EP0624206A1 - Materiau conducteur de haute durete et procede de fabrication de ce materiau. - Google Patents
Materiau conducteur de haute durete et procede de fabrication de ce materiau.Info
- Publication number
- EP0624206A1 EP0624206A1 EP93904133A EP93904133A EP0624206A1 EP 0624206 A1 EP0624206 A1 EP 0624206A1 EP 93904133 A EP93904133 A EP 93904133A EP 93904133 A EP93904133 A EP 93904133A EP 0624206 A1 EP0624206 A1 EP 0624206A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conductive material
- oxide
- high hardness
- material according
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
Definitions
- the present invention relates to a conductive material of high hardness and its manufacturing process.
- connection elements In the field of electrical contacts used in connection technology, in mobile relays, etc., we have long sought to make contacts susceptible due to their hardness, to function very long time even under difficult conditions.
- the materials used to produce these connection elements or the contacts of the relays must have very good physical and chemical inalterability properties, great hardness and of course good electronic conductivity properties.
- the object of the invention is to remedy these drawbacks and to produce a material of high hardness, of great chemical inertness and of good electronic conductivity, which can be used for example as an electrical contact.
- the invention relates to a conductive material of high hardness.
- this material consists of an alloy comprising a first oxide of a metal, this first insulating and unalterable oxide forming the matrix of the material and a second oxide of an addition element forming a conductor electronic, the various islands constituting this second oxide being interconnected to form a conductive path inside said matrix.
- the metal is chosen from the elements of groups IVb or Vb of the periodic classification, for example titanium. Zirconia or Niobium.
- the add-on element is chosen from the elements of groups Ib, Ilb, Illa or IVa of the periodic table, for example copper. Silver, mercury, indium or Tin.
- the invention also relates to a method of manufacturing the material which has just been described.
- this method comprises the steps consisting in: - taking an alloy comprising a metal whose oxide is unalterable and insulating and an addition element whose oxide is an electronic conductor,
- the oxidation step makes it possible, on the one hand, to make the base metal unalterable and, on the other hand, to form precipitates or islets which conduct the oxidation of the addition element inside L base metal oxide. Then, the physical percolation treatment makes it possible to interconnect the conductive islands produced by the oxidation and thus to ensure the electronic conductibility of the material obtained.
- the oxidation of the alloy is carried out either by anodization When the alloy is in the form of a thin film, with a thickness of less than 0.5 JJm, or by the action of a gaseous oxidant, Liquid or dissolved, at a temperature close to 400 ° C, when the alloy is in the form of a thick film.
- the physical treatment of perco ⁇ lation is carried out by a heat treatment at a temperature below the phase transition temperature of the alloy considered.
- the material according to the invention is an alloy comprising a first oxide of a metal, this first insulating and unalterable oxide forming the matrix of the material and a second oxide of an addition element forming an electronic conductor, the various islands constituting this second oxide being interconnected to form a conductive path inside said matrix.
- the metal whose oxide is insulating but which resists physical attacks relatively well and chemical is chosen from the elements of groups IVb or Vb of the Periodic Table of the Elements.
- titanium. Zirconium and niobium are preferred examples but not limiting.
- the addition element, the oxide of which is less resistant but has good electronic conductivity, is chosen from the metals of groups Ib, Ilb, Illa or IVa of the Periodic Table of the Elements.
- the copper. Silver, mercury, indium and Tin are particularly well suited. However, these are not the only conductive oxides that can be used.
- the zirconium couple associated with a small percentage of tin gives good results.
- the maximum concentration of additive element corresponds to the limit of solubility in the metallic matrix. All these limits of solubility are not known, however, we know those of tin in zirconium. This is 17 atomic%.
- the minimum concentration of addition elements in the alloy is that corresponding to the proportion sufficient for a percolation phenomenon to occur later in the final stage. This concentration is approximately 0.1 atomic%. It has been observed that Materials having this particular structure have good conductive properties, while being physically and chemically resistant.
- This process comprises a first step consisting in taking or preparing an alloy comprising a metal whose oxide is unalterable and insulating and an addition element whose oxide is an electronic conductor with the metals and elements previously described. .
- the next step in the process according to the invention consists in subjecting this alloy to oxidation.
- This oxidation makes the base metal unalterable since already oxidized and creates conductive precipitates in the oxide matrix.
- the oxidation can be carried out, for example, by anodization, by dry oxidation or by the action of a gaseous, liquid or dissolved oxidant, the latter possibly being water or water. water vapour.
- Oxidation can be carried out either in massive form, or in the form of a coating deposited directly on a metal part in order to give it the desired inalterability and electronic conductivity properties.
- Carrying out the process according to the invention must meet two main objectives, on the one hand, enabling rapid production of films of conductive material of high hardness and, on the other hand, obtaining compact films, ie ie without mechanical defects such as pores or cracks.
- the faster an oxidation and the less compact the film obtained. A compromise must therefore be found between the mechanical quality of the film and its speed of manufacture.
- anodization is the most suitable oxidation mode.
- oxidation in water vapor at around 400 ° C gives very good results, with a speed oxidation of 1 to 2 ilm per week.
- the third step of the fabrication process according to the invention consists in subjecting the oxidized alloy to physical treatment in order to create, by a percolation phenomenon, conductive paths interconnected in the insulating oxide layer.
- Percolation is a physical phenomenon that allows certain transfers to take place in a solid. When this percolation treatment is carried out, the electric charges can pass by following particular paths within the non-conductive oxide.
- the percolation treatment is described for example in a book entitled "Introduction to percolation theory", (Introduction to the theory of percolation), Stauffer D., Aharony A., London: Taylor and Francis, 1992.
- the oxidation step made it possible to produce precipitates or islets of conductive oxide which are linked together by this percolation treatment.
- This percolation treatment is generally carried out by a heat treatment. Its role is to create the necessary connections, if the nature and the concentration of the constituents allow it. The concentration ranges have been given previously.
- the structure of the alloy must remain the same as at normal operating temperature. It is therefore necessary to operate at a temperature lower than that where a phase change begins to occur (phase transition temperature). This temperature naturally depends on the material considered.
- Zirconium and tin alloys known under the trade name ZIRCALOY 2 and ZIRCALOY 4 were oxidized at 400 ° C in steam, placing them in an autoclave suitable for this type of operation. The oxidation lasted 1 to 2 weeks depending on the thickness desired for the oxide film. Then, the oxidized material was placed in an oven under primary vacuum, then heated for 1 to 2 hours at a temperature between 400 and 60.0 ° C to make the oxide layer conductive. Then, a rapid cooling of the material was carried out by introducing an inert gas such as argon or helium into the furnace.
- an inert gas such as argon or helium
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9201026A FR2686903B1 (fr) | 1992-01-30 | 1992-01-30 | Materiau conducteur de haute durete et procede de fabrication de ce materiau. |
FR9201026 | 1992-01-30 | ||
PCT/FR1993/000089 WO1993015240A1 (fr) | 1992-01-30 | 1993-01-28 | Materiau conducteur de haute durete et procede de fabrication de ce materiau |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0624206A1 true EP0624206A1 (fr) | 1994-11-17 |
EP0624206B1 EP0624206B1 (fr) | 1995-10-11 |
Family
ID=9426162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93904133A Expired - Lifetime EP0624206B1 (fr) | 1992-01-30 | 1993-01-28 | Materiau conducteur de haute durete et procede de fabrication de ce materiau |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0624206B1 (fr) |
DE (1) | DE69300632T2 (fr) |
FR (1) | FR2686903B1 (fr) |
WO (1) | WO1993015240A1 (fr) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR902206A (fr) * | 1943-02-27 | 1945-08-22 | Philips Nv | Procédé de durcissement superficiel d'alliages métalliques et objets réalisés avec ces alliages durcis |
DE1173764B (de) * | 1957-05-23 | 1964-07-09 | Siemens Ag | Verfahren zur Herstellung abriebfester Oberflaechenschichten grosser Haerte und Leitfaehigkeit, insbesondere fuer elektrische Gleit- und Reibkontakte |
NL260208A (fr) * | 1960-02-16 | |||
DE1807906B2 (de) * | 1968-01-27 | 1971-09-09 | Verfahren zur herstellung von hochfesten elektrisch hochlei tenden und waermebestaendigen materialien | |
US3922180A (en) * | 1970-04-01 | 1975-11-25 | Bell Telephone Labor Inc | Method for oxidation-hardening metal alloy compositions, and compositions and structures therefrom |
USRE31902E (en) * | 1980-05-02 | 1985-05-28 | Scm Corporation | Dispersion strengthened metals |
-
1992
- 1992-01-30 FR FR9201026A patent/FR2686903B1/fr not_active Expired - Fee Related
-
1993
- 1993-01-28 EP EP93904133A patent/EP0624206B1/fr not_active Expired - Lifetime
- 1993-01-28 WO PCT/FR1993/000089 patent/WO1993015240A1/fr active IP Right Grant
- 1993-01-28 DE DE69300632T patent/DE69300632T2/de not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9315240A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1993015240A1 (fr) | 1993-08-05 |
DE69300632T2 (de) | 1996-05-09 |
EP0624206B1 (fr) | 1995-10-11 |
FR2686903A1 (fr) | 1993-08-06 |
FR2686903B1 (fr) | 1994-03-18 |
DE69300632D1 (de) | 1995-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1195011A (fr) | Procede de realisation d'un hygrometre capacitif a dielectrique mince et hygrometre obtenu par ce procede | |
FR2601150A1 (fr) | Vitrage a transmission variable du type electrochrome | |
FR2478858A1 (fr) | Support d'enregistrement | |
EP1472386B1 (fr) | CIBLE CERAMIQUE NiOx NON STOECHIOMETRIQUE | |
CA2115400C (fr) | Detecteur thermique comprenant un isolant thermique en polymere expanse | |
Park et al. | Resistivity scaling transition in ultrathin metal film at critical thickness and its implication for the transparent conductor applications | |
Akin Sonmez et al. | Ag/M‐seed/AZO/glass structures for low‐E glass: Effects of metal seeds | |
EP1788110B1 (fr) | Revêtement à base d'argent résistant à la sulfuration, procédé de dépôt et utilisation. | |
EP0624206B1 (fr) | Materiau conducteur de haute durete et procede de fabrication de ce materiau | |
FR2588146A1 (fr) | Procede pour former des circuits electriquement conducteurs sur une plaquette de base. | |
Dutta et al. | Solid state annealing behavior of aluminum thin films on sapphire | |
FR2753725A1 (fr) | Revetement de surface de materiaux isolants, son procede d'obtention et son application pour la realisation de blindages pour boitiers isolants | |
EP0298823B1 (fr) | Procédé et utilisation dans l'industrie verrière, notamment pour la protection de pièces contre la corrosion par le verre fondu d'alliages à base de palladium contenant au moins un élément d'addition. | |
EP0388278B1 (fr) | Procédé d'élaboration de moyens de connexions électriques, en particulier de substrats d'interconnexion pour circuits hybrides | |
CH646083A5 (en) | Wire electrode for erosive electrical discharge machining | |
KR20010101247A (ko) | 적층구조체 및 그 제조방법 | |
EP0325526A2 (fr) | Dispositif en matériau supraconducteur, et procédé de réalisation | |
FR3099490A1 (fr) | Procédé de formation d’un film de tantale à basse résistivité | |
FR3085870A1 (fr) | Procede d'assemblage d'une piece de metal et d'une piece de ceramique, et dispositif electrique, en particulier capteur capacitif, realise par le procede | |
EP3364461A1 (fr) | Procédé de dopage de graphène | |
CA1216498A (fr) | Procede de preparation de surfaces selectives pour capteurs solaires photothermiques par oxydation seche et surfaces selectives ainsi obtenues | |
EP3309841A1 (fr) | Procede de realisation d'un contact electrique sur une couche de graphite, contact obtenu a l'aide d'un tel procede et dispositif electronique utilisant un tel contact | |
EP0635585B1 (fr) | Procédé de production d'une couche métallique épaisse et fortement adhérente sur un substrat de nitrure d'aluminium frittée et produit métallisé ainsi obtenu | |
WO1996023087A1 (fr) | Procede de production d'une couche metallique epaisse et fortement adherente sur un substrat de nitrure d'aluminium fritte et produit metallise ainsi obtenu | |
EP0385829B1 (fr) | Procédé d'élaboration de moyens de connexion électrique, en particulier de substrats d'interconnexion de circuits hybrides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940621 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19941216 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB LI NL SE |
|
REF | Corresponds to: |
Ref document number: 69300632 Country of ref document: DE Date of ref document: 19951116 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970129 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19980105 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980109 Year of fee payment: 6 Ref country code: CH Payment date: 19980109 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980114 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980124 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980127 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Effective date: 19990131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990128 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |