EP0617785B1 - Method and regenerator for reheating gases - Google Patents

Method and regenerator for reheating gases Download PDF

Info

Publication number
EP0617785B1
EP0617785B1 EP93923585A EP93923585A EP0617785B1 EP 0617785 B1 EP0617785 B1 EP 0617785B1 EP 93923585 A EP93923585 A EP 93923585A EP 93923585 A EP93923585 A EP 93923585A EP 0617785 B1 EP0617785 B1 EP 0617785B1
Authority
EP
European Patent Office
Prior art keywords
cold
regenerator
hot
gas
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93923585A
Other languages
German (de)
French (fr)
Other versions
EP0617785A1 (en
Inventor
Hans-Georg Fassbinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0617785A1 publication Critical patent/EP0617785A1/en
Application granted granted Critical
Publication of EP0617785B1 publication Critical patent/EP0617785B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material

Definitions

  • the present invention relates to a method of heating gas in a regenerator with a mass of heat accumulation consisting of bulk material arranged in a ring between two cylindrical grids coaxial, a hot collection chamber, surrounded by the hot grid internal, for hot gases and a cold collection chamber, enclosed between the external cold grid on the one hand and the external wall of the enclosure of the regenerator on the other hand, for cold gases, as well as a regenerator of this type.
  • a process and a regenerator in accordance with the preambles of the claims 1 and 4, respectively, are known for example from document DE-C-4 108 744.
  • the hot gases respectively the cold gases are driven in the radial direction through the mass of accumulation of heat, unlike otherwise usual air heaters, and done during the reheating phase, from the hot collection chamber inside the regenerator towards the external cold collection chamber, and in the opposite direction during the cold blowing of the regenerator.
  • Gases at reheat can also be gas mixtures, which contain also parts of vapors, in particular water vapor.
  • the object of the invention is therefore to improve the process mentioned in the introduction as well as the regenerator described above, avoiding disadvantages caused by the chimney effect and in particular by increasing the power of the regenerator for a construction height significantly less of it.
  • this objective is achieved by the fact that the increase in the pressure drop during the heating phase is at least 5 times as great as the product ⁇ .gH, in which H is the height of the regenerator, ⁇ is the density of the gas at a temperature of 20 ° C and g is the acceleration of gravity, that the gas flow is worth at least 300 m 3 N / hm 2 of surface of the hot grid at pressure normal, and that the grain size of the bulk material is chosen less than 15 mm.
  • This distribution in S of the temperature includes first the advantage that the drop in temperature of the hot wind during blowing cold is very low, and besides that the variation in temperature average of the entire material bed is on the contrary very high with about 600 ° C.
  • the variation mean temperature is only about 100 ° C, hence it results that the S distribution of temperature stores about six times more thermal energy than the linear distribution of temperature. This result allows the mass to be reduced to around one sixth. heat buildup.
  • the cold phase that is to say the cold blowing, is carried out with an overpressure.
  • the flow of gas to be heated increases in the P / P 0 ratio, without the heat transfer degrading. If, for example, a blast furnace wind is produced at a pressure of 5 bar, the flow rate can reach 5000 m 3 N / hm 2 , respectively 2500 kW / m 2 . With a regenerator having a grid area of 20 m 2 , a hot wind flow of 100,000 m 3 N / h can be produced.
  • the heating phase is carried out at full power, and breaks are observed after the cold blowing phase.
  • This implementation of the process makes it possible to work with the power desired constriction, and the thermal equilibrium of the two phases is then established by the breaks after the cold blowing, and also to use for heating the regenerator a burner which has only a range of very limited adjustment, unlike the burners used until now in conventional wind heaters.
  • the other objective fixed to the invention is, in a regenerator intended for the implementation of the process, achieved by the fact that the outside diameter of the annular mass of heat accumulation is at most the twice its internal diameter, and that the grain size of the bulk material is chosen to be less than 15 mm.
  • the regenerator is heated with a premix burner.
  • a premix burner guarantees that the hot collecting chamber of the regenerator is entirely sufficient as a combustion chamber and that the combustion takes place not only without noise but also without pulsations. Furthermore, the size of the regenerator is not adversely affected by the use of such a premix burner.
  • FIG. 2 An exemplary embodiment of the burner is shown in FIG. 2 and will explained in detail below.
  • the regenerator 1 intended for the implementation of the method of the invention has an enclosure 2 having the shape of an upright cylinder, which can by example be supported by pillars 3.
  • the interior space of enclosure 2 is essentially divided by two grids 4 and 5 of cylindrical shape and arranged concentrically with distance from each other, in a cylindrical hot collection chamber 6 internal, an intermediate annular chamber 7 containing the accumulation mass heat consisting of bulk material, and a cold external annular collection 8 formed by the wall of the enclosure 2 with grid 5.
  • arrivals are expected 10 for heating gases, which are produced by a premix burner 11, which in turn is supplied by a gas - air mixing tube 12.
  • the hot internal collection chamber 6 ends in the upper region enclosure 2 of regenerator 1 by a hot wind outlet 13, the external collection chamber 8 is connected to a chimney 14 for evacuation burnt gases, from which the heating gases can escape after they have passed through the heat storage agent in the intermediate chamber 7.
  • the gas-air mixing tube 12 is connected to a fan 15, which produces both air for the heating phase and for the cold blowing. In the heating phase, air is led through the tube of gas - air mixture 12 and mixed with heating gas, which has been introduced by the gas injector 16 into the gas-air mixing tube 12.
  • valves 17, 18 and 19 are closed, the valve 20 and the outlet 13 are on the contrary open, so that the cold blowing phase can begin.
  • the open fittings are at again closed and the previously closed valves are open, so that the heating phase can start again.
  • the bulk material of the heat accumulating mass consists of a loading of granules with a grain size not exceeding 15 mm, and the outside diameter of the annular mass of heat accumulation is not more than double the inside diameter.
  • This minimum flow corresponds to a power of 300 m 3 N / hm 2 .
  • the S-profile of the temperature is more and more clearly raised.
  • a particularly advantageous operating point appeared for a flow capacity of 1000 m 3 N / hm 2 , a pressure drop from 1000 to 1600 Pascal.
  • An increase in the flow rate up to 2000 m 3 N / hm 2 is possible without reducing the heat transfer, taking into account a pressure drop from 3000 to 5000 Pascal.
  • This power limit is applicable to walking at normal pressure.
  • the operation under increased pressure has shown the surprising result, that the flow rate can be further increased, in fact in proportion to the absolute pressure, without the heat transfer data being degraded. If, for example, a blast furnace wind at 5 bar is produced, the flow can reach 5000 m 3 N / hm 2 , respectively 2500 kW / m 2 . It is thus possible to produce a flow of hot wind of 100,000 m 3 N / h with a regenerator having a grid surface of 20 m 2 .
  • regenerator is generally heated leads to normal pressure, three generators must be heated simultaneously, so a total of four regenerators are required to ensure continuous operation for the production of gas hot.
  • regenerators only have a diameter of 4 m for a height of 5 m, while air heaters of the same power used up to now have a diameter of 8 m and a height of 30 m.
  • a partial load step is actually only achievable by performing the heating phase at full power, but it must however possibly insert breaks after the cold blowing phase.
  • We therefore use a burner says premix, in which the heating gas and combustion air are intimately mixed with each other when cold, before ignition, and are only ignited after mixing. For a safe walk of such premix burner, it is necessary not to go below a minimum gas speed, to surely avoid a return of flame of the mixture. As a result, such a premix burner does not has only a very limited adjustment range.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Drying Of Solid Materials (AREA)
  • Air Supply (AREA)
  • Furnace Details (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Air Bags (AREA)
  • Gas Burners (AREA)

Abstract

PCT No. PCT/FR93/01025 Sec. 371 Date Apr. 28, 1994 Sec. 102(e) Date Apr. 28, 1994 PCT Filed Oct. 19, 1993 PCT Pub. No. WO94/10519 PCT Pub. Date May 11, 1994A method is provided for heating a gas in a regenerator with a heat accumulation mass consisting of a loose bulk material arranged in a ring between two coaxial cylindrical grids, a hot collection chamber, surrounded by the inner hot grid, for the hot gases and a cold collection chamber, enclosed between the outer cold grid, on the one hand, and the wall of the regenerator, on the other hand, for the cold gases, wherein the increase in the head loss during the heating phase is at least 5 times as great as the product rho .g.H, in which H is the height of the regenerator, rho is the density of the gas at a temperature of 20 DEG C. and g is the acceleration due to gravity, and the gas flow rate is at least equal to 300 m3N/h.m2 of surface area of the hot grid at standard pressure.

Description

La présente invention concerne un procédé de réchauffage de gaz dans un régénérateur avec une masse d'accumulation de chaleur constituée de matière en vrac disposée en anneau entre deux grilles cylindriques coaxiales, une chambre de collecte chaude, entourée par la grille chaude interne, pour les gaz chauds et une chambre de collecte froide, enfermée entre la grille froide externe d'une part et la paroi extérieure de l'enceinte du régénérateur d'autre part, pour les gaz froids, ainsi qu'un régénérateur de ce type. Un procédé et un régénérateur conformes aux préambules des revendications 1 et 4, respectivement, sont connus par exemple du document DE-C-4 108 744.The present invention relates to a method of heating gas in a regenerator with a mass of heat accumulation consisting of bulk material arranged in a ring between two cylindrical grids coaxial, a hot collection chamber, surrounded by the hot grid internal, for hot gases and a cold collection chamber, enclosed between the external cold grid on the one hand and the external wall of the enclosure of the regenerator on the other hand, for cold gases, as well as a regenerator of this type. A process and a regenerator in accordance with the preambles of the claims 1 and 4, respectively, are known for example from document DE-C-4 108 744.

Dans un tel régénérateur, les gaz chauds respectivement les gaz froids sont conduits en direction radiale à travers la masse d'accumulation de chaleur, au contraire des réchauffeurs d'air par ailleurs usuels, et en fait pendant la phase de réchauffage, depuis la chambre de collecte chaude à l'intérieur du régénérateur vers la chambre de collecte froide externe, et en sens contraire lors du soufflage froid du régénérateur. Les gaz à réchauffer peuvent également être des mélanges gazeux, qui contiennent aussi des parts de vapeurs, en particulier de vapeur d'eau.In such a regenerator, the hot gases respectively the cold gases are driven in the radial direction through the mass of accumulation of heat, unlike otherwise usual air heaters, and done during the reheating phase, from the hot collection chamber inside the regenerator towards the external cold collection chamber, and in the opposite direction during the cold blowing of the regenerator. Gases at reheat can also be gas mixtures, which contain also parts of vapors, in particular water vapor.

Un régénérateur de ce type est décrit dans le brevet US-A-2.272.108. La réalisation quantitative, mais non présentée ici de l'exemple d'application qui y est donné, montre qu'un régénérateur conforme à la description de ce brevet des Etats-Unis ne fonctionnerait absolument pas dans la pratique. Une évaluation qualitative fait en outre apparaítre que la vitesse de gaz choisie pour la traversée de la couche d'accumulation de chaleur a été choisie beaucoup trop faible et en outre que la taille précitée des grains de la matière en vrac de la masse d'accumulation de chaleur est trop grande. Ces valeurs conduisent ainsi à une perte de charge du gaz beaucoup trop faible dans le lit de matière. Ainsi la pression du gaz diminue avec la hauteur dans la chambre de collecte froide, tandis que cet effet, connu également sous le nom de "effet de cheminée", est négligeable dans la chambre de collecte chaude. Dans l'exemple d'application, la différence de pression provoquée par cet "effet de cheminée" est un multiple de la perte de charge dans le lit de matière, avec la conséquence qu'au chauffage du régénérateur, les gaz de chauffage ne circuleraient que dans la région haute à travers le lit de matière, tandis que dans la région inférieure il faut même s'attendre à un reflux. En marche au vent chaud, donc pendant le soufflage froid, les conditions s'inversent, c'est-à-dire que seule la région inférieure du lit de matière serait exposée. Ces résultats conduisent forcément à la conclusion que le régénérateur décrit dans le brevet US-A-2.272.108 serait entièrement défaillant.A regenerator of this type is described in US-A-2,272,108. The quantitative realization, but not presented here of the application example given there, shows that a regenerator conforming to the description of this US patent would absolutely not work in the convenient. A qualitative assessment also shows that the gas velocity chosen for crossing the accumulation layer of heat was chosen far too low and furthermore that the size aforementioned grains of the bulk material the mass of accumulation of heat is too great. These values thus lead to a loss of gas charge far too low in the material bed. So the gas pressure decreases with height in the collection chamber cold, while this effect, also known as the "effect of chimney ", is negligible in the hot collection chamber. the application example, the pressure difference caused by this "chimney effect" is a multiple of the pressure drop in the bed matter, with the consequence that when the regenerator is heated, the gases of heating would circulate only in the upper region through the bed of matter, while in the lower region we should even expect reflux. When running in hot wind, so during cold blowing, the conditions are reversed, i.e. only the lower region of the bed of material would be exposed. These results necessarily lead to the conclusion that the regenerator described in patent US-A-2,272,108 would be entirely faulty.

L'invention a de ce fait pour objet d'améliorer le procédé mentionné dans l'introduction ainsi que le régénérateur décrit plus haut, en évitant les inconvénients engendrés par l'effet de cheminée et en particulier en augmentant la puissance du régénérateur pour une hauteur de construction nettement moindre de celui-ci.The object of the invention is therefore to improve the process mentioned in the introduction as well as the regenerator described above, avoiding disadvantages caused by the chimney effect and in particular by increasing the power of the regenerator for a construction height significantly less of it.

Dans le cadre du procédé décrit plus haut, cet objectif est atteint par le fait que l'augmentation de la perte de charge pendant la phase de chauffage est au moins 5 fois aussi importante que le produit ρ.g.H, dans lequel H est la hauteur du régénérateur, ρ est la densité du gaz à la température de 20°C et g est l'accélération de la pesanteur, que le débit du gaz vaut au moins 300 m3N/h.m2 de surface de la grille chaude à la pression normale, et que la taille des grains de la matière en vrac est choisie inférieure à 15 mm.In the context of the process described above, this objective is achieved by the fact that the increase in the pressure drop during the heating phase is at least 5 times as great as the product ρ.gH, in which H is the height of the regenerator, ρ is the density of the gas at a temperature of 20 ° C and g is the acceleration of gravity, that the gas flow is worth at least 300 m 3 N / hm 2 of surface of the hot grid at pressure normal, and that the grain size of the bulk material is chosen less than 15 mm.

La mise en oeuvre de ce procédé conforme à l'invention a montré que, contrairement aux réchauffeurs d'air connus, il s'établit dans la matière en vrac une distribution de température entièrement différente, car elle est essentiellement linéaire dans ceux-ci tandis que dans le procédé proposé elle est au contraire en forme de S. Cette distribution en S de la température, représentée dans la Fig. 1, comporte en premier lieu l'avantage que la chute de température du vent chaud pendant le soufflage froid est très faible, et par ailleurs que la variation de la température moyenne de l'ensemble du lit de matière est au contraire très élevée avec environ 600°C. Dans les réchauffeurs d'air connus jusqu'ici, la variation de la température moyenne ne vaut au contraire qu'environ 100°C, d'où il résulte que la distribution en S de la température emmagasine environ six fois plus d'énergie thermique que la distribution linéaire de la température. Ce résultat permet de réduire à environ un sixième la masse d'accumulation de chaleur. The implementation of this process according to the invention has shown that, unlike known air heaters, it is established in the material in bulk an entirely different temperature distribution because it is essentially linear in these while in the process proposed it is on the contrary in the form of S. This distribution in S of the temperature, shown in Fig. 1, includes first the advantage that the drop in temperature of the hot wind during blowing cold is very low, and besides that the variation in temperature average of the entire material bed is on the contrary very high with about 600 ° C. In air heaters known so far, the variation mean temperature is only about 100 ° C, hence it results that the S distribution of temperature stores about six times more thermal energy than the linear distribution of temperature. This result allows the mass to be reduced to around one sixth. heat buildup.

Cette solution entraíne également que l'effet de cheminée décrit plus haut perd de l'importance et même qu'il peut être supprimé. Il est avantageux que la différence Δ2p constituée de ΔPchaud (chute de pression du régénérateur à la fin de la phase de chauffage) et ΔPfroid (chute de pression du régénérateur au début de la phase de chauffage) soit grande par rapport à ρ.g.H. Quantitativement, il conviendrait de chercher à atteindre Δ2 p ρ . g . H = 10 à 20. This solution also results in the chimney effect described above losing importance and even that it can be eliminated. It is advantageous that the difference Δ 2p consisting of hot ΔP (pressure drop of the regenerator at the end of the heating phase) and cold ΔP (pressure drop of the regenerator at the start of the heating phase) is large compared to ρ .gH Quantitatively, efforts should be made to achieve Δ 2 p ρ. g . H = 10 at 20.

Dans une autre mise en oeuvre avantageuse du procédé, la phase froide, c'est-à-dire le soufflage froid, est exécutée avec une surpression.In another advantageous implementation of the process, the cold phase, that is to say the cold blowing, is carried out with an overpressure.

Dans cette forme de fonctionnement, nécessaire par exemple lors de l'application du procédé au réchauffage de vent de haut fourneau, le débit de gaz à réchauffer augmente dans le rapport P/P0, sans que le transfert de chaleur se dégrade. Si l'on produit par exemple un vent de haut fourneau sous une pression de 5 bar, le débit peut atteindre 5000 m3N/h.m2, respectivement 2500 kW/m2. Avec un régénérateur ayant une surface de grille de 20 m2, on peut produire un débit de vent chaud de 100.000 m3N/h.In this form of operation, necessary for example during the application of the process for heating blast furnace wind, the flow of gas to be heated increases in the P / P 0 ratio, without the heat transfer degrading. If, for example, a blast furnace wind is produced at a pressure of 5 bar, the flow rate can reach 5000 m 3 N / hm 2 , respectively 2500 kW / m 2 . With a regenerator having a grid area of 20 m 2 , a hot wind flow of 100,000 m 3 N / h can be produced.

Le chauffage de la masse d'accumulation de chaleur ne sera au contraire effectué qu'à la pression normale, pour des raisons économiques, et pour cette raison trois régénérateurs doivent être chauffés simultanément, tandis qu'un quatrième régénérateur se trouve en cours de soufflage froid.On the contrary, the heating of the mass of heat accumulation will performed only at normal pressure, for economic reasons, and for this reason three regenerators must be heated simultaneously, while a fourth regenerator is in the process of cold blowing.

Dans une autre mise en oeuvre avantageuse du procédé, en marche à charge partielle, la phase de chauffage est conduite à pleine puissance, et des pauses sont observées après la phase de soufflage froid. Cette mise en oeuvre du procédé permet de travailler avec la puissance étranglée désirée, et l'équilibre thermique des deux phases est alors établi par les pauses après le soufflage froid, et aussi d'utiliser pour le chauffage du régénérateur un brûleur qui ne présente qu'une gamme de réglage très limitée, contrairement aux brûleurs utilisés jusqu'à présent dans les réchauffeurs de vent conventionnels.In another advantageous implementation of the method, running under load partial, the heating phase is carried out at full power, and breaks are observed after the cold blowing phase. This implementation of the process makes it possible to work with the power desired constriction, and the thermal equilibrium of the two phases is then established by the breaks after the cold blowing, and also to use for heating the regenerator a burner which has only a range of very limited adjustment, unlike the burners used until now in conventional wind heaters.

L'autre objectif fixé à l'invention est, dans un régénérateur destiné à la mise en oeuvre du procédé, atteint par le fait que le diamètre extérieur de la masse annulaire d'accumulation de chaleur est au maximum le double de son diamètre intérieur, et que la taille des grains de la matière en vrac est choisie inférieure à 15 mm.The other objective fixed to the invention is, in a regenerator intended for the implementation of the process, achieved by the fact that the outside diameter of the annular mass of heat accumulation is at most the twice its internal diameter, and that the grain size of the bulk material is chosen to be less than 15 mm.

Cette réalisation de l'épaisseur de la couche d'accumulation de chaleur influence la grandeur Δ2p déjà explicitée plus haut. Cette grandeur est en fait petite pour un rapport des diamètres plus grand que celui qui est cité. Des calculs et des essais ont montré que ce rapport ne devrait pas dépasser la valeur de 2.This realization of the thickness of the heat accumulation layer influences the quantity Δ 2p already explained above. This quantity is in fact small for a ratio of the diameters larger than that which is quoted. Calculations and tests have shown that this ratio should not exceed the value of 2.

De manière avantageuse, le régénérateur est chauffé avec un brûleur à prémélange.
L'utilisation d'un tel brûleur garantit que la chambre de collecte chaude du régénérateur suffit entièrement comme chambre de combustion et que la combustion se déroule non seulement sans bruit mais aussi sans pulsations.
Par ailleurs, la taille du régénérateur n'est pas influencée de manière défavorable par l'utilisation d'un tel brûleur à prémélange.
Advantageously, the regenerator is heated with a premix burner.
The use of such a burner guarantees that the hot collecting chamber of the regenerator is entirely sufficient as a combustion chamber and that the combustion takes place not only without noise but also without pulsations.
Furthermore, the size of the regenerator is not adversely affected by the use of such a premix burner.

Un exemple de réalisation du brûleur est représenté dans la Fig. 2 et sera expliqué en détail ci-dessous.An exemplary embodiment of the burner is shown in FIG. 2 and will explained in detail below.

Le régénérateur 1 destiné à la mise en oeuvre du procédé de l'invention présente une enceinte 2 ayant la forme d'un cylindre dressé, qui peut par exemple être soutenu au moyen de piliers 3.The regenerator 1 intended for the implementation of the method of the invention has an enclosure 2 having the shape of an upright cylinder, which can by example be supported by pillars 3.

L'espace intérieur de l'enceinte 2 est essentiellement divisé par deux grilles 4 et 5 de forme cylindrique et disposées concentriquement à distance l'une de l'autre, en une chambre de collecte chaude 6 cylindrique interne, une chambre annulaire intermédiaire 7 contenant la masse d'accumulation de chaleur constituée de matière en vrac, et une chambre de collecte annulaire externe froide 8 formée par la paroi de l'enceinte 2 avec la grille 5. The interior space of enclosure 2 is essentially divided by two grids 4 and 5 of cylindrical shape and arranged concentrically with distance from each other, in a cylindrical hot collection chamber 6 internal, an intermediate annular chamber 7 containing the accumulation mass heat consisting of bulk material, and a cold external annular collection 8 formed by the wall of the enclosure 2 with grid 5.

Dans la région de pied 9 maçonnée de l'enceinte 2, on a prévu des arrivées 10 pour les gaz de chauffage, qui sont produits par un brûleur à prémélange 11, qui à son tour est alimenté par un tube de mélange gaz - air 12.In the masonry foot 9 region of enclosure 2, arrivals are expected 10 for heating gases, which are produced by a premix burner 11, which in turn is supplied by a gas - air mixing tube 12.

La chambre de collecte interne chaude 6 se termine dans la région supérieure de l'enceinte 2 du régénérateur 1 par une sortie de vent chaud 13, la chambre de collecte externe 8 est raccordée à une cheminée 14 d'évacuation des gaz brûlés, de laquelle les gaz de chauffage peuvent s'échapper après qu'ils soient passés à travers l'agent d'accumulation de chaleur dans la chambre intermédiaire 7.The hot internal collection chamber 6 ends in the upper region enclosure 2 of regenerator 1 by a hot wind outlet 13, the external collection chamber 8 is connected to a chimney 14 for evacuation burnt gases, from which the heating gases can escape after they have passed through the heat storage agent in the intermediate chamber 7.

Le tube de mélange gaz - air 12 est raccordé à un ventilateur 15, qui produit aussi bien l'air pour la phase de chauffage que pour la phase de soufflage froid. Dans la phase de chauffage, l'air est conduit par le tube de mélange gaz - air 12 et mélangé avec du gaz de chauffage, qui a été introduit par l'injecteur de gaz 16 dans le tube de mélange gaz - air 12.The gas-air mixing tube 12 is connected to a fan 15, which produces both air for the heating phase and for the cold blowing. In the heating phase, air is led through the tube of gas - air mixture 12 and mixed with heating gas, which has been introduced by the gas injector 16 into the gas-air mixing tube 12.

Après l'achèvement de la phase de chauffage, les vannes 17, 18 et 19 sont fermées, la vanne 20 ainsi que la sortie 13 sont au contraire ouvertes, de sorte que la phase de soufflage froid peut alors commencer. Après l'achèvement de la phase de soufflage froid, les raccords ouverts sont à nouveau fermés et les vannes antérieurement fermées sont ouvertes, de sorte que la phase de chauffage peut recommencer.After the completion of the heating phase, the valves 17, 18 and 19 are closed, the valve 20 and the outlet 13 are on the contrary open, so that the cold blowing phase can begin. After the completion of the cold blowing phase, the open fittings are at again closed and the previously closed valves are open, so that the heating phase can start again.

La matière en vrac de la masse d'accumulation de chaleur se compose d'une charge de granules avec une taille de grains qui n'excède pas 15 mm, et le diamètre extérieur de la masse annulaire d'accumulation de chaleur n'est pas supérieur au double du diamètre intérieur.The bulk material of the heat accumulating mass consists of a loading of granules with a grain size not exceeding 15 mm, and the outside diameter of the annular mass of heat accumulation is not more than double the inside diameter.

Bien que la masse d'accumulation de chaleur de ce régénérateur soit réduite environ au sixième de la masse d'accumulation de chaleur des réchauffeurs d'air usuels et à circulation verticale utilisés jusqu'à présent, la même quantité d'énergie thermique est accumulée; ceci résulte de la distribution en S de la température suivant la Fig. 1. Cette distribution de la température se distingue fondamentalement de celle des réchauffeurs d'air connus, où elle est essentiellement linéaire. La distribution en S de la température offre deux avantages décisifs par rapport à la distribution linéaire, d'une part la chute de température du vent chaud pendant la phase de soufflage froid est très faible, et d'autre part la variation de la température moyenne de l'ensemble du lit de matière est très élevée, de l'ordre de 600°C. La distribution en S de la température dépend cependant aussi non seulement de la taille de grain prescrite de la charge de granules mais aussi d'un débit minimal déterminé de gaz. Ce débit minimal correspond à une puissance de 300 m3N/h.m2. Celle-ci correspond, pour une température de vent de 1200°C, à une puissance spécifique de 150 kW/m2, sous laquelle il ne faut pas descendre. Lorsque la puissance augmente, le profil en S de la température est de plus en plus clairement relevé. Un point de fonctionnement particulièrement avantageux est apparu pour une capacité de débit de 1000 m3N/h.m2, une perte de charge de 1000 à 1600 Pascal. Un accroissement du débit jusqu'à 2000 m3N/h.m2 est possible sans diminution du transfert de chaleur en tenant compte d'une perte de charge de 3000 à 5000 Pascal. Cette limite de puissance est applicable à une marche à la pression normale.Although the mass of heat storage of this regenerator is reduced to approximately one sixth of the mass of heat storage of the usual air heaters and vertical circulation used until now, the same amount of thermal energy is accumulated ; this results from the distribution in S of the temperature according to FIG. 1. This temperature distribution is fundamentally different from that of known air heaters, where it is essentially linear. The distribution in S of the temperature offers two decisive advantages compared to the linear distribution, on the one hand the temperature drop of the hot wind during the cold blowing phase is very weak, and on the other hand the variation of the average temperature of the entire bed of material is very high, of the order of 600 ° C. However, the temperature distribution in S also depends not only on the prescribed grain size of the pellet charge but also on a determined minimum gas flow. This minimum flow corresponds to a power of 300 m 3 N / hm 2 . This corresponds, for a wind temperature of 1200 ° C, to a specific power of 150 kW / m 2 , below which it is not necessary to descend. As the power increases, the S-profile of the temperature is more and more clearly raised. A particularly advantageous operating point appeared for a flow capacity of 1000 m 3 N / hm 2 , a pressure drop from 1000 to 1600 Pascal. An increase in the flow rate up to 2000 m 3 N / hm 2 is possible without reducing the heat transfer, taking into account a pressure drop from 3000 to 5000 Pascal. This power limit is applicable to walking at normal pressure.

Le fonctionnement sous pression accrue a montré le résultat surprenant, que le débit peut encore être augmenté, en fait proportionnellement à la pression absolue, sans que les données du transfert de chaleur se dégradent. Si l'on produit par exemple un vent de haut fourneau à 5 bar, le débit peut atteindre 5000 m3N/h.m2, respectivement 2500 kW/m2. On peut ainsi produire un débit de vent chaud de 100.000 m3N/h avec un régénérateur ayant une surface de grille de 20 m2.The operation under increased pressure has shown the surprising result, that the flow rate can be further increased, in fact in proportion to the absolute pressure, without the heat transfer data being degraded. If, for example, a blast furnace wind at 5 bar is produced, the flow can reach 5000 m 3 N / hm 2 , respectively 2500 kW / m 2 . It is thus possible to produce a flow of hot wind of 100,000 m 3 N / h with a regenerator having a grid surface of 20 m 2 .

Du fait que le chauffage du régénérateur est à vrai dire généralement conduit à la pression normale, trois générateurs doivent être chauffés simultanément, de sorte que quatre régénérateurs sont nécessaires au total pour assurer un fonctionnement continu en vue de la production de gaz chauds. Ces régénérateurs présentent seulement un diamètre de 4 m pour une hauteur de 5 m, alors que les réchauffeurs d'air de même puissance utilisés jusqu'à présent présentent un diamètre de 8 m et une hauteur de 30 m.The fact that the regenerator is generally heated leads to normal pressure, three generators must be heated simultaneously, so a total of four regenerators are required to ensure continuous operation for the production of gas hot. These regenerators only have a diameter of 4 m for a height of 5 m, while air heaters of the same power used up to now have a diameter of 8 m and a height of 30 m.

Une marche à charge partielle n'est à vrai dire réalisable qu'en effectuant la phase de chauffage à pleine puissance, mais il faut cependant éventuellement insérer des pauses après la phase de soufflage froid. Ceci résulte du fait qu'en raison de la petite taille du régénérateur, l'utilisation d'un brûleur usuel pour le chauffage du régénérateur n'est pas possible, parce qu'un tel brûleur présente un volume de construction plus grand que le régénérateur lui-même. On utilise dès lors un brûleur dit à prémélange, dans lequel le gaz de chauffage et l'air de combustion sont intimement mélangés l'un avec l'autre à froid, avant l'allumage, et ne sont enflammés qu'après leur mélange. Pour une marche sûre d'un tel brûleur à prémélange, il est nécessaire de ne pas descendre en dessous d'une vitesse minimale des gaz, pour éviter ainsi sûrement un retour de flamme du mélange. Il en résulte qu'un tel brûleur à prémélange ne possède qu'une gamme de réglage très limitée.A partial load step is actually only achievable by performing the heating phase at full power, but it must however possibly insert breaks after the cold blowing phase. This results from the fact that due to the small size of the regenerator, the use of a conventional burner for heating the regenerator is not not possible, because such a burner has a build volume larger than the regenerator itself. We therefore use a burner says premix, in which the heating gas and combustion air are intimately mixed with each other when cold, before ignition, and are only ignited after mixing. For a safe walk of such premix burner, it is necessary not to go below a minimum gas speed, to surely avoid a return of flame of the mixture. As a result, such a premix burner does not has only a very limited adjustment range.

Les pauses qui sont dès lors nécessaires dans une marche à charge partielle sont de préférence observées après le soufflage froid du régénérateur.The breaks which are therefore necessary in a dependent walk partial are preferably observed after the cold blowing of the regenerator.

Enfin, il est encore apparu lors du fonctionnement d'un tel régénérateur que la température du vent chaud ne se situait que 20°C en dessous de la température théorique de flamme et qu'elle restait largement constante pendant toute la phase au vent. Cela signifie que, même dans le cas d'une chute de la température, on a atteint une amélioration par un facteur 10, exactement comme cela est le cas pour la taille. Le rendement thermique a été porté de 65 % pour les réchauffeurs d'air conventionnels à 95 % pour le régénérateur conforme à l'invention.Finally, it still appeared during the operation of such a regenerator that the temperature of the hot wind was only 20 ° C below the theoretical flame temperature and that it remained largely constant throughout the wind phase. This means that even in the case of a temperature drop, we have improved by a factor of 10, exactly as it is for the size. Thermal efficiency was increased from 65% for conventional air heaters to 95% for the regenerator according to the invention.

Claims (5)

  1. Method of reheating a gas in a regenerator by a heat storage medium, consisting of loose material placed in the form of a ring between two coaxial cylindrical grids, a hot collecting chamber, surrounded by the hot inner grid, for the hot gases and a cold collecting chamber, enclosed between on the one hand, the cold outer grid and, on the other hand, the external wall of the regenerator chamber, for the cold gases, in which:
    a) during a phase called the heating phase, a heating gas is made to flow from the hot collecting chamber into the cold collecting chamber via the heat storage medium so as to heat the latter;
    b) during a phase called the cold blowing phase, the said gas to be reheated is made to flow from the cold collecting chamber into the hot collecting chamber via the heat storage medium so as to reheat the gas;
       characterized in that: ΔPhot - ΔPcold ≥ 5ρgH where
    APhot represents the head loss of the regenerator at the end of the said heating phase;
    ΔPcold represents the head loss of the regenerator at the start of the said heating phase;
    H is the height of the regenerator;
    ρ is the density of the said gas to be reheated, at a temperature of 20°C;
    g is the acceleration due to gravity;
    in that the gas flow rate during the heating phase is greater than or equal to 300 Sm3 per hour and per m2 of hot grid area at standard pressure and in that the particle size of the loose material is chosen to be less than 15 mm.
  2. Method according to Claim 1, characterized in that the said cold blowing phase is carried out with an over pressure.
  3. Method according to Claim 1 or 2, characterized in that the method is implemented according to an operation referred to as partial charging operation, in which the heating phase is carried out at full power and in which pauses are observed after the cold blowing phase.
  4. Regenerator suitable for implementing the method of reheating a gas according to any one of Claims 1 to 3, comprising a heat storage medium consisting of loose material placed in the form of a ring between two coaxial cylindrical grids (4, 5) comprising a hot inner grid (4) and a cold outer grid (5), a hot collecting chamber (6), surrounded by the hot inner grid (4), for the hot gases and a cold collecting chamber (8), enclosed between, on the one hand, the cold outer grid (5) and, on the other hand, the wall of the chamber (2) of the regenerator, for the cold gases, characterized in that the external diameter of the annular heat storage medium is at most twice its internal diameter and in that the particle size of the loose material is chosen to be less than 15 mm.
  5. Regenerator according to Claim 4, characterized in that it includes a premixing burner (11) for producing the said heating gas.
EP93923585A 1992-10-29 1993-10-19 Method and regenerator for reheating gases Expired - Lifetime EP0617785B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4236619 1992-10-29
DE4236619A DE4236619C2 (en) 1992-10-29 1992-10-29 Process and regenerator for heating gases
PCT/FR1993/001025 WO1994010519A1 (en) 1992-10-29 1993-10-19 Method and regenerator for reheating gases

Publications (2)

Publication Number Publication Date
EP0617785A1 EP0617785A1 (en) 1994-10-05
EP0617785B1 true EP0617785B1 (en) 2003-08-13

Family

ID=6471695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93923585A Expired - Lifetime EP0617785B1 (en) 1992-10-29 1993-10-19 Method and regenerator for reheating gases

Country Status (10)

Country Link
US (2) US5547016A (en)
EP (1) EP0617785B1 (en)
JP (1) JPH07502804A (en)
KR (1) KR100317968B1 (en)
CN (1) CN1072793C (en)
AT (1) ATE247271T1 (en)
CA (1) CA2126993C (en)
DE (1) DE4236619C2 (en)
ES (1) ES2202314T3 (en)
WO (1) WO1994010519A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236619C2 (en) * 1992-10-29 1996-11-28 Air Liquide Process and regenerator for heating gases
DE4317947C1 (en) * 1993-05-28 1994-06-23 Atz Evus Heat-conversion system into mechanical work
DE19521673C2 (en) * 1995-06-14 1998-07-02 Atz Evus Applikations & Tech Process for regenerative exhaust air purification
US6631754B1 (en) 2000-03-14 2003-10-14 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Regenerative heat exchanger and method for heating a gas therewith
US6389776B1 (en) 2000-03-14 2002-05-21 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas permeable refractory brick for use in regenerative heat exchanger and hot grid formed therefrom
DE10039246C2 (en) 2000-08-11 2002-06-13 Atz Evus Process for converting thermal energy into mechanical work
DE102004026646B4 (en) * 2004-06-01 2007-12-13 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Process for the thermal disposal of pollutant-containing substances
DE102007050566A1 (en) 2007-10-23 2009-05-07 Stevanović, Dragan, Dr. Carbonic raw material e.g. coal, gasifying method, involves using superheated water vapor as gasification agent and energy carrier for gasification reaction at temperature above specified degree Celsius
DE102008014297A1 (en) 2007-11-16 2009-05-20 Krones Ag Converting carbon-containing raw materials such as biomass into liquid fuels for internal combustion engines, comprises allothermically gasifying the raw materials in a fixed bed counter-flow gasifier by introducing heated water steam
AT506477B1 (en) 2008-02-21 2010-07-15 Schweighofer Franz HEAT STORAGE DEVICE
WO2009106357A2 (en) * 2008-02-28 2009-09-03 Krones Ag Method and device for converting carbonaceous raw materials
DE102009011358A1 (en) 2009-03-05 2010-09-16 Krones Ag Method and device for utilizing biomass in a biomass gasification process
DE102009038323A1 (en) 2009-08-21 2011-02-24 Krones Ag Process and device for the utilization of biomass
DE102009038322A1 (en) 2009-08-21 2011-02-24 Krones Ag Method and apparatus for converting thermal energy from biomass to mechanical work
US20110127004A1 (en) * 2009-11-30 2011-06-02 Freund Sebastian W Regenerative thermal energy storage apparatus for an adiabatic compressed air energy storage system
DE102013017010A1 (en) 2013-10-14 2015-04-16 Karl Brotzmann Consulting Gmbh Power storage via thermal storage and air turbine
AU2015391669A1 (en) 2015-04-13 2017-11-02 Karl Brotzmann Consulting Gmbh Energy storage via thermal stores and air turbine
DE102021108719A1 (en) 2021-04-08 2022-10-13 HiTES Holding GmbH Process and device for converting the chemical energy of a fuel into heat and electrical energy
DE102021129804A1 (en) 2021-11-16 2023-05-17 HiTES Holding GmbH Process and device for generating hydrogen
DE102021129810A1 (en) 2021-11-16 2023-05-17 HiTES Holding GmbH Process and device for generating hydrogen
DE102021129812A1 (en) 2021-11-16 2023-05-17 HiTES Holding GmbH Process and device for generating hydrogen
DE102022118858A1 (en) 2022-07-27 2024-02-01 HiTES Holding GmbH Thermal cracking of methane or natural gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940371A (en) * 1930-05-06 1933-12-19 Research Corp Apparatus for heating gases
GB387070A (en) * 1930-11-22 1933-02-02 Dougree Marihaye Sa Honeycomb structure for heat recuperating apparatus of the cowper type
US2272108A (en) * 1940-01-19 1942-02-03 Research Corp Regenerative stove
JPS5776078A (en) * 1980-10-29 1982-05-12 Agency Of Ind Science & Technol Heat accumulator utilizing latent heat
DE3710054C2 (en) * 1987-03-27 1994-06-09 Webasto Ag Fahrzeugtechnik Burners arranged in the flow of exhaust gases from an internal combustion engine for their afterburning
DE3831831C1 (en) * 1988-09-20 1989-11-02 Skw Trostberg Ag, 8223 Trostberg, De
DE3841708C1 (en) * 1988-12-10 1989-12-28 Kloeckner Cra Patent Gmbh, 4100 Duisburg, De
DE4108744C1 (en) * 1991-03-18 1992-08-27 Atz Energie Umwelt Stroemungstechnik Gas heating jacketed regenerator with heat storage medium - has central chamber surrounded by layer of pebbles or granular material
DE4236619C2 (en) * 1992-10-29 1996-11-28 Air Liquide Process and regenerator for heating gases

Also Published As

Publication number Publication date
CA2126993A1 (en) 1994-05-11
ATE247271T1 (en) 2003-08-15
US5547016A (en) 1996-08-20
EP0617785A1 (en) 1994-10-05
KR940703990A (en) 1994-12-12
CN1086895A (en) 1994-05-18
KR100317968B1 (en) 2002-04-22
CA2126993C (en) 2004-12-21
JPH07502804A (en) 1995-03-23
WO1994010519A1 (en) 1994-05-11
DE4236619C2 (en) 1996-11-28
DE4236619A1 (en) 1994-05-05
ES2202314T3 (en) 2004-04-01
CN1072793C (en) 2001-10-10
US5690164A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
EP0617785B1 (en) Method and regenerator for reheating gases
FR3033025A1 (en) ALAMBIC EQUIPPED WITH A TWO FLOOR FIRE TOWER
CA2724448C (en) Carbonization method and device
EP0192506A1 (en) Fluid heater, especially a sanitary hot water storage heater
WO1988007163A1 (en) Oven for dehydrating pulverulents, sand or granules
FR2512188A1 (en) COOKING INSTALLATION, IN PARTICULAR FOR THE MANUFACTURE OF CEMENT CLINKER
FR3033026B1 (en) ALAMBIC EQUIPPED WITH AN IMPROVED GAS BURNER
EP0082073B1 (en) Method and apparatus for sintering refractory walls
FR2482261A1 (en) IMPROVEMENTS ON VICARD INDUSTRIAL FIREPLACES
BE1028786B1 (en) OVEN FOR THE PRODUCTION OF CHARCOAL
DK172277B1 (en) Appts. for optimal gasification of wood chips in auxiliary flow generator - has combustion and pyrolysis zones continuously stabilised and controlled in level area
EP0147275A2 (en) Combustion furnace for a fluidised-bed boiler
WO2022029373A1 (en) Oven for the oenological heating of wood
BE478960A (en)
EP0854323A1 (en) Combustion chamber for air loaded with combustible particles
EP2169305B1 (en) Pulsating boiler
CH230015A (en) Apparatus for the combustion of solid fuels with high efficiency.
WO1992019920A1 (en) Boiler for central heating and/or sanitary hot water production, burner for gas fuel, and installation for central heating and sanitary hot water production using said boiler
BE833540A (en) DEVELOPMENT OF COWPERS
BE536697A (en)
BE854373A (en) WIND HEATING DEVICE FOR TOP OVEN
FR2530795A1 (en) DEVICE FOR HEATING CONTAINERS AND / OR MAINTAINING SAME AT TEMPERATURE, FOR EXAMPLE FOR CONTAINERS CONTAINING MOLTEN METAL.
BE569142A (en)
FR2675499A1 (en) Process and device for the steam cracking of a hydrocarbon charge comprising a gas generator and a heat exchanger/reactor
FR2498745A1 (en) Heat recovery unit for hot blast cupola furnace - has inner and outer corrugated walls of heat transfer element defined by truncated cones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE ES FR GB IT LU SE

17Q First examination report despatched

Effective date: 19941004

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE ES FR GB IT LU SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031019

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202314

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101020

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 18

Ref country code: IT

Payment date: 20101029

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111123

Year of fee payment: 19

Ref country code: FR

Payment date: 20111125

Year of fee payment: 19

Ref country code: SE

Payment date: 20111122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111122

Year of fee payment: 19

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20121031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 247271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121020