EP0619466A2 - Steam condenser - Google Patents

Steam condenser Download PDF

Info

Publication number
EP0619466A2
EP0619466A2 EP94103311A EP94103311A EP0619466A2 EP 0619466 A2 EP0619466 A2 EP 0619466A2 EP 94103311 A EP94103311 A EP 94103311A EP 94103311 A EP94103311 A EP 94103311A EP 0619466 A2 EP0619466 A2 EP 0619466A2
Authority
EP
European Patent Office
Prior art keywords
tubes
cooler
steam
bundle
compartments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94103311A
Other languages
German (de)
French (fr)
Other versions
EP0619466A3 (en
EP0619466B1 (en
Inventor
Francisco Dr. Blangetti
Andreas Kost
Günter Volks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0619466A2 publication Critical patent/EP0619466A2/en
Publication of EP0619466A3 publication Critical patent/EP0619466A3/en
Application granted granted Critical
Publication of EP0619466B1 publication Critical patent/EP0619466B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Definitions

  • Such a steam condenser is known from CH-PS 423 819 and DE-OS 1 948 073.
  • the condenser tubes are arranged in several, so-called sub-bundles in a condenser housing.
  • the steam flows through an exhaust pipe into the condenser housing and is distributed in the room through flow channels (steam entry lanes).
  • the free inflow of steam to the outside tubes of the partial bundles is ensured.
  • the steam then flows through the bundles with little resistance due to the low depth of the tube rows.
  • the partial bundles in the condenser are arranged next to one another in such a way that flow channels arise between them, which in the sectional view appear to be of the same order of magnitude as the partial bundles themselves.
  • the tubes form in the successive rows a permeable enclosure, which preferably represents the same hydraulic resistance throughout.
  • This known condenser has the advantage that due to the loose arrangement of the sub-bundles, all peripheral tubes of a sub-bundle are well supplied with steam without a noticeable loss of pressure. On the other hand, the requirement for at least approximately the same "wall thickness" or. Resistance of the tube bundle around the cavity a relatively large overall height of the bundle. This results in the excellent suitability of this partial bundle concept for large capacitors, in which a plurality of partial bundles are arranged side by side.
  • the capacitors working under vacuum require a well-functioning suction system so that incoming, non-condensable gases are always removed from the condensation area will. Cooling tubes that are surrounded or flowed around by these gases mixed with steam are almost completely lost as a condensation surface, which reduces the output.
  • the incoming gases cannot keep the vacuum at the lowest possible value.
  • non-condensable gases mostly air - already in concentrations of 1% molar fraction, with temperature differences between the wall and the steam core of 4-5 K, a reduction in the heat transfer on the steam side - with quasi-still steam - to 30-40% of that value, which can be achieved with pure steam.
  • the vacuum loss is thus expressed in a lower efficiency of the circulatory system.
  • the inert gas enrichment zone is formed in two parts. It consists of a funnel-shaped "pre-air cooler", there called “post-condensation part”, and an encapsulated air cooler, which communicates with the pre-air cooler and a downstream suction channel (header) via a double row of evenly distributed cooler inlet orifices or radiator outlet orifices.
  • This encapsulated air cooler is geometrically designed in such a way that the deterioration of the heat transfer on the steam side is partially compensated for by an increase in the speed of the gas phase. Since the encapsulated air cooler adapts to an approximate temperature curve of the cooling water in the neighboring pipes, it therefore ensures that suitable ventilation of the pre-air cooler is approximately proportional to the resulting, non-condensable gases.
  • the invention is therefore based on the object of providing a capacitor of the type mentioned at the outset which, while maintaining the known advantages of the partial bundle concept, is furthermore distinguished by low production costs.
  • this is achieved in that only one cooler is provided, to which the suction channel is directly connected, and that the flow cross-sections of the orifices in the compartments are dimensioned such that the local, non-condensable mass flow is sucked off at the locally available pressure difference.
  • the heat exchanger shown is a surface condenser in a rectangular design, as it is suitable for a so-called underfloor arrangement.
  • Parts that are not essential to the invention, such as the condenser neck, condensation chamber, condenser jacket, water chambers, tube sheets, condensate collection vessel, etc. are omitted, but are briefly explained below in connection with the invention.
  • the steam flows into the condenser neck via an evaporation nozzle with which the condenser is connected to the turbine.
  • the best possible homogeneous flow field is generated therein in order to carry out a clean steam purging of the bundles 20 arranged downstream over their entire length.
  • the condensation space inside the capacitor jacket contains several bundles arranged side by side.
  • One of the objectives of this is that even during plant operation a partial cut-off on the cooling water side can be carried out, for example for the purpose of an inspection of a switched-off bundle on the cooling water side.
  • the independent cooling water supply is expressed by the fact that the water chambers of the condenser are divided into compartments by partitions.
  • a bundle 20 consists of a number of tubes, of which only one cooling tube designated 13s is shown in FIG. 1. At both ends, the cooling tubes are fastened in tube sheets. The water chambers are arranged beyond the tube sheets. The condensate draining from the bundles is collected in a condensate collection vessel and from there it enter
  • the bundles 20 are designed in such a way that all tubes 13s of the periphery have a good flow of steam without a noticeable loss of pressure.
  • the existing flow paths between the bundles on the one hand and between the outer bundles and their adjacent condenser wall are designed accordingly:
  • the condensation part of the bundle 20, which is only partially visualized by the dotted surface, is designated by 1.
  • the continuous support plates 5, which serve to support the cooling tubes 13 the sub-bundles are divided into compartments 10.
  • a cavity 19 is formed inside each bundle 2, in which the vapor enriched with non-condensable gases - hereinafter called air - collects.
  • An air cooler is accommodated in this cavity 19. The steam-air mixture flows through this air cooler, with most of the steam condensing. The rest of the mixture is suctioned off at the cold end.
  • the air cooler located inside the tube bundle has the effect that the steam-gas mixture is accelerated within the condenser bundle. This improves the situation in that there are no small flow velocities that could impair the heat transfer.
  • the air cooler is arranged in the interior of the bundle at the level at which the bundle of pressure runs through a relative minimum on both sides of the bundle.
  • the air cooler is thus in the middle of the bundle.
  • the bundle is designed in such a way that the steam suction into the cavity 19 - taking into account the effective pressure at the pipe periphery and due to the different pipe row thickness - acts homogeneously in the radial direction over all pipes adjacent in the cavity 19. This results in a homogeneous pressure gradient and thus a clear flow direction of the steam and the non-condensable gases towards the air cooler.
  • the upstream cavity 19 has an internal compensation lane 12 which ensures that the air-enriched steam from the core of the front half of the bundle also finds a smooth path to the air cooler.
  • the air cooler has the task of removing the non-condensable gases from the condenser. During this process, the steam losses are to be kept as low as possible. This is achieved by moving the steam / air mixture towards Suction channel is accelerated. The high speed results in good heat transfer, which leads to extensive condensation of the residual steam. In order to accelerate the mixture, the cross section in the direction of flow is increasingly smaller.
  • FIG. 1 shows the cooling system mentioned at the outset and known from DE-OS 1 948 073. It consists of the pre-cooler 2s, of which the cooling tube 14s is shown, and the encapsulated air cooler 3s, of which the cooling tube 15s is shown.
  • the space 11s for pressure equalization is arranged between the two. This unthreaded space 11s is also mainly required in order to be able to weld the sheet metal wall 7s separating the air cooler 3s from the precooler 2s to the support plates 5.
  • the panels 9s are arranged in the sheet metal wall 7s.
  • Orifices 6s are also provided in the sheet metal wall 8s provided at the outlet of the cooler 3s, via which the non-condensable gases are drawn off into the suction space 4s. The installation of these throttling points ensures that the pressure difference that is necessary in any case at the beginning and end of the condensation process is mainly reduced in the orifices.
  • the cooling tubes 15 of the cooler 3 are arranged in a funnel shape for this purpose.
  • the funnel walls 16, which isolate the cooler 3 from the condensation space 1, are connected to one another at an acute angle.
  • the funnel 16 is provided with a cover plate 17, which is placed over the tubes of the cooler toward the cavity 19 and protects them from the steam and condensate flow flowing from top to bottom. This also specifies the direction of flow of the mixture to be cooled, namely from the rear cavity to the front towards the funnel tip.
  • these funnel walls simultaneously form the partition 7 to the suction channel 4.
  • the screens 6 are arranged in the immediate area of the funnel tip. It can be seen from FIG.
  • the non-condensable gases are sucked off via the orifices 6 into the channel 4, from which they are led out of the condenser in the longitudinal direction.
  • the suction line 4 penetrates one of the tube sheets (not shown) and the corresponding water chamber.
  • the different cross-sectional requirements per compartment can be covered by appropriate arrangement of a plurality of bores with different diameters and / or different pitches. Orifice diameter and orifice spacing should be selected so that the local, non-condensable mass flow is extracted at the locally available pressure difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a steam condenser, the steam is precipitated onto tubes (pipes) (13) through which cooling water flows and which are combined into separate bundles. Each bundle is subdivided into compartments by support plates arranged perpendicular to the tubes. The tubes of a bundle, which are arranged in rows, enclose a cavity (19) in which there is arranged a cooler (3) for the non-condensable gases. The non-condensable gases pass from the cooler (3) via orifices (6) into a suction channel (4) which is common to all the compartments and extends over the entire length of the tubes (13). There is only one cooler (3), which is immediately adjoined by the suction channel (4), and the through-flow cross-sections of the orifices (6) in the compartments are dimensioned such that given the locally available pressure difference the local, non-condensable mass flow is exhausted. <IMAGE>

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft einen Dampfkondensator, in dem der Dampf an kühlwasserdurchflossenen, in separaten Bündein zusammengefassten Rohren niedergeschlagen wird,

  • wobei jedes Bündel durch senkrecht zu den Rohren angeordneten Stützplatten in Kompartimente unterteilt ist,
  • wobei die in Reihen angeordneten Rohre eines Bündels einen Hohlraum umschliessen, in dem ein Kühler für die nicht kondensierbaren Gase angeordnet ist,
  • wobei die nicht kondensierbaren Gase aus dem Kühler über Blenden in einen für alle Kompartimente gemeinsamen Saugkanal einströmen, der sich über die ganze Länge der Rohre erstreckt.
The invention relates to a steam condenser in which the steam is deposited on pipes through which cooling water flows and which are combined in separate bundles.
  • each bundle being divided into compartments by support plates arranged perpendicular to the tubes,
  • the tubes of a bundle arranged in rows enclosing a cavity in which a cooler for the non-condensable gases is arranged,
  • the non-condensable gases from the cooler flow through orifices into a suction channel common to all compartments, which extends over the entire length of the tubes.

Stand der TechnikState of the art

Ein derartiger Dampfkondensator ist aus der CH-PS 423 819 und der DE-OS 1 948 073 bekannt . Dort sind in einem Kondensatorgehäuse die Kondensatorrohre in mehreren, sogenannten Teilbündeln angeordnet. Der Dampf strömt durch einen Abdampfstutzen in das Kondensatorgehäuse ein und verteilt sich im Raum durch Strömungsgassen (steam entry lanes). Die freie Zuströmung des Dampfes zu den aussenliegenden Rohren der Teilbündel ist gewahrt. Durch die Bündel strömt der Dampf anschliessend mit durch die geringe Rohrreihentiefe bedingtem kleinen Widerstand hindurch. Um die Bedingung der in den Zuströmkanälen ausreichend hoch zu haltenden Dampfgeschwindigkeit erfüllen zu können, sind die Teilbündel im Kondensator so nebeneinander angeordnet, dass zwischen ihnen Strömungskanäle entstehen, die im Schnittbild in der gleichen Grössenordnung erscheinen wie die Teilbündel selbst. Des weiteren bilden die Rohre in den hintereinanderfolgenden Reihen eine durchlässige Umschliessung, die vorzugsweise durchwegs einen gleichen hydraulischen Widerstand darstellt.Such a steam condenser is known from CH-PS 423 819 and DE-OS 1 948 073. There, the condenser tubes are arranged in several, so-called sub-bundles in a condenser housing. The steam flows through an exhaust pipe into the condenser housing and is distributed in the room through flow channels (steam entry lanes). The free inflow of steam to the outside tubes of the partial bundles is ensured. The steam then flows through the bundles with little resistance due to the low depth of the tube rows. In order to be able to meet the condition of the steam velocity to be kept sufficiently high in the inflow channels, the partial bundles in the condenser are arranged next to one another in such a way that flow channels arise between them, which in the sectional view appear to be of the same order of magnitude as the partial bundles themselves. Furthermore, the tubes form in the successive rows a permeable enclosure, which preferably represents the same hydraulic resistance throughout.

Dieser bekannte Kondensator weist den Vorteil auf, dass durch die lockere Anordnung der Teilbündel alle peripheren Rohre eines Teilbündels ohne merklichen Druckverlust gut mit Dampf beschickt sind. Andererseits bedingt das Erfordernis nach zumindest annähernd gleicher "Wandstärke" resp. Widerstand des berohrten Teilbündels um den Hohlraum herum eine relativ grosse Bauhöhe des Teilbündels. Hieraus resultiert die hervorragende Eignung dieses Teilbündelkonzeptes für Grosskondensatoren, bei denen eine Mehrzahl von Teilbündeln stehend nebeneinander angeordnet werden.This known condenser has the advantage that due to the loose arrangement of the sub-bundles, all peripheral tubes of a sub-bundle are well supplied with steam without a noticeable loss of pressure. On the other hand, the requirement for at least approximately the same "wall thickness" or. Resistance of the tube bundle around the cavity a relatively large overall height of the bundle. This results in the excellent suitability of this partial bundle concept for large capacitors, in which a plurality of partial bundles are arranged side by side.

Die unter Vakuum arbeitenden Kondensatoren benötigen ein gut funtionierendes Saugsystem, damit einfallende, nicht kondensierbare Gase stets aus dem Kondensationsbereich entfernt werden. Kühlrohre, die von diesen, mit Dampf vermischten Gasen umgeben bzw. umströmt sind, gehen als Kondensatonsfläche fast restlos verloren, was die Leistung heruntersetzt.The capacitors working under vacuum require a well-functioning suction system so that incoming, non-condensable gases are always removed from the condensation area will. Cooling tubes that are surrounded or flowed around by these gases mixed with steam are almost completely lost as a condensation surface, which reduces the output.

Darüberhinaus kann durch die einfallenden Gase das Vakuum nicht auf dem tiefstmöglichen Wert gehalten werden. Wie bekannt, rufen nichtkondensierbare Gase - meistens Luft - bereits in Konzentrationen von 1% Molanteil, bei Temperaturdifferenzen zwischen Wand und Dampfkern von 4-5 K, eine Verminderung des dampfseitigen Wärmeübergangs - bei quasi ruhendem Dampf - auf 30-40% desjenigen Wertes hervor, der mit reinem Dampf erzielbar ist. Der Vakuumverlust drückt sich damit in einem niedrigeren Wirkungsgrad des Kreislaufsystemes aus.In addition, the incoming gases cannot keep the vacuum at the lowest possible value. As is known, non-condensable gases - mostly air - already in concentrations of 1% molar fraction, with temperature differences between the wall and the steam core of 4-5 K, a reduction in the heat transfer on the steam side - with quasi-still steam - to 30-40% of that value, which can be achieved with pure steam. The vacuum loss is thus expressed in a lower efficiency of the circulatory system.

Bei der oben erwähnten Lösung nach DE-OS 1 948 073 gelangt eine Einflussanordnung der Rohre zur Ausführung. Die Teilbündel sind durch senkrecht zu den Rohren angeordnete Stützplatten in Kompartimente unterteilt. Wie bekannt, hängt die Kondensationsleistung entlang der Kühlrohre hauptsächlich von der lokalen Temperaturdifferenz zwischen Dampf und Kühlwasser ab. Danach wird die Kondensationsleistung der ersten Kompartimente an der Kühlwassereintrittsseite mehr kondensieren als jene der Kompartimente an der Kühlwasseraustrittsseite. Dementsprechend werden nichtkondensierbare Gase - proportional zur Kondensationsleistung - vermehrt in den "kühleren" Kompartimenten anfallen. Um dem Rechnung zu tragen, wird beim Kondensator nach DE-OS 1 948 073, der später noch im Zusamenhang mit Fig. 1 detailliert beschrieben wird, die Inertgas-Anreicherungszone zweiteilig ausgebildet. Sie besteht aus einem trichterförmigem "Vorluftkühler", dort "Nachkondensationsteil" genannt, und einem gekapselten Luftkühler, der mit dem Vorluftkühler und einem nachgeordneten Saugkanal (Header) über eine doppelte Reihe von gleichmässig verteilten Kühlereintrittsblenden respektiv Kühleraustrittsblenden kommuniziert. Dieser gekapselte Luftkühler ist geometrisch so gestaltet, dass die Verschlechterung des dampfseitigen Wärmeübergangs durch eine Steigerung der Geschwindigkeit der Gasphase teilweise kompensiert wird. Da sich der gekapselte Luftkühler einem ungefähren Temperaturverlauf des Kühlwassers in den benachbarten Rohren anpasst, sorgt er somit dafür, dass eine geignete Ventilierung des Vorluftkühlers in etwa proportional zu den anfallenden, nicht kondensierbaren Gasen, gewährleistet ist.In the above-mentioned solution according to DE-OS 1 948 073, an influence arrangement of the pipes is implemented. The sub-bundles are divided into compartments by support plates arranged perpendicular to the tubes. As is known, the condensation capacity along the cooling pipes mainly depends on the local temperature difference between steam and cooling water. The condensation capacity of the first compartments on the cooling water inlet side will then condense more than that of the compartments on the cooling water outlet side. Accordingly, non-condensable gases - proportional to the condensation capacity - will be generated in the "cooler" compartments. In order to take this into account, in the condenser according to DE-OS 1 948 073, which will be described in detail later in connection with FIG. 1, the inert gas enrichment zone is formed in two parts. It consists of a funnel-shaped "pre-air cooler", there called "post-condensation part", and an encapsulated air cooler, which communicates with the pre-air cooler and a downstream suction channel (header) via a double row of evenly distributed cooler inlet orifices or radiator outlet orifices. This encapsulated air cooler is geometrically designed in such a way that the deterioration of the heat transfer on the steam side is partially compensated for by an increase in the speed of the gas phase. Since the encapsulated air cooler adapts to an approximate temperature curve of the cooling water in the neighboring pipes, it therefore ensures that suitable ventilation of the pre-air cooler is approximately proportional to the resulting, non-condensable gases.

Eine solche gekapselte Luftkühlerkonstruktion stellt indes eine nicht ideale Lösung für den in den verschiedenen Kompartimenten unterschiedlichen Ventilierungsbedarf dar. Da in der Regel die Austrittsfläche aus dem Luftkühler für eine gleichmässige Absaugung zu gross ist, wird zwischen dem Luftkühler und dem Absaugkanal eine Abschlusswand angeordnet, in dem die oben erwähnten Kühleraustrittsblenden angeordnet sind. Das System besteht somit aus mehreren Kanälen und ist nur als aufwendige Blech- und Schweiskonstruktion auszuführen.Such an encapsulated air cooler construction, however, is not an ideal solution for the different ventilation requirements in the various compartments. Since the exit area from the air cooler is usually too large for uniform extraction, an end wall is arranged between the air cooler and the suction duct in which the radiator outlet covers mentioned above are arranged. The system thus consists of several channels and can only be implemented as a complex sheet metal and welded construction.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt deshalb die Aufgabe zugrunde, einen Kondensator der eingangs genannten Art zu schaffen, der sich bei Beibehaltung der bekannten Vorteile des Teilbündelkonzeptes zudem durch niedrige Fertigungskosten auszeichnet.The invention is therefore based on the object of providing a capacitor of the type mentioned at the outset which, while maintaining the known advantages of the partial bundle concept, is furthermore distinguished by low production costs.

Erfindungsgemäss wird dies dadurch erreicht, dass nur ein Kühler vorgesehen ist, an den sich der Saugkanal unmittelbar anschliesst, und dass die Durchströmquerschnitte der Blenden in den Kompartimenten so dimensioniert sind, dass der örtliche, nicht kondensierbare Massenstrom bei der lokalen verfügbaren Druckdifferenz abgesaugt wird.According to the invention, this is achieved in that only one cooler is provided, to which the suction channel is directly connected, and that the flow cross-sections of the orifices in the compartments are dimensioned such that the local, non-condensable mass flow is sucked off at the locally available pressure difference.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines Kraftwerkkondensators schematisch dargestellt. Es zeigt:

Fig. 1
ein Teilbündel eines Kondensators mit herausgebrochenen Teilen in Schrägrissdarstellung mit zum Stand der Technik zählendem Luftkühler;
Fig. 2
eine erfindungsgemässe Ausbildung des Luftkühlers in grösserem Massstab.
In the drawing, an embodiment of the invention is shown schematically using a power plant capacitor. It shows:
Fig. 1
a partial bundle of a capacitor with broken-out parts in an oblique view with air cooler belonging to the prior art;
Fig. 2
an inventive design of the air cooler on a larger scale.

In den Figuren sind die jeweils gleichen Teile mit denselben Bezugszeichen versehen, wobei die nur zum Stand der Technik zählenden Elemente mit dem Indiz s versehen sind.In the figures, the same parts are provided with the same reference numerals, the elements which only count towards the prior art being provided with the indication s.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Beim dargestellten Wärmeaustauscher handelt es sich um einen Oberflächenkondensator in rechteckiger Bauform, wie er geeignet ist für eine sogenannte Unterfluranordnung. Erfindungsunwesentliche Teile wie Kondensatorhals, Kondensationsraum, Kondensatormantel, Wasserkammern, Rohrböden, Kondensatsammelgefäss u.s.w. sind weggelassen, nachstehend jedoch im Zusammenhang mit der Erfindung kurz erläutert.The heat exchanger shown is a surface condenser in a rectangular design, as it is suitable for a so-called underfloor arrangement. Parts that are not essential to the invention, such as the condenser neck, condensation chamber, condenser jacket, water chambers, tube sheets, condensate collection vessel, etc. are omitted, but are briefly explained below in connection with the invention.

Ueber einen Abdampfstutzen, mit dem der Kondensator an der Turbine angeschlossen ist, strömt der Dampf in den Kondensatorhals ein. Darin wird ein möglichst gutes homogenes Strömungsfeld erzeugt, um eine saubere Dampfbespülung der stromabwärts angeordneten Bündel 20 über deren ganze Länge vorzunehmen. Der Kondensationsraum im Innern des Kondensatormantels beinhaltet mehrere nebeneinander angeordnete Bündel. Dies hat unter anderem zum Ziel, dass auch während des Anlagenbetriebes eine kühlwasserseitige Teilabschaltung vorgenommen werden kann, beispielsweise zum Zwecke einer kühlwasserseitigen Inspektion eines abgeschalteten Bündels. Die unabhängige Kühlwasserbeaufschlagung kommt dadurch zum Ausdruck, dass die Wasserkammern des Kondensators durch Trennwände in Kompartimente unterteilt sind. Ein Bündel 20 besteht aus einer Anzahl Rohre, von denen in Fig 1 nur ein mit 13s bezeichnetes Kühlrohr eingezeichnet ist. An ihren beiden Enden sind die Kühlrohre jeweils in Rohrböden befestigt. Jenseits der Rohrböden sind jeweils die Wasserkammern angeordnet. Das von den Bündeln abfliessende Kondensat wird in einem Kondensatsammelgefäss aufgefangen und gelangt von dort in den Wasser/Dampf-Kreislauf.The steam flows into the condenser neck via an evaporation nozzle with which the condenser is connected to the turbine. The best possible homogeneous flow field is generated therein in order to carry out a clean steam purging of the bundles 20 arranged downstream over their entire length. The condensation space inside the capacitor jacket contains several bundles arranged side by side. One of the objectives of this is that even during plant operation a partial cut-off on the cooling water side can be carried out, for example for the purpose of an inspection of a switched-off bundle on the cooling water side. The independent cooling water supply is expressed by the fact that the water chambers of the condenser are divided into compartments by partitions. A bundle 20 consists of a number of tubes, of which only one cooling tube designated 13s is shown in FIG. 1. At both ends, the cooling tubes are fastened in tube sheets. The water chambers are arranged beyond the tube sheets. The condensate draining from the bundles is collected in a condensate collection vessel and from there it enters the water / steam cycle.

Die Bündel 20 sind so gestaltet, dass alle Rohre 13s der Peripherie ohne merklichen Druckverlust gut mit Dampf angeströmt sind. Um nun eine homogene, saubere Dampfströmung zu gewährleisten und insbesondere um Stauungen innerhalb des Bündels auszuschliessen, sind die vorhandenen Strömungspfade zwischen den Bündeln einerseits sowie zwischen den äusseren Bündeln und deren benachbarter Kondensatorwand entsprechend ausgebildet:The bundles 20 are designed in such a way that all tubes 13s of the periphery have a good flow of steam without a noticeable loss of pressure. In order to ensure a homogeneous, clean steam flow and in particular to prevent congestion within the bundle, the existing flow paths between the bundles on the one hand and between the outer bundles and their adjacent condenser wall are designed accordingly:

In Fig. 1 ist der durch die punktierte Fläche nur teilweise veanschaulichte Kondensationsteil des Bündels 20 mit 1 bezeichnet. Durch Einsetzen der durchgehenden Stützplatten 5, welche der Abstützung der Kühlrohre 13 dienen, ergibt sich eine Unterteilung der Teilbündel in Kompartimente 10.In FIG. 1, the condensation part of the bundle 20, which is only partially visualized by the dotted surface, is designated by 1. By inserting the continuous support plates 5, which serve to support the cooling tubes 13, the sub-bundles are divided into compartments 10.

Im Innern jedes Bündels 2 ist ein Hohlraum 19 ausgebildet, in dem sich der mit nicht kondensierbaren Gasen - nachstehend Luft genannt - angereicherte Dampf sammelt. In diesem Hohlraum 19 ist ein Luftkühler untergebracht. Das Dampf-Luftgemisch durchströmt diesen Luftkühler, wobei der grösste Teil des Dampfes kondensiert. Der Rest des Gemisches wird am kalten Ende abgesaugt.A cavity 19 is formed inside each bundle 2, in which the vapor enriched with non-condensable gases - hereinafter called air - collects. An air cooler is accommodated in this cavity 19. The steam-air mixture flows through this air cooler, with most of the steam condensing. The rest of the mixture is suctioned off at the cold end.

Der sich im Innern des Rohrbündels befindliche Luftkühler hat die Wirkung, dass das Dampf-Gasgemisch innerhalb des Kondensatorbündels beschleunigt wird. Dadurch verbessern sich die Verhältnisse insofern, als keine kleinen Strömungsgeschwindigkeiten vorherrschen, die den Wärmeübergang beeinträchtigen könnten.The air cooler located inside the tube bundle has the effect that the steam-gas mixture is accelerated within the condenser bundle. This improves the situation in that there are no small flow velocities that could impair the heat transfer.

Als weitere Massnahme, die der gleichmässigen Bündelbeaufschlagung mit Dampf dient, wird der Luftkühler im Bündelinnern auf jenem Niveau angeordnet, auf dem beidseitig der Bündel der Druckverlauf in der durchströmten Gasse ein relatives Minimum durchläuft. Im gezeigten Beispiel in Fig. 1 befindet sich der Luftkühler somit in der Bündelmitte. Das Bündel ist so gestaltet, dass die Dampfansaugung in den Hohlraum 19 - unter Berücksichtigung des wirksamen Druckes an der Rohrperipherie und auf Grund der unterschiedlichen Rohrreihendicke - in radialer Richtung homogen über alle im Hohlraum 19 angrenzenden Rohre wirkt. Daraus resultiert ein homogener Druckgradient und damit eine eindeutige Fliessrichtung des Dampfes und der nicht kondensierbaren Gase in Richtung Luftkühler. Der Hohlraum 19 weist stromaufwärts eine bündelinterne Ausgleichgasse 12 auf, die dafür sorgt, dass auch der mit Luft angereicherte Dampf aus dem Kern der vorderen Hälfte des Bündels einen reibungsfreien Weg zum Luftkühler findet.As a further measure, which serves for the uniform application of steam to the bundle, the air cooler is arranged in the interior of the bundle at the level at which the bundle of pressure runs through a relative minimum on both sides of the bundle. In the example shown in Fig. 1, the air cooler is thus in the middle of the bundle. The bundle is designed in such a way that the steam suction into the cavity 19 - taking into account the effective pressure at the pipe periphery and due to the different pipe row thickness - acts homogeneously in the radial direction over all pipes adjacent in the cavity 19. This results in a homogeneous pressure gradient and thus a clear flow direction of the steam and the non-condensable gases towards the air cooler. The upstream cavity 19 has an internal compensation lane 12 which ensures that the air-enriched steam from the core of the front half of the bundle also finds a smooth path to the air cooler.

Im Betrieb kondensiert der Dampf an den Rohren 13 und das Kondensat tropft gegen den Kondensatorboden ab. Dieses Abtropfen erfolgt innerhalb der Bündel, wobei das Kondensat mit Dampf steigenden Druckes in Berührung kommt.In operation, the steam condenses on the tubes 13 and the condensate drips off against the condenser bottom. This dripping takes place within the bundle, the condensate coming into contact with steam increasing pressure.

Der Luftkühler hat die Aufgabe, die nichtkondensierbaren Gase aus dem Kondensator zu entfernen. Bei diesem Vorgang sind die Dampfverluste so gering wie möglich zu halten. Dies wird dadurch erreicht, dass das Dampf/Luftgemisch in Richtung Absaugkanal beschleunigt wird. Die hohe Geschwindigkeit hat einen guten Wärmeübergang zur Folge, was zu einer weitgehenden Kondensation des Restdampfes führt. Zwecks Beschleunigung des Gemisches wird der Querschnitt in Strömungsrichtung zunehmend kleiner bemessen.The air cooler has the task of removing the non-condensable gases from the condenser. During this process, the steam losses are to be kept as low as possible. This is achieved by moving the steam / air mixture towards Suction channel is accelerated. The high speed results in good heat transfer, which leads to extensive condensation of the residual steam. In order to accelerate the mixture, the cross section in the direction of flow is increasingly smaller.

In Fig. 1 ist das eingangs erwähnte, aus DE-OS 1 948 073 bekannte Kühlsystem dargestellt. Es besteht aus dem Vorkühler 2s, von dem das Kühlrohr 14s eingezeichnet ist, und dem gekapselten Luftkühler 3s, von dem das Kühlrohr 15s eingezeichnet ist. Zwischen beiden ist der Raum 11s zum Druckausgleich angeordnet. Dieser unberohrte Raum 11s wird zudem hauptsächlich benötigt, um die den Luftkühler 3s vom Vorkühler 2s trennende Blechwand 7s an den Stützplatten 5 anschweissen zu können. In der Blechwand 7s sind die Blenden 9s angeordnet. In der am Austritt des Kühlers 3s vorgesehenen Blechwand 8s sind ebenfalls Blenden 6s vorgesehen, über die die nichtkondensierbaren Gase in den Saugraum 4s abgezogen werden. Durch den Einbau dieser Drosselstellen wird erreicht, dass die auf jeden Fall notwendige Druckdifferenz am Anfang und Ende des Kondensationsvorgangs vorwiegend in den Blenden abgebaut wird.1 shows the cooling system mentioned at the outset and known from DE-OS 1 948 073. It consists of the pre-cooler 2s, of which the cooling tube 14s is shown, and the encapsulated air cooler 3s, of which the cooling tube 15s is shown. The space 11s for pressure equalization is arranged between the two. This unthreaded space 11s is also mainly required in order to be able to weld the sheet metal wall 7s separating the air cooler 3s from the precooler 2s to the support plates 5. The panels 9s are arranged in the sheet metal wall 7s. Orifices 6s are also provided in the sheet metal wall 8s provided at the outlet of the cooler 3s, via which the non-condensable gases are drawn off into the suction space 4s. The installation of these throttling points ensures that the pressure difference that is necessary in any case at the beginning and end of the condensation process is mainly reduced in the orifices.

Indes ist das Erreichen von kontrollierten Strömungsverhältnissen im geschlossenen Luftkühler 3s mit Hilfe des zweifachen Blendensystemes nicht unkompliziert. Unter Umständen müssen noch strömungsführende Trennwände im Luftkühler eingebaut werden, wie dies die Fig. 2 und 3 der DE-OS 1 948 073 zeigen. Ein nachträgliches Ändern der Blenden 9s ist infolge der Nichtzugänglichkeit wegen der Berohrung und der allfälligen Trennwände im Kühler 3s nicht mehr möglich. Zudem kann es im Ausgleichraum 11s infolge der nicht ausreichenden Beschleunigung des Gemisches im Vorkühler 2s gegen den Luftkühler 3s hin zu NH₃-Korrosionserscheinungen kommen. Je nach Anordnung der Blenden 6s kann es zudem erforderlich sein, den Luftkühler 3s entwässern zu müssen. Aus den beiden obenerwähnten Fig. 2 und 3 der DE-OS 1 948 073 ist zudem zu erkennen, dass die Rohre innerhalb des Luftkühlers nicht auf dem gleichen Netzwerk liegen wie die Rohre des Vorkühlers und der Kondensatonszone. Dies führt zu erheblichen Nachteilen bei der Bearbeitung der Stützplatten 5 auf NC-Maschinen.However, achieving controlled flow conditions in the closed air cooler 3s with the aid of the double orifice system is not straightforward. Under certain circumstances, flow-conducting partitions still have to be installed in the air cooler, as shown in FIGS. 2 and 3 of DE-OS 1 948 073. A subsequent change of the panels 9s is no longer possible due to the inaccessibility due to the tubing and any partitions in the cooler 3s. In addition, NH3 corrosion phenomena can occur in the compensation chamber 11s due to the insufficient acceleration of the mixture in the precooler 2s against the air cooler 3s. Depending on the arrangement of the panels 6s, it may also be necessary to drain the air cooler 3s. From the two mentioned above 2 and 3 of DE-OS 1 948 073 it can also be seen that the tubes inside the air cooler are not on the same network as the tubes of the precooler and the condensation zone. This leads to considerable disadvantages when machining the support plates 5 on NC machines.

All diese Nachteile will die Erfindung durch das Vermeiden eines gekapselten Kühlers eliminieren. Gemäss Fig. 2 werden hierzu die Kühlrohre 15 des Kühlers 3 trichterförmig angeordnet. Die Trichterwände 16, welche den Kühler 3 gegen den Kondensationsraum 1 abschotten, sind im spitzen Winkel miteinander verbunden. An seinem oberen Teil ist der Trichter 16 mit einem Abdeckblech 17 versehen, welches zum Hohlraum 19 hin über die Rohre des Kühlers gestülpt ist und diese vor der von oben nach unten fliessenden Dampf- und Kondensatströmung schützt. Damit ist auch die Strömungsrichtung des abzukühlenden Gemisches vorgegeben, nämlich vom hinteren Hohlraum aus nach vorn zur Trichterspitze. Im Bereich ihrer Verbindung bilden diese Trichterwände gleichzeitig die Trennwand 7 zum Absaugkanal 4. In dieser Trennwand 7 sind im unmittelbaren Bereich der Trichterspitze die Blenden 6 angeordnet. Aus der Fig. 2 ist zu erkennen, dass mit dieser Konfiguration folgende Vorteile verbunden sind. Zum einen wird das zu nachzukondensierende Gemisch bis zum Blendeneintritt zunehend beschleunigt. Zum andern ist zu erkennen, dass für das Anschweissen des Trichters an den Stützplatten lediglich eine Rohrreihe unberohrt bleiben muss.The invention aims to eliminate all these disadvantages by avoiding an encapsulated cooler. 2, the cooling tubes 15 of the cooler 3 are arranged in a funnel shape for this purpose. The funnel walls 16, which isolate the cooler 3 from the condensation space 1, are connected to one another at an acute angle. At its upper part, the funnel 16 is provided with a cover plate 17, which is placed over the tubes of the cooler toward the cavity 19 and protects them from the steam and condensate flow flowing from top to bottom. This also specifies the direction of flow of the mixture to be cooled, namely from the rear cavity to the front towards the funnel tip. In the area of their connection, these funnel walls simultaneously form the partition 7 to the suction channel 4. In this partition 7, the screens 6 are arranged in the immediate area of the funnel tip. It can be seen from FIG. 2 that the following advantages are associated with this configuration. On the one hand, the mixture to be re-condensed is accelerated up to the entrance of the aperture. On the other hand, it can be seen that only one row of pipes has to remain untubed for the funnel to be welded to the support plates.

Die nichtkondensierbaren Gase werden über die Blenden 6 in den Kanal 4 abgesaugt, aus dem sie in Längsrichtung aus dem Kondensator herausgeführt werden. Die Saugleitung 4 durchdringt in diesem Fall einen der nichtgezeigten Rohrböden und die entsprechende Wasserkammer.The non-condensable gases are sucked off via the orifices 6 into the channel 4, from which they are led out of the condenser in the longitudinal direction. In this case, the suction line 4 penetrates one of the tube sheets (not shown) and the corresponding water chamber.

Diese Blenden 6, welche im Bereich der jüngsten Stelle des Trichters angebracht sind, stellen die physikalische Trennung des Kondensationsraumes 1 vom Absaugkanal 4 dar. Sie sind mehrfach über die ganze Rohrlänge des Kondensators verteilt und bewirken durch die Erzeugung eines Druckverlustes, dass die Saugwirkung in allen Kompartimenten 10 des Kondensators homogen ist. Hierzu ist ihr Durchströmquerschnitt so bemessen, dass der unterschiedlichen Druckverteilung in den Kompartimenten entlang der Kondensatorlänge Rechnung getragen ist. Der pro Kompartiment unterschiedliche Querschnittsbedarf kann durch entsprechende Anordnung einer Mehrzahl von Bohrungen mit unterschiedlichen Durchmesser und/oder unterschiedlicher Teilung gedeckt werden. Blendendurchmesser und Blendenabstand sind so zu wählen, dass der örtliche, nicht kondensierbare Massenstrom jeweils bei der lokal verfügbaren Druckdifferenz abgesaugt wird.These diaphragms 6, which are attached in the area of the youngest point of the funnel, represent the physical separation of the condensation chamber 1 from the suction channel 4. They are distributed several times over the entire length of the condenser and, by generating a pressure loss, cause the suction effect to be homogeneous in all compartments 10 of the condenser. For this purpose, their flow cross-section is dimensioned so that the different pressure distribution in the compartments along the condenser length is taken into account. The different cross-sectional requirements per compartment can be covered by appropriate arrangement of a plurality of bores with different diameters and / or different pitches. Orifice diameter and orifice spacing should be selected so that the local, non-condensable mass flow is extracted at the locally available pressure difference.

Verglichen mit der zum Stand der Technik zählenden Lösung ist aus Fig. 2 erkennbar, dass zum einen mit einem erheblich verringerten Blechbedarf und demzufolge weniger Schweissarbeit auszukommen ist und anderseits ein nachträgliches Abändern der Blenden 6 ermöglicht wird durch einfaches Entfernen der Rückwand des Absaugkanals 4.Compared with the solution belonging to the prior art, it can be seen from FIG. 2 that, on the one hand, considerably less sheet metal is required and consequently less welding work is required, and on the other hand a subsequent modification of the panels 6 is made possible by simply removing the rear wall of the suction channel 4.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
KondensationsteilCondensation part
2s2s
VorkühlerPrecooler
3, 3s3, 3s
Kühlercooler
4, 4s4, 4s
SaugleitungSuction line
55
StützplatteSupport plate
6, 6s6, 6s
Blendecover
7, 7s7, 7s
Trennwandpartition wall
8s8s
BlechwandSheet metal wall
9s9s
Blendecover
1010th
KompartimentCompartment
11s11s
AusgleichraumCompensation room
12,12,
AusgleichgasseCompensation alley
13, 13s13, 13s
Kühlrohr des Kondensationsteils 1Cooling pipe of the condensation part 1
14s14s
Kühlrohr des Vorkühlers 2sPre-cooler cooling pipe 2s
15, 15s15, 15s
Kühlrohr des KühlersCooling pipe of the cooler
1616
TrichterwandFunnel wall
1717th
AbdeckblechCover plate
1818th
1919th
Hohlraumcavity
2020th
TeilbündelSub-bundle

Claims (1)

Dampfkondensator, in dem der Dampf an kühlwasserdurchflossenen, in separaten Bündeln (20) zusammengefassten Rohren (13) niedergeschlagen wird, - wobei jedes Bündel durch senkrecht zu den Rohren angeordneten Stützplatten (5) in Kompartimente (10) unterteilt ist, - wobei die in Reihen angeordneten Rohre eines Bündels einen Hohlraum (19) umschliessen, in dem ein Kühler (3) für die nicht kondensierbaren Gase angeordnet ist, - wobei die nicht kondensierbaren Gase aus dem Kühler (3) über Blenden (6) in einen für alle Kompartimente (10) gemeinsamen Saugkanal (4) einströmen, der sich über die ganze Länge der Rohre (13) erstreckt, dadurch gekennzeichnet, - dass nur ein Kühler (3) vorgesehen ist, an den sich der Saugkanal (4) unmittelbar anschliesst, - und dass die Durchströmquerschnitte der Blenden (6) in den Kompartimenten (10) so dimensioniert sind, dass der örtliche, nicht kondensierbare Massenstrom bei der lokalen verfügbaren Druckdifferenz abgesaugt wird. Steam condenser in which the steam is deposited on pipes (13) through which cooling water flows and which are combined in separate bundles (20), - Each bundle being divided into compartments (10) by support plates (5) arranged perpendicular to the tubes, - The tubes of a bundle arranged in rows enclose a cavity (19) in which a cooler (3) for the non-condensable gases is arranged, - The non-condensable gases from the cooler (3) flow through orifices (6) into a suction channel (4) common to all compartments (10), which extends over the entire length of the tubes (13), characterized, - that only one cooler (3) is provided, to which the suction channel (4) is directly connected, - And that the flow cross-sections of the orifices (6) in the compartments (10) are dimensioned so that the local, non-condensable mass flow is extracted at the locally available pressure difference.
EP94103311A 1993-04-05 1994-03-04 Steam condenser Expired - Lifetime EP0619466B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4311118A DE4311118A1 (en) 1993-04-05 1993-04-05 Steam condenser
DE4311118 1993-04-05

Publications (3)

Publication Number Publication Date
EP0619466A2 true EP0619466A2 (en) 1994-10-12
EP0619466A3 EP0619466A3 (en) 1995-12-13
EP0619466B1 EP0619466B1 (en) 1997-11-19

Family

ID=6484760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103311A Expired - Lifetime EP0619466B1 (en) 1993-04-05 1994-03-04 Steam condenser

Country Status (3)

Country Link
US (1) US5465784A (en)
EP (1) EP0619466B1 (en)
DE (2) DE4311118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050610A1 (en) 1998-03-27 1999-10-07 Siemens Aktiengesellschaft Heat exchanger tube, method for the production of a heat exchanger tube and capacitor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269867B1 (en) * 1994-12-02 2001-08-07 Hitachi, Ltd Condenser and power plant
JP3735405B2 (en) * 1995-12-15 2006-01-18 株式会社東芝 Condenser
DE19610237A1 (en) * 1996-03-15 1997-09-18 Asea Brown Boveri Steam condenser
DE19642100B4 (en) * 1996-10-12 2011-09-29 Alstom steam condenser
JP2000304464A (en) * 1999-04-15 2000-11-02 Toshiba Corp Condenser
DE10016080A1 (en) * 2000-03-31 2001-10-04 Alstom Power Nv Condenser for condensation of vapor-form fluid has at least one bundle of parallel arranged tubes, through which first fluid flows and around which vapor-form fluid flows
WO2007110873A1 (en) * 2006-03-27 2007-10-04 Bharat Heavy Electricals Limited Steam condenser with two-pass tube nest layout
CN201203306Y (en) * 2007-08-21 2009-03-04 高克联管件(上海)有限公司 Condenser with gas baffle plate
WO2015111318A1 (en) * 2014-01-23 2015-07-30 三菱日立パワーシステムズ株式会社 Condenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH423819A (en) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Condensation system for steam turbine exhaust steam
DE1948073A1 (en) * 1969-08-29 1971-03-25 Bbc Brown Boveri & Cie Process for condensing water vapor and system for carrying out this process
EP0325758A1 (en) * 1988-01-22 1989-08-02 Asea Brown Boveri Ag Steam condenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE423819C (en) * 1924-07-17 1926-01-11 Hermann Johs Schwabe Fa Method and device for the impregnation of the knitting, knitting u. Like. Machines to be processed thread
DE505357C (en) * 1928-12-19 1930-08-20 Timken Roller Bearing Co Tapered roller bearings with a contact rib
US2224877A (en) * 1939-08-25 1940-12-17 Westinghouse Electric & Mfg Co Condensing apparatus
JPS5914682B2 (en) * 1980-09-29 1984-04-05 株式会社日立製作所 feed water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH423819A (en) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Condensation system for steam turbine exhaust steam
DE1948073A1 (en) * 1969-08-29 1971-03-25 Bbc Brown Boveri & Cie Process for condensing water vapor and system for carrying out this process
EP0325758A1 (en) * 1988-01-22 1989-08-02 Asea Brown Boveri Ag Steam condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050610A1 (en) 1998-03-27 1999-10-07 Siemens Aktiengesellschaft Heat exchanger tube, method for the production of a heat exchanger tube and capacitor

Also Published As

Publication number Publication date
DE4311118A1 (en) 1994-10-06
EP0619466A3 (en) 1995-12-13
DE59404596D1 (en) 1998-01-02
US5465784A (en) 1995-11-14
EP0619466B1 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0384200B1 (en) Steam condenser
DE2845181C2 (en)
EP0619466B1 (en) Steam condenser
DE1958885B2 (en) DEVICE FOR DRYING AND OVERHEATING OF WET STEAM IN STEAM POWER PLANTS
EP0325758B1 (en) Steam condenser
DE19642100B4 (en) steam condenser
DE1576848C3 (en) Device for separating water from wet steam and for subsequent Bendert superheating of the steam
DE2732879A1 (en) HEAT EXCHANGER
DE3538515C2 (en)
DE19712993A1 (en) Apparatus for heating and degassing water
DE2703024C3 (en) Device for drying wet steam and then top-heating the dried steam
DE1939245C3 (en) Air-cooled condenser for the top product of a distilling or rectifying column
EP0463448B1 (en) Method and apparatus for heating and multiple effect degasification of water
EP0795729B1 (en) Steam condenser
DE3510277A1 (en) BROTHER CONDENSER
DE69102879T2 (en) GAS COOLER FOR HEAT TRANSFER BY CONVECTION.
EP1126227A1 (en) Steam condenser
DE19521622C2 (en) Condenser for condensable vapors
DE2917498C2 (en) Surface heat exchanger
EP0561012B1 (en) Method and apparatus for water treatment in a surface condenser
DE2166469A1 (en) Air cooled finned condenser tubes - widened to rectangular ends which adjoin one another at connection to headers, thus eliminating tubeplates
DE4101031C2 (en) Horizontal spray film evaporator
DE3105804C2 (en) Capacitor arrangement
EP1139051A2 (en) Condenser
DE1501337C (en) Surface condenser for steam turbine exhaust steam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE LI SE

17P Request for examination filed

Effective date: 19960504

17Q First examination report despatched

Effective date: 19961120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404596

Country of ref document: DE

Date of ref document: 19980102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030304

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL