit vorgesehen, dass ein Abschnitt eines bei der Verbrennung entstehenden Stromes von heissen Verbrennungs- bzw. Rauchgasen nicht - wie im Stand der Technik - ausschliesslich nacheinander unterschiedlichen Verwertungszwecken zugeführt wird, sondern vorzugsweise bereits während der Verbrennung und unmittelbar danach im wesentlichen gleichzeitig sowohl zur Erwärmung der Pyrolysezone als auch zur Abgabe von thermischer Energie an einen Wärmetauscher genutzt wird.In systems according to the invention, it is thus provided that a portion of a stream of hot combustion or flue gases produced during combustion is not supplied, as in the prior art, exclusively to successive different recycling purposes, but preferably already during combustion and immediately thereafter substantially simultaneously is used both for heating the pyrolysis zone as well as for the release of thermal energy to a heat exchanger.
Im wesentlichen unabhängig davon, wie dies konkret konstruktiv realisiert ist, kann hierdurch zumindest ein erheblicher Teil der bisher erforderlichen Isolation entfallen. Im Gegenteil, erfindungsgemäss ist gerade vorgesehen, dass in dem Abschnitt der Leitungsmittel, in denen ein Wärmeübergang zur Pyrolysezone stattfindet, zusätzlich ein weiterer Wärmetransfer stattfinden soll, nämlich ein Wärmetransfer am Wärmetauscher. Anders als im Stand der Technik sollte dieser Teil der Leitungsmittel mit Vorteil eine besonders gute Wärmeleitfähigkeit aufweisen.Essentially regardless of how this is realized constructively concrete, thereby at least a significant part of the previously required isolation can be omitted. On the contrary, according to the invention is just provided that in the section of the conduit means in which a heat transfer to the pyrolysis takes place, in addition, a further heat transfer to take place, namely a heat transfer at the heat exchanger. Unlike in the prior art, this part of the conduit should advantageously have a particularly good thermal conductivity.
Es ist hierbei bevorzugt, dass durch eine Abstimmung des Wärmeübergangs am Wärmetauscher auf den Wärmeübergang zur Pyrolysezone vordefinierte physikalische Verhältnisse geschaffen werden. Hierdurch soll die in der Pyrolysezone herrschende Temperatur auf einen für die Pyrolyse günstigen Wert innerhalb eines bestimmten Temperaturbereichs sicher gehalten werden können. Dieser Temperaturbereich kann beispielsweise von 850°C bis 950°C betragen. Durch Kenntnis der Temperaturen der Rauchgase bzw. der verbrennenden Gase, deren Menge und der geometrischen Gestaltung der Leitungsmittel, der Pyrolyszone und des Wärmetauschers, können durch eine geeignete Materialwahl solche Verhältnisse eingestellt werden. Hierdurch steht für den Wärmetauschvorgang die in den Rauchgasen enthaltene Energiemenge zur Verfügung, die jene Energiemenge übersteigt, die zur Erhitzung der Pyrolysezone benötigt wird.It is hereby preferred that by a vote of the heat transfer at the heat exchanger on the heat transfer to the pyrolysis zone predefined physical conditions are created. This is intended to keep the temperature prevailing in the pyrolysis zone at a value which is favorable for the pyrolysis, within a certain temperature range. This temperature range may be, for example, from 850 ° C to 950 ° C. By knowing the temperatures of the flue gases or the combusting gases, their amount and the geometric design of the conduit, the pyrolysis zone and the heat exchanger, such conditions can be adjusted by a suitable choice of material. As a result, the amount of energy contained in the flue gases is available for the heat exchange process, which exceeds the amount of energy that is needed to heat the pyrolysis zone.
Es hat sich gezeigt, dass die Temperatur der Verbrennungsgase bei der Verbrennung bzw. unmittelbar danach in einem Bereich von ca. 1000°C bis 1200°C, vorzugsweise von 1050°C bis 1150°C und besonders bevorzugt ca. 1100°C, liegt, um einerseits gute Ergebnisse beim Pyrolysevorgang und andererseits eine ausreichende Energiemenge für die Erzeugung von Nutzenergie zur Verfügung zu haben. Dieser Temperaturbereich hat sich zudem als besonders vorteilhaft erwiesen, da bei diesen Temperaturen zum einen sicher keine Rekombination der Verbrennungs- bzw. Rauchgase zu Dioxinen und Furanen stattfindet. Zum anderen sind die Temperaturen hoch genug, um die Rauchgase über eine längere Strecke in den Leitungsmitteln zu führen, bevor sie auf Temperaturen abkühlen, bei denen solche Rekombinationen in massgeblichen Mengen zu befürchten wären.It has been found that the temperature of the combustion gases during combustion or immediately thereafter in a range of about 1000 ° C to 1200 ° C, preferably from 1050 ° C to 1150 ° C and more preferably about 1100 ° C, is located on the one hand to have good results in the pyrolysis process and on the other hand a sufficient amount of energy for the generation of useful energy available. This temperature range has also proved to be particularly advantageous because at On the one hand certainly no recombination of the combustion or flue gases to dioxins and furans takes place at these temperatures. On the other hand, the temperatures are high enough to lead the flue gases over a longer distance in the conduit means before they cool to temperatures at which such recombinations would be to be feared in significant quantities.
Durch die sofortige Nutzung der durch die Verbrennung frei werdenden thermischen Energie, sowohl für die Pyrolyse als auch für die Aufheizung eines Wärmetausch-Mediums der Wärmenutzungseinrichtung, treten bei erfindungsgemässen Anlagen besonders geringe Verlustenergien auf. Dies erhöht die Energiebilanz einer solchen Anlage in entscheidendem Masse und ermöglicht auch die Betreibung von bezüglich der Baugrösse und der gewonnenen Energiemenge kleinen Anlagen. Dieser Vorteil kann aber auch dazu genutzt werden, um bei gleicher Anlagengrösse wie bei einer herkömmlichen Anlage eine grössere nutzbare Energiemenge zu erzeugen.Due to the immediate use of the thermal energy released by the combustion, both for the pyrolysis and for the heating of a heat exchange medium of the heat utilization device, particularly low energy losses occur in systems according to the invention. This significantly increases the energy balance of such a system and also allows the operation of small systems in terms of size and the amount of energy gained. However, this advantage can also be used to generate a larger usable amount of energy with the same plant size as in a conventional system.
Um auf konstruktiv einfache und günstige Weise mit einem Abschnitt eines Volumenstroms an Rauchgasen gleichzeitig sowohl die Pyrolysezone als auch den Wärmetauscher zu erwärmen, kann in einer bevorzugten Ausführungsform zwischen einer ersten Begrenzungsfläche und einer der ersten Begrenzungsfläche gegenüberliegenden zweiten Begrenzungsfläche eines Abschnittes des Leitungsmittels ein Strömungsraum für die Gase ausgebildet sein. Hierbei sollte an die erste Begrenzungsfläche die Pyrolysezone angrenzen und die zweite Begrenzungsfläche Bestandteil des Wärmetauschers sein.In order to heat both the pyrolysis zone and the heat exchanger simultaneously in a structurally simple and favorable manner with a section of a volume flow of flue gases, in a preferred embodiment a flow space for the second boundary surface opposite a first boundary surface and a second boundary surface opposite the first boundary surface Be formed gases. In this case, the pyrolysis zone should adjoin the first boundary surface and the second boundary surface should be part of the heat exchanger.
Es hat sich als besonders günstig erwiesen, wenn die Pyrolysezone zumindest ein im wesentlichen längliches Rohr aufweist, das von einem ringförmigen Leitungsmittel umgeben ist, dessen Längserstreckung im wesentlichen parallel zur Längserstreckung des Pyrolyserohres verlaufen kann. Hierbei kann eine (äussere) Wand des Pyrolyserohres auch als innere Wand des Leitungsmittels fungieren, wodurch ein besonders guter Wärmetransfer in die Pyrolysezone möglich wird. Eine äussere Wand des Leitungsmittels kann hingegen als Wärmetauscher ausgebildet sein, wodurch ebenfalls ein besonders guter Wärmeübergang zum Wärmetausch-Medium mit sehr geringen Wärmeverlusten möglich wird. Dies ermöglicht auch, mit einem besonders geringen konstruktiven Aufwand eine erfindungsgemässe Anlage zu realisieren.It has proved to be particularly favorable when the pyrolysis zone has at least one substantially elongated tube which is surrounded by an annular conduit means, the longitudinal extension of which can extend substantially parallel to the longitudinal extent of the pyrolysis tube. in this connection For example, an (outer) wall of the pyrolysis tube can also function as an inner wall of the conduit means, whereby a particularly good heat transfer into the pyrolysis zone is possible. An outer wall of the conduit means, however, may be formed as a heat exchanger, whereby also a particularly good heat transfer to the heat exchange medium with very low heat losses is possible. This also makes it possible to realize an inventive system with a particularly low design effort.
In einer bevorzugten Ausführungsform sind das Pyrolyserohr und das Leitungsmittel in Bezug auf ihren Querschnitt jeweils kreisförmig ausgebildet, wobei das Leitungsmittel das Pyrolyserohr konzentrisch umgeben kann. In anderen Ausführungsformen können auch mehrere Pyrolyserohre in einem im Querschnitt ringförmigen Leitungsmittel angeordnet sein, wobei die Querschnittsformen des Leitungsmittels und der Pyrolyserohre im Hinblick auf gute Wärmeübergänge optimiert sein können. Grundsätzlich können die Querschnittsformen der Rohre nahezu beliebig gewählt sein.In a preferred embodiment, the pyrolysis tube and the conduit means are each circular in cross-section with the conduit means concentrically surrounding the pyrolysis tube. In other embodiments, a plurality of pyrolysis tubes can also be arranged in an annular cross-sectional conduit means, wherein the cross-sectional shapes of the conduit means and the pyrolysis tubes can be optimized with regard to good heat transfer. In principle, the cross-sectional shapes of the tubes can be chosen almost arbitrarily.
In einer weiteren bevorzugten Ausführungsform gibt der Wärmetauscher die Energie an einen Wasserkessel bzw. Boiler ab, in dem Wasserdampf erzeugt wird, der wiederum zur Erzeugung von einer nutzbaren Energieform, wie beispielsweise Wärme, Kälte oder Strom, verwendet werden kann. In Bezug auf einen guten Wärmeübergang und zur Vermeidung von Isolationsmaterial für die Leitungsmittel kann es hierbei von Vorteil sein, wenn die Leitungsmittel und damit auch der Wärmetauscher über zumindest einen Abschnitt der Leitungsmittel vollständig innerhalb des Wasserkessels angeordnet sind. Dies kann zur Konsequenz haben, dass sich auch die Pyrolysezone, zumindest über einen Abschnitt entlang eines Förderweges des Brennstoffes durch die Pyrolysezone, vollständig innerhalb des Wärmetauschers und damit auch des Wärmetausch-Mediums befindet.In a further preferred embodiment, the heat exchanger discharges the energy to a boiler in which water vapor is generated, which in turn can be used to produce a usable form of energy, such as heat, cold or electricity. In terms of good heat transfer and to avoid insulation material for the conduit means, it may be advantageous if the conduit means and thus also the heat exchanger are arranged over at least a portion of the conduit means completely within the kettle. This may have the consequence that the pyrolysis zone, at least over a section along a conveying path of the fuel through the pyrolysis zone, is also located completely within the heat exchanger and thus also the heat exchange medium.
In einer weiteren bevorzugten Ausführungsform kann die erfindungsgemässe Anlage mit einem Regelkreis versehen sein, bei dem ein oder mehrere Parameter des aus dem Kessel austretenden Wasserdampfes gemessen werden. Diese Messergebnisse können dazu benutzt werden, die Zuführmenge an Reststoffen bzw. Brennstoff in das Pyrolyserohr zu regeln, damit die Werte der Dampfparameter als im wesentlichen konstant einstellbar sind.In a further preferred embodiment, the system according to the invention can be provided with a control circuit in which one or more parameters of the water vapor emerging from the boiler are measured. These measurement results can be used to control the feed rate of fuel into the pyrolysis tube so that the values of the vapor parameters are set to be substantially constant.
Um mit besonders geringem konstruktiven und fertigungstechnischen Aufwand unterschiedliche Anlagen nach dem erfindungsgemässen Prinzip, beispielsweise hinsichtlich der Grösse der Anlagen, herstellen zu können, sollten diese modular aufgebaut sein. Das bedeutet, dass die Anlagen mit vordefinierten Schnittstellen versehen sein können, an denen Anlagenkomponenten durch vorzugsweise lösbare Verbindungen miteinander verbindbar sind. Hierdurch ist es auch möglich, bestehende Anlagen schnell und mit wenig Aufwand an geänderte Bedingungen anzupassen.In order to be able to produce different systems according to the inventive principle, for example with regard to the size of the systems, with a particularly low constructional and production engineering effort, these systems should have a modular construction. This means that the systems can be provided with predefined interfaces to which system components can be interconnected by preferably detachable connections. This also makes it possible to adapt existing systems quickly and with little effort to changing conditions.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Figurenbeschreibung und den Figuren.Further preferred embodiments of the invention will become apparent from the dependent claims, the description of the figures and the figures.
Die Erfindung wird anhand eines in den Figuren schematisch dargestellten Ausführungsbeispiels näher erläutert; es zeigen:
- Fig. 1
- ein grundsätzlicher Aufbau einer möglichen erfindungsgemässen Anlage;
- Fig. 2
- eine Querschnitts-Darstellung eines Ringbrenners der erfindungsgemässen Anlage;
- Fig. 3
- eine Längsschnitt-Darstellung einer weiteren möglichen Ausführungsform eines Ringbrenners.
- Fig. 4
- einen Querschnitt entlang der Linie X von Fig. 1 durch ein Pyrolyserohr und einen Teil eines Wärmetauschers.
- Fig. 1
- a basic structure of a possible inventive system;
- Fig. 2
- a cross-sectional view of a ring burner of the inventive system;
- Fig. 3
- a longitudinal sectional view of another possible embodiment of a ring burner.
- Fig. 4
- a cross-section along the line X of Fig. 1 by a pyrolysis tube and a part of a heat exchanger.
In Fig. 1 ist eine erfindungsgemässe Anlage zur Umwandlung von Reststoffen in Energie gezeigt. Die Anlage weist eine Eingabestelle 1 auf, in der Reststoffe 2 in ein Zwischensilo 3 der Anlage gegeben werden können. Das Zwischensilo 3 dient zur Zwischenlagerung von Reststoffen 2, bevor diese der nachfolgend näher beschriebenen Verwertung zugeführt werden.In Fig. 1, an inventive plant for the conversion of residues is shown in energy. The plant has an input point 1, can be given in the
An ein unteres trichterförmiges Ende des Zwischensilos schliesst sich ein in einer Fallleitung angeordnetes Förderrad 4 an. Das Förderrad 4 und/oder die im Silo 3 gelagerten Reststoffe 2 schliessen an dieser Seite der Anlage letztgenannte im wesentlichen luftdicht ab. Die Fallleitung mündet im Bereich eines Endes eines horizontal ausgerichteten Rohres 5 in letztgenanntes. In dem Rohr 5 ist eine rotatorisch angetriebene Förderschnecke 6 angeordnet, die die Reststoffe 2 in den Bereich des anderen Endes des Rohres 5 fördert. Hier ist in dem Rohr 5 eine Öffnung vorhanden, durch die die Reststoffe über eine weitere Fallleitung 7 in einen Bereich eines vorderen Endes einer als Pyrolyserohr 8 ausgebildeten Pyrolysezone gelangen. Auch im Pyrolyserohr 8 ist eine rotatorisch antreibbare Förderschnecke 9 angeordnet, mit der die Reststoffe 2 von einer Eintrittsöffnung 8a bis zu einer am anderen Ende des Pyrolyserohres vorgesehenen unteren Austrittsöffnung 8b gefördert werden. Das Pyrolyserohr 8 ist gegen einen Lufteintritt abgedichtet. Durch den vorzugsweise im wesentlichen anaeroben Pyrolysevorgang entstehen im Inneren des Pyrolyserohres Temperaturen von ca. 850° bis ca. 950°C, vorzugsweise ca. 900°C.At a lower funnel-shaped end of the intermediate silo, a arranged in a downpipe conveyor 4 follows. The feed wheel 4 and / or stored in the silo 3
Das letztgenannte Ende des Pyrolyserohres mündet in einen siloähnlichen Behälter 10, in dem unterhalb des Pyrolyserohres 8 eine Vergasungskammer 11 und oberhalb davon eine Gasmischkammer 12 ausgebildet ist. Ebenso wie das Pyrolyserohr 8 gehört auch die Vergasungskammer 11 zu einem Reaktionsteil der Anlage. Die Reststoffe 2, welche das Pyrolyserohr 8 und eine im wesentlichen anaerobe Pyrolyse durchlaufen haben, fallen somit aufgrund der Schwerkraft durch die Austrittsöffnung 8b des Pyrolyserohres 8 nach unten in die mit einem unteren trichterförmigen Ende versehene Vergasungskammer 11. Das trichterförmige Ende mündet schliesslich in ein weiteres Rohr 14 mit Förderschnecke 15, durch welche die Endprodukte des Vergasungsprozesses, im wesentlichen Asche oder Schlacke, in vorbestimmter Menge und Zeit aus der Anlage entnommen werden können. Durch jeweils einen Pfeil 16, 17, 18 sind drei mögliche Einleitungen angedeutet, mit denen alternativ oder kumulativ Wasserdampf (mit einer Temperatur von ca. 300°C), rezikliertes Abgas (mit einer Temperatur von ca. 200°C) und/oder ein auf ca. 200°C vorgeheiztes Sauerstoff/Stickstoff-Gemisch in die Vergasungskammer eingeführt werden kann. Hierdurch ist eine Vergasung der bereits pyrolysierten Rest- bzw. Brennstoffe mit Temperaturen von ca. 750°C bis 850°C möglich, wodurch beispielsweise die Gase Wasserstoff (H2) und Kohlenmonoxid (CO) freigesetzt werden können.The latter end of the pyrolysis tube opens into a silo-
Die Vergasungskammer 11 ist mit der Austrittsöffnung 8b des Pyrolyserohres 8 und beidseitig hiervon angeordneten Umleitungskanälen um das Pyrolyserohr mit der Gasmischkammer 12 verbunden. Die im Pyrolyserohr entstehenden Gase, beispielsweise Methan und Kohlenmonoxid, können somit durch die Austrittsöffnung 8b nach oben ebenfalls in die Gasmischkammer 12 entweichen.The gasification chamber 11 is connected to the outlet opening 8b of the
Über eine an der Gasmischkammer 12 angeschlossene Zuleitung 20 ist die Gasmischkammer mit einer einen Ringbrenner aufweisenden Brenneinrichtung 21 verbunden. Die Brenneinrichtung 21 ist hierbei über den vollen Umfang des Pyrolyserohres 8 um letztgenanntes herum angeordnet. Der in Fig. 2 in einem ersten Ausführungsbeispiel in einer Querschnitts-Darstellung detaillierter gezeigte, seitlich unmittelbar neben der Gasmischkammer angeordnete Ringbrenner weist gleichmässig am Umfang des Leitungsmittels verteilt mehrere Brenner 22, beispielsweise acht Brenner - zumindest jedoch einen Brenner, auf. In nicht näher dargestellter Weise ist jeder der Brenner 22 zur Gasversorgung mit der Zuleitung 20 verbunden. Die Brenner 22 können dabei so ausgerichtet sein, dass das von ihnen jeweils ausströmende und zunächst in einer Flamme 24 verbrennende Gas eine vorbestimmte Strömungsrichtungskomponente 25 bzw. eine Flammenrichtung aufweist, die tangential zum Pyrolyserohr 8 verläuft, so dass das Pyrolyserohr möglichst gleichmässig erwärmt wird. In Fig. 2 ist gezeigt, dass damit eine Ausrichtung der Flamme 24 jedes Brenners 22 auf die Flamme 24 des am Umfang nachfolgenden Brenners 22 ermöglicht wird. Hierdurch kann sicher und auch auf konstruktiv einfache Weise erreicht werden, dass sich die einzelnen Brenner 22 des Ringbrenners gegenseitig zünden.About a connected to the
Der von den Brennern 22 erzeugte Strom an noch verbrennenden Gasen und durch die Verbrennung bereits entstandenen Rauchgasen kann vorzugsweise auch eine Strömungsrichtungskomponente aufweisen, die parallel zur Längserstreckung 8c des Pyrolyserohres 8 - und zwar entgegengesetzt zur Durchlaufrichtung der Brennstoffe 2 im Pyrolyserohr - verläuft. In der Längsschnittdarstellung von Fig. 3 ist eine solche Ausführungsform einer Brenneinrichtung 21 dargestellt, bei der die Flammenrichtung 25 der einzelnen Brenner 22 schräg gestellt und auf die Längsachse 8c des Pyrolyserohres gerichtet sind. Wie insbesondere in dieser Darstellung zu erkennen ist, ist ein nachfolgend noch näher beschriebenes Leitungsmittel 26 an seinem Ende 26a im Bereich der Brenneinrichtung 21 geschlossen.The stream of still combusting gases produced by the
In den Fig. 2 und 3 sind Extrempositionen der einzelnen Brenner 22 gezeigt. So sind die Brenner 22 in Fig. 2 vollständig tangential zum Pyrolyserohr 8 ausgerichtet, wobei die Ausrichtung der Flammen 24 keine Komponente parallel zur Längsachse 8c des Pyrolyserohres aufweist. In Fig. 3 hat hingegen die Richtung der Flammen 24 keine tangentiale Komponente. Hierdurch liegt die Flammenrichtung 25 in jeweils einer Schnittebene durch die Längsachse 8c des Pyrolyserohrs. In anderen, nicht gezeigten Ausführungsformen, können die einzelnen Brenner der Brenneinrichtung auch jede beliebige Position zwischen den in den beiden Figuren gezeigten Extrempositionen einnehmen, die beispielsweise durch Schwenkung der in Fig. 2 gezeigten Brenner um einen Winkel kleiner 90° erreicht werden kann.FIGS. 2 and 3 show extreme positions of the
Wie Fig. 1 entnommen werden kann, ist im Umfangsbereich des Ringbrenners ein Start-/Stützbrenner 27 vorgesehen, mit dem der Ringbrenner einerseits gezündet werden kann. Hierzu kann die vom Start-/Stützbrenner 27 erzeugte (nicht dargestellte) Flamme auf zumindest einen der Brenner 22 des Ringbrenners gerichtet sein. Andererseits kann der Start-/Stützbrenner 27 auch genutzt werden, wenn vom Ringbrenner zu geringe Energiemengen geliefert werden. Der Start-/Stützbrenner 27 kann von einer externen Brennstoffversorgung gespeist werden.As can be seen in Fig. 1, a start /
Im Ausführungsbeispiel der Fig. 1 und 2 kann der Ringbrenner an einem Ende des Leitungsmittels 26 in dieses integriert sein. Das Leitungsmittel 26 kann zunächst als im Querschnitt ringförmiges, im wesentlichen geradlinig verlaufendes Rohr 28 ausgebildet sein. Das ringförmige Rohr 28 ist hierbei konzentrisch um das Pyrolyserohr 8 angeordnet. Hierdurch umgibt das konzentrische Rohr 28 über seine gesamte Länge das Pyrolyserohr 8, wobei die Längsachsen der beiden Rohre identisch sind. Um einen guten Wärmeübergang vom ringförmigen Rohr zum Pyrolyserohr zu ermöglichen, weisen diese eine gemeinsame Rohrwand 29 aus einem Material mit guter Wärmeleitfähigkeit auf. Hierfür kommen vor allem metallische Werkstoffe, wie beispielsweise legierter Stahl und Stahlguss, in Frage.In the embodiment of FIGS. 1 and 2, the
Das ringförmige Rohr 28 geht an einem der Brenneinrichtung 21 gegenüberliegenden Ende in einen ersten Krümmungsbereich 30 mit einem Umlenkungswinkel von 180° über. Im Krümmungsbereich 30 fächert sich das eine Volumen des Leitungsmittels in mehrere einzelne geradlinig und parallel sowohl zueinander als auch zum ringförmigen Rohr 28 verlaufende Rohre auf. Aus Vereinfachungsgründen ist in Fig. 1 diese Mehrzahl an Rohren als nur ein einziges Rohr 31 dargestellt. Durch die Auffächerung kann insgesamt die Fläche vergrössert werden, an der ein Wärmeübergang stattfinden kann. An einem dem ersten Krümmungsbereich 30 gegenüberliegenden Ende der Rohre 31 befindet sich ein zweiter Krümmungsbereich 32. Auch hier wird das Leitungsmittel um 180° umgelenkt und in eine nochmals vergrösserte Anzahl von einzelnen parallel zueinander verlaufenden Rohren 33 (ebenfalls als ein einziges Rohr dargestellt) aufgeteilt. An diese schliesst sich in Strömungsrichtung dann ein dritter Krümmungsbereich 34 an, indem wiederum die Anzahl der einzelnen Rohre erhöht wird. Vom dritten Krümmungsbereich 34 verläuft das Leitungsmittel zu einem sogenannten Quenching-Mittel 36, das zur Schockabkühlung der Rauchgase vorgesehen ist.The
Wie aus Fig. 1 hervorgeht, befindet sich der zuvor beschriebene meanderförmige Abschnitt (Bezugszeichen 28 bis 34) des Leitungsmittels 26 in etwa von der Brenneinrichtung 21 aus bis zum dritten Krümmungsbereich 34 in einem mit Wasser gefüllten geschlossenen Kessel 37. Dieser Abschnitt des Leitungsmittels und der Kessel 37 bilden somit einen sogenannten Dreizugkessel, der zur Wärmerückgewinnung dient. An einem oberen Ende des Kessels 37 ist an diesen eine Wasserdampfleitung 38 angeschlossen. Durch diese wird der aufgrund der Erwärmung des Wassers entstehende Wasserdampf zu einer Einrichtung 39 geführt, in welcher der Energieinhalt des Wasserdampfes für die Erzeugung von Nutzenergie, beispielsweise Strom, Wärme oder Kälte, eingesetzt wird. Der genannte Abschnitt (28 bis 34) des Leitungsmittels 26, insbesondere der in Fig. 4 näher dargestellte (äussere) Mantel des ringförmigen Rohres 28, dient somit als Wärmetauscher 28a, mit dem ein Teil des Energieinhaltes der im Rohr 28 geführten verbrannten Gase an das Wasser des Dreizugkessels abgegeben wird. Hierbei nimmt der Wärmetauscher 28a an einer Innenfläche 40 des Rohres 28 von den heissen Gasen thermische Energie auf und gibt sie an einer Aussenfläche 41 des Rohres 28 an das Wasser ab. Der jeweils gleiche Abschnitt des Volumenstroms der Gase gibt gleichzeitig hierzu an einer Aussenfläche 42 der Rohrwand 29 einen anderen Teil seiner thermischen Energie an das Pyrolyserohr 8 ab. Dieser Teil der thermischen Energie kann über eine Innenfläche 43 der Rohrwand 29 durch Strahlungswärme oder durch Wärmetransfer zur Erhitzung des Inhalts des Pyrolyserohres genutzt werden.As is apparent from Fig. 1, the previously described meandering portion (
Mit der in Fig. 1 mit 36 bezeichneten Quenching-Einrichtung wird das Rauchgas innerhalb sehr kurzer Zeit, beispielsweise innerhalb von 0,2 sec. von ca. 450°C auf ca. 200°C, abgekühlt. Hierzu kann beispielsweise Wasser in eine Kammer eingespritzt werden, durch die auch die Rauchgase durchgeführt werden. Durch das Quenching-Verfahren werden Rekombinationen der Rauchgase zu Dioxinen oder Furanen vermieden bzw, diese höchstens in einem unbedenklichen Masse zugelassen. In einem weiteren Abschnitt 44 der Leitungsmittel 26 gelangen die so gekühlten Rauchgase zu einer an sich bekannten Rauchgasreinigungs-Einrichtung 45. Diese weist Filter auf, mit denen Partikel aus dem Rauchgasstrom entfernt werden. Das Filtrat, im wesentlichen Filterstaub, wird in einem Behälter 46 für einen nachfolgenden Abtransport gesammelt.With the designated in Fig. 1 with 36 quenching means the flue gas within a very short time, for example within 0.2 sec. From about 450 ° C to about 200 ° C, cooled. For this purpose, for example, water can be injected into a chamber through which the flue gases are carried out. The quenching process avoids recombinations of the flue gases to dioxins or furans or, at the most, allows them to be harmless enough. In a
Das somit gereinigte Rauchgas verlässt nun die Rauchgasreinigungs-Einrichtung 45 und gelangt über einen weiteren Abschnitt 48 des Leitungsmittels zu einem als Saugzug-Ventilator 49 ausgebildeten Unterdruck-Mittel. Der Saugzug-Ventilator 49 fördert zum einen den Strom des gereinigten Rauchgases zu einer als Schornstein 50 vorgesehene Rauchgasauslassstelle. Der Saugzug-Ventilator 49 erzeugt zum anderen an seiner Einbaustelle im Leitungsmittel 26 einen Unterdruck, der in Bezug auf eine der Strömungsrichtung entgegengesetzte Richtung bis zum Zwischensilo 3 wirken kann. Der Unterdruck bewirkt einen im wesentlichen konstanten Volumenstrom der Rauchgase durch die gegen Lufteintritt abgeschlossenen Leitungsmittel 26. Es kann auch vorgesehen sein, dass der für die Verbrennung erforderliche Sauerstoff im Bereich der Brenneinrichtung 21 alleine aufgrund des auch in der Brenneinrichtung wirkenden Unterdrucks oder zumindest mit dessen Unterstützung angesaugt wird. Ebenso kann der Unterdruck zur Förderung des Gases aus der Gasmischkammer 12 zur Brenneinrichtung 21 genutzt werden.The thus cleaned flue gas now leaves the flue gas cleaning device 45 and passes over another
Die Anlage kann zudem mit einer zeichnerisch nicht dargestellten Regelungseinrichtung versehen sein, mit der Parameter des aus dem Kessel 37 austretenden Wasserdampfes als im wesentlichen konstant eingestellt werden. Hierzu können im Bereich des Dampfaustritts Parameter des Dampfes, wie Druck, Menge und Temperatur, gemessen werden, weshalb an ein oder mehreren Stellen in der Dampfleitung 38 Temperatur-, Mengen- und Druckfühler vorhanden sein können.The system may also be provided with a control device, not shown in the drawing, with the parameters of the emerging from the
Anhand der Messwerte kann dann auf die Menge der eingetragenen Stoffe in das Pyrolyserohr 8 Einfluss genommen werden. So kann beispielsweise bei fallenden oder bereits zu geringen Werten der Dampfparameter der Eintrag an Reststoffen in vorbestimmter Weise erhöht werden. Ebenso kann vorgesehen sein, dass zusätzlich auch der Start-/Stützbrenner eingeschaltet wird.Based on the measured values, it is then possible to influence the amount of the substances introduced into the
Durch diese Regelung kann in Abhängigkeit der bei einer erfindungsgemässen Anlage konkret vorhandenen Bedingungen, beispielsweise der Wärmeübergänge und den Mengen an zu pyrolysierendem Material, erreicht werden, dass die Verbrennungstemperatur der Gase näherungsweise von 1050°C bis 1150°C beträgt. Vorzugsweise wird die Temperatur innerhalb dieses Bereichs möglichst konstant gehalten, beispielsweise bei ca. 1100°C. Hierdurch wird ermöglicht, auch im Pyrolyserohr in einem Bereich von 850°C bis 950°C möglichst konstante Temperaturbedingungen zu schaffen, um die pro Zeiteinheit an der Dampfauslassstelle zur Verfügung stehende nutzbare Energiemenge als möglichst konstant einzustellen.As a result of this regulation, depending on the concretely existing conditions in a system according to the invention, for example the heat transfer and the amounts of material to be pyrolyzed, it can be achieved that the combustion temperature of the gases is approximately from 1050.degree. C. to 1150.degree. Preferably, the temperature is kept as constant as possible within this range, for example at about 1100 ° C. This makes it possible to provide in the pyrolysis tube in a range of 850 ° C to 950 ° C as constant temperature conditions as possible to adjust the available per unit time at the Dampfauslassstelle usable amount of energy as constant as possible.
Claims (18)
- Installation for producing energy, in which the pyrolytic utilization of carbon-containing fuels takes place, comprising
a reaction component (8) provided for the utilization of fuel which is provided with at least one pyrolysis zone in which a gas can be produced by means of pyrolysis,
at least one combustion device (21) with which the gas produced in the pyrolysis is combustible with input of oxygen, whereby flue gas is formed,
delivery means (20) for supplying gas from the pyrolysis zone into at least one combustion device (21) ,
a transfer installation (26) in which the combustion gas and the flue gas resulting from it are feedable from the combustion device (21) to a gas output point, wherein with the transfer installation the combustion gas and/or the resulting flue gas can be led past the pyrolysis zone, in order to use the thermal energy produced by the combustion for heating the pyrolysis zone,
a heat recovery device (39) with which at least one part of the thermal energy liberated from the installation by the combustion is transformable by use of a heat exchanger (28a) into a useful energy form.
characterized in that,
the heat recovery device (39) is arranged so that the combustion gas and/or the resulting flue gas is led in relation to the flow direction by means of a section of the transfer installation (26), essentially simultaneously with being conducted around the pyrolysis zone (8) also past at least a section of a heat exchanger (28a) whereby the heat exchanger (28a) absorbs thermal energy of the gases in a first section (40) and releases it in a second section (41) to a medium of the heat recovery device (39). - Installation according to claim 1, characterized in that between a first boundary area and a second boundary area lying opposite the first boundary area of a section of the transfer installation (26) a flow space for the gases is formed, wherein the pyrolysis zone (8) abuts the first boundary area and the second boundary area is a component of heat exchanger (28a).
- Installation according to one or both of the preceding claims, characterized in that, at least the section of the transfer installation (26) is formed as an annular pipe (28), which surrounds the pyrolysis zone (8) and is an outer wall (29) of the annular pipe (28) component of the heat exchanger (28a).
- Installation according to one or more of the preceding claims 1 through 3, characterized in that the section of the heat transfer installation (26) is arranged so that at least one component of the flow direction of the gas runs parallel to the longitudinal extension of the pyrolysis zone (8).
- Installation according to claim 4, characterized in that at least the component of the flow direction is aligned substantially opposite to a flow direction of fuel in the pyrolysis zone.
- Installation according to one or more of the preceding claims, characterized by a gasification zone in the region of an end of the pyrolysis zone, in which by feeding in oxygen and/or oxygen-containing materials gasification of already pyrolized fuels takes place.
- Installation according to claim 6, characterized in that the gas from the pyrolysis zone is fed with the feeding-in means to the combustion device together with the gas produced in the gasification zone.
- Installation according to claim 7, characterized in that in relation to the flow direction of the flue gas between the heat exchanger and the gas outlet point a reduced pressure means, for production of a reduced pressure in the heat transfer installation is arranged.
- Installation according to claim 8, characterized in that the reduced pressure means is constructed as a suction draft ventilator.
- Installation according to one or more of the preceding claims, characterized in that the heat exchanger is formed as a multi-pass boiler, especially as a two- or three-pass boiler.
- Installation according to one or more of the preceding claims, characterized by a modular structure, in which functional modules of the installation can be fastened to the installation by detachable connections and are removable from the installation by detachment of the connections.
- Method for producing energy, in which a pyrolytic utilization of carbon-containing fuels takes place, comprising
an entry for fuel materials into at least one pyrolysis zone (8), in which a pyrolysis may be carried out.
a combustion of the gases produced by means of the pyrolysis by feeding of oxygen, whereby flue gas is produced,
another piping of the resulting flue gas from the combustion device (21) towards a gas outlet point, wherein by means of a heat transfer installation (26) the burning gas and/or the resulting flue gas is feedable past the pyrolysis zone (8),in order to use the thermal energy produced from the combustion device for heating the pyrolysis zone (8), and the gas is feedable to a heat recovery device (28), where at least one part of the freely developing thermal energy from the combustion is convertible into a useful deliverable energy form by utilization of a heat exchange process,
characterized in that
a stream of combustion gas and/or the resulting flue gas is led past in the flow direction in a section of the heat transfer installation essentially simultaneously at the pyrolysis zone (8) and at least one section of a heat exchanger, wherein the heat exchanger (28a) absorbs the thermal energy of the gas in an initial section and this is released in a second section to a medium of the heat recovery device (28). - Method according to claim 12, characterized in that the flue gases in the initial section of the heat transfer installation at the pyrolysis zone as well as also at the heat exchanger are led past and flow in a second section exclusively along to the heat exchanger.
- Method according to one or both of the previous claims 12 and 13, characterized in that the medium is water and steam is produced through the heat exchange process.
- Method according to one or more of the previous claims 12 through 14, characterized in that in the heat transfer installation a reduced pressure is produced, which is used to produce a flow of the flue gases.
- Method according to claim 15, characterized in that the reduced pressure is used for feeding the gases provided for the combustion to a point in the installation at which the combustion is carried out.
- Method according to one or more of the preceding claims 12 through 16, characterized in that the fuels after passing through the pyrolysis zone are carried over into a gasification chamber and there with fed-in oxygen or oxygen-containing materials gas production is carried out by means of gasification.
- Method according to claim 12, characterized in that by means of a control step, in which one of the dependant parameters of the heat exchange process is measured and based on this measurement the input of fuels into the installation is varied.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH683012001 | 2001-04-12 | ||
CH6832001 | 2001-04-12 | ||
PCT/CH2002/000202 WO2002083815A1 (en) | 2001-04-12 | 2002-04-11 | Installation and method for producing energy using pyrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1377649A1 EP1377649A1 (en) | 2004-01-07 |
EP1377649B1 true EP1377649B1 (en) | 2006-06-21 |
Family
ID=4528642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02708128A Expired - Lifetime EP1377649B1 (en) | 2001-04-12 | 2002-04-11 | Installation and method for producing energy using pyrolysis |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1377649B1 (en) |
AT (1) | ATE331011T1 (en) |
DE (1) | DE50207297D1 (en) |
WO (1) | WO2002083815A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR063267A1 (en) | 2006-10-13 | 2009-01-14 | Proterrgo Inc | METHOD AND APPLIANCE FOR GASIFICATION BY ORGANIC WASTE LOTS |
CN102449123B (en) * | 2009-04-17 | 2014-08-20 | 普罗特高公司 | Method and apparatus for gasification of organic waste |
CN103087783B (en) * | 2012-08-06 | 2014-02-26 | 山西鑫立能源科技有限公司 | Device for exporting, condensing, recycling and purifying raw gas in coal pyrolysis furnace |
CN102786951B (en) * | 2012-08-06 | 2014-03-12 | 山西鑫立能源科技有限公司 | Crude gas guiding device for coal pyrolyzing furnace |
ITRO20130005A1 (en) * | 2013-04-04 | 2014-10-05 | Luca Lazzarin | PYROLYTIC GASIFICER FOR SIGMA BIOMASS |
CN103232864B (en) * | 2013-04-10 | 2014-10-08 | 山西鑫立能源科技有限公司 | Coal gangue pyrolysis gasification raw gas export apparatus |
CN103662514B (en) * | 2013-11-07 | 2015-10-28 | 潘老省 | The method of a kind of pair of pond garbage storage tank and garbage disposal |
CN104819471A (en) * | 2015-05-27 | 2015-08-05 | 苏州科锐恒机械科技有限公司 | Garbage rapid incinerator |
WO2020176917A1 (en) * | 2019-03-06 | 2020-09-10 | Next Generation Elements Gmbh | Method for recovering at least one recyclable material contained in a biomass |
AT522257A1 (en) * | 2019-03-06 | 2020-09-15 | Next Generation Elements Gmbh | Process for the recovery of at least one valuable substance contained in a biomass |
WO2024161283A1 (en) * | 2023-02-03 | 2024-08-08 | Pfg-Hybrid Srl | Syngas production plant |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2651302C3 (en) * | 1976-05-12 | 1981-07-09 | PLS Gesellschaft für Pyrolyse-Müllverwertungsverfahren mbH, 8000 München | Device for generating distillation gas from waste |
GB1597517A (en) * | 1977-01-07 | 1981-09-09 | Arcalon Gen Petroleum | Process and apparatus for the pyrolysis of refuse |
DE69613402T2 (en) * | 1995-10-26 | 2002-05-02 | Compact Power Ltd., London | COATING DEVICE FOR A CONTINUOUS PYROLYSIS AND GASIFICATION DEVICE AND DEVICE |
-
2002
- 2002-04-11 AT AT02708128T patent/ATE331011T1/en active
- 2002-04-11 EP EP02708128A patent/EP1377649B1/en not_active Expired - Lifetime
- 2002-04-11 DE DE50207297T patent/DE50207297D1/en not_active Expired - Lifetime
- 2002-04-11 WO PCT/CH2002/000202 patent/WO2002083815A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
WO2002083815A1 (en) | 2002-10-24 |
EP1377649A1 (en) | 2004-01-07 |
ATE331011T1 (en) | 2006-07-15 |
DE50207297D1 (en) | 2006-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006007458B4 (en) | Method and apparatus for gasifying carbonaceous material and apparatus for generating electrical energy | |
DE2927240C2 (en) | Method and device for gasifying lumpy fuels with pre-carbonization and cracking of the carbonization gases in the gas generator | |
CH615215A5 (en) | ||
CH631479A5 (en) | METHOD FOR IMPLEMENTING WASTE BY PYROLYSIS AND DEVICE FOR IMPLEMENTING IT. | |
EP2563881B1 (en) | Method for gasifying biomass | |
EP1377649B1 (en) | Installation and method for producing energy using pyrolysis | |
EP1950272A1 (en) | Method and device for thermal conversion of pellets or wood chippings | |
AT519471B1 (en) | Verkohlungsanlage | |
EP2377911A2 (en) | Method and device for creating fuel gas from a solid fuel | |
EP2641958B1 (en) | Biomass gasifier | |
EP2663742A2 (en) | Method and system for the recovery of energy from biomass and combustible waste, in particular renewable resources, and for carbonation | |
EP0767342B2 (en) | Process for disposal of irregular waste | |
EP2375152A2 (en) | Device and method for generating hot gas with integrated heating of a heat distribution medium | |
EP0360052B1 (en) | Pyrolysis reactor for the thermal disposal of waste | |
EP0482306B1 (en) | Method and device for the combustion of wood chips generating fumes low in noxious substances under continuously controllable firing power | |
DE102004008621A1 (en) | Transportable or stationary hearth-type furnace reactor, to transform solid and paste organic materials to processed gas, comprises cubic reactor, vapor inlet, a chain conveyor, a cover with passages and a supporting flame mechanism | |
DE4230311C1 (en) | Process and incinerator for incinerating waste | |
WO2003033623A1 (en) | Method for the production of current from material containing carbon | |
DE102007017859A1 (en) | Double-walled direct current gasifier for organic components and water, has gas and/or vapor and/or combustion medium supplying devices arranged over each other in plane or multiple planes | |
DE102006061583A1 (en) | Pressurized combustion chamber integrated into gas turbine plant for power generation, combines gasification, main and secondary firing, coke combustion and waste heat recovery | |
DE102006007457B4 (en) | Method and apparatus for producing gas from carbonaceous material | |
EP2522707A2 (en) | Device for creating a flammable gas mixture | |
DE19925011C2 (en) | Process for the thermal disposal of high-calorific fractions from sorted waste and / or residues in fossil-fired power plants | |
DE2622930C2 (en) | Reactor for carrying out thermal effects on compressed or wrapped fuels of organic origin | |
EP2675872A1 (en) | Generating carbon and combustible gases from brown coal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031017 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060621 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50207297 Country of ref document: DE Date of ref document: 20060803 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060921 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061002 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: R. A. EGLI & CO. PATENTANWAELTE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061121 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EN | Fr: translation not filed | ||
26N | No opposition filed |
Effective date: 20070322 |
|
BERE | Be: lapsed |
Owner name: GAUTSCHI, ULRICH Effective date: 20070430 Owner name: FENNER, HANS RUDOLF Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20180419 Year of fee payment: 17 Ref country code: IT Payment date: 20180423 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190719 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 331011 Country of ref document: AT Kind code of ref document: T Effective date: 20190411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190719 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190730 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190411 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50207297 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200411 |