EP0617227A1 - Air control system for hydropneumatic reservoir - Google Patents
Air control system for hydropneumatic reservoir Download PDFInfo
- Publication number
- EP0617227A1 EP0617227A1 EP93400771A EP93400771A EP0617227A1 EP 0617227 A1 EP0617227 A1 EP 0617227A1 EP 93400771 A EP93400771 A EP 93400771A EP 93400771 A EP93400771 A EP 93400771A EP 0617227 A1 EP0617227 A1 EP 0617227A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tank
- pipe
- air
- chamber
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 71
- 239000007788 liquid Substances 0.000 claims description 65
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 239000012528 membrane Substances 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 239000002351 wastewater Substances 0.000 description 8
- 238000005086 pumping Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/20—Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2931—Diverse fluid containing pressure systems
- Y10T137/3115—Gas pressure storage over or displacement of liquid
- Y10T137/3118—Surge suppression
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2931—Diverse fluid containing pressure systems
- Y10T137/3115—Gas pressure storage over or displacement of liquid
- Y10T137/3127—With gas maintenance or application
- Y10T137/3137—Gas injected by liquid pressure or flow
Definitions
- the present invention relates to an air regulation system for a hydropneumatic reservoir equipping a hydraulic pipe which can be a distribution network for drinking water or irrigation, or a drainage network for waste water or chemical liquids.
- the hydropneumatic reservoir can operate as a regulating reservoir (or hydrophore) to regulate the pumping pressure and ensure continuity of service in the pipeline, in a pressure range between a high threshold and a low threshold.
- a regulating reservoir or hydrophore
- the pump or one of the pumps supplying the pipe is stopped.
- the regulation tank then supplies water to the pipeline.
- the pump is restarted to ensure sufficient pressure in the pipeline.
- the hydropneumatic tank can also be used as an anti-ram tank in a hydraulic pipe in order to compensate for the effects of depression and overpressure caused for example by a stopping of a pump or a valve closing.
- the operation of such a tank is known in particular from French patent 2,416,417 (ROCHE).
- the hydropneumatic tank contains, in operation, water or any liquid flowing in the pipe, and air trapped in the tank just above the water surface.
- the air supply to the hydropneumatic tank is ensured by means of an air compressor or a outside air injector.
- the main drawback of the air compressor is that the air introduced into the tank contains droplets or oil vapors sent by the compressor. If the presence of oil thus brought into the tank does not interfere with the evacuation of wastewater, it is not the same for the supply of drinking water.
- Air injectors eliminate oil entrainment in the air injected into the hydropneumatic tank. They do not allow to compensate with exactitude the variation of the volume of air in the tank. Indeed, only experience has so far made it possible to fix the additional volume of air to be supplied to the tank, in particular as a function of the capacity of the tank and of the pressure of the water in the pipe, since the dissolution of air in contact with water depends on many factors. As a consequence, either an insufficiency or a surplus of air injected into the tank can occur, which cause a failure of correct regulation and, for the second case, air pockets which can be transported by the water in the pipeline and give birth to water hammer.
- the conventional air injector suffers from other imperfections: the approximate use of the volume available in the injector for the water filling cycle (air injection into the tank) / emptying (introduction of the air in the device), the absence of means to protect the device's air intake valve against the risk of deterioration by contact with water (in particular waste water), the lack of concern for the quality of the air injected into the tank, and in the case of a pipe with submerged pump, the use of a drain siphon in the pipe which creates a loss of efficiency of the submerged pump due to the permanent evacuation of water pumped by the siphon, and each start of the submersible pump necessarily results in an injection of air into the tank even if such an injection is not requested.
- the hydropneumatic reservoir generally comprises a hollow body called a balloon which communicates with the pipe to contain the liquid.
- the balloon may or may not have a bladder.
- a balloon without bladder it is necessary to provide a means of injection air in the flask to compensate for the dissolution of air in the liquid inside the flask.
- the object of the present invention is to remedy the aforementioned drawbacks by proposing an air regulation system for a hydropneumatic reservoir which makes it possible to introduce an air volume corresponding precisely to the complement necessary for the reservoir.
- the invention also relates to an air regulation system making it possible to supply a constant volume of air at each filling and emptying cycle of the system.
- the invention further relates to an air regulation system whose air intake means is protected against deterioration or clogging in contact with the liquid.
- Another subject of the invention is an air regulation system which supplies the hydropneumatic reservoir with air compatible with the liquid conveyed in the hydraulic pipe making it possible to avoid pollution of the liquid by the air introduced.
- the air regulation system for a hydropneumatic reservoir of a hydraulic pipe comprises a chamber, means for filling the chamber with water, means for emptying water from the chamber, means for automatically introducing air into the chamber during emptying, and means for automatically injecting air from the chamber to the tank during filling.
- the system further comprises a control means connected to at least one detector for exceeding a threshold level of the liquid contained in the tank, and to the means for filling and draining water from the chamber. When the detector provides a signal corresponding to an insufficient volume of air in the tank, the control means initiates the filling / emptying cycle of the chamber until the detector indicates that the air volume in the tank has become sufficient again.
- the problem of dissolving air in contact with water in the regulation tank can be precisely controlled.
- the top of the chamber can be fitted with a liquid level detector, connected to the control means to indicate the end of filling of the chamber.
- the control means can then trigger the chamber emptying phase at this precise moment.
- a liquid level detector connected to the control means, to indicate the end of the emptying to allow the control means to initiate the filling phase of the chamber.
- the chamber of the air regulation system comprises a substantially vertical tube, the lower end of which opens into the upper wall of the chamber, the upper end of the tube being provided with a solenoid valve for the admission of the in the room.
- the vertical tube acts as a compression chamber between the air intake solenoid valve and the surface of the liquid in the chamber preventing the liquid from reaching the solenoid valve air intake, which protects the solenoid valve against possible deterioration in contact with the liquid, especially in the case of waste water or chemical liquids.
- the air intake solenoid valve of the system is connected to one end of a pipe, the other end of the pipe being placed in the immediate vicinity of the surface of the water to be pumped, so that the air injected by the system into the tank is compatible with the water carried by the pipe.
- This point is particularly important for a drinking water supply pipe in order to avoid any risk of pollution of the water by the injected air.
- atmospheric air in the vicinity of the air intake solenoid valve may contain harmful particles which can deteriorate the quality of the water.
- the hydropneumatic reservoir may further comprise a hollow bar made integral with the reservoir and plunged vertically downward into the reservoir.
- the lower end of the hollow bar is closed so as to form a longitudinal cavity isolated from the interior of the tank by the wall of the hollow bar.
- the bar cavity is (are) housed the threshold level overshoot detector (s).
- the height of the detector (s) in the hollow bar can be adjusted so as to allow the modification of the threshold levels of the liquid in the hollow body of the reservoir as required.
- the detector (s) can be of the capacitive or equivalent type which provides different signals when there is presence or absence of the liquid at their height.
- the problem of resistance to pressure, sealing and deposition of impurities known for conventional detection means is eliminated and the reservoir can be easily adapted to regulate the pressure of the liquid to different ranges according to the needs linked to the nature of the pipeline and its new desired hydraulic regime.
- the system comprises an air trap associated with the hydropneumatic reservoir in the case where air is injected into the tank through the pipeline.
- the air trap makes it possible to suppress the air flows in the pipe downstream of the tank, which eliminates the problems which can result therefrom and returns total efficiency to the system.
- the air regulation system is intended for a hydropneumatic tank 1 in the form of a balloon, without bladder, the lower part 1b of which is connected to a hydraulic pipe 2.
- the system comprises a air injection device installed upstream of the tank 1 in the pipe 2 and downstream of a supply pump 3 submerged or not in a water reservoir 4 which can be a well, a borehole or a tarpaulin.
- a check valve 5 is associated with the feed pump 3. It is the foot valve of this pump or a valve installed downstream and which prevents any return of water.
- the valve 5 may not be provided, in particular if a water level detector 26 mentioned below is installed.
- the air injection device comprises a chamber 6 formed by a section of pipe 2, the section 6 being delimited in the direction of the normal flow 7 of water in the pipe 2, on the one hand at its end downstream by a non-return valve 8 mounted on the pipe 2 upstream of the tank 1, and on the other hand at its upstream end by a water level 9 defined by a water evacuation solenoid valve 10.
- L the upstream end of the section forming chamber 6 is at a lower level than the downstream end of the section.
- a pipe 11 connects the pipe 2 downstream of the non-return valve 8 to the section 6 in order to allow the filling of the chamber 6 with water.
- An electro-valve 12 is installed on the pipe 11 to control the filling of the chamber 6 with water via the pipe 11.
- the evacuation electro-valve 10 constitutes a means of emptying the chamber 6, the evacuated water being possibly collected in a discharge tank 13.
- the air injection device further comprises an air intake solenoid valve 14 connected on the one hand to the chamber 6 by means of a vertical tube 15 opening into the upper wall at the top of the chamber 6, and secondly to a pipe 16 which takes air in the vicinity of the water surface 17 of the water reservoir 4.
- an air intake solenoid valve 14 connected on the one hand to the chamber 6 by means of a vertical tube 15 opening into the upper wall at the top of the chamber 6, and secondly to a pipe 16 which takes air in the vicinity of the water surface 17 of the water reservoir 4.
- the upper wall of the chamber 6 communicates with the lower part 1b of the hydropneumatic tank 1 via a pipe 18 fitted with a non-return valve 19.
- the principle of injecting air into the tank 1 is relatively simple.
- the feed pump 3 stops, the associated valve 5 preventing the water contained in the pipe 2 downstream of the pump 3 from escaping through the latter.
- the evacuation solenoid valve 10 opens to drain the chamber 6 until the drain level 9 is reached.
- the air intake solenoid valve 14 is opened in the chamber 6.
- the non-return valve 8 prevents the downstream water contained in the pipe 2 to pass into the chamber 6.
- the non-return valve 19 prevents the water from the reservoir 1 from entering the chamber 6.
- the filling electro-valve 12 stays closed.
- the chamber 6 is filled with air as illustrated in FIG. 1A.
- the solenoid valves for water evacuation 10 and the air inlet 14 are then closed and the filling solenoid valve 12 is opened.
- the pipe 11 then makes it possible to supply the chamber 6 with water contained in the pipe 2 downstream of the non-return valve 8.
- the air contained in the chamber 6 is expelled through the pipe 18 towards the tank 1 (FIG. 1B).
- the air bubbles 20 thus created in the water contained in the tank 1 go up to the surface 21 which represents the separation between the water and the air in the tank 1.
- the air thus introduced into the tank 1 thus contributes to the increase in the air volume of the tank.
- the chamber 6 emptying and filling cycle begins again.
- the air regulation system comprises a control means 22 which is connected to at least one detector 23 via a link 24 to indicate the exceeding of a threshold level in the tank 1 by the water surface 21 for a given state (pump stop for example).
- the control means 22 is also connected to the solenoid valves for water discharge 10, water filling 12 and air intake 14 in order to control their openings and closings. for the operation of the filling / emptying cycle of the chamber 6 as a function of the signal emitted by the detector 23.
- the water level 21 in the tank 1 when the pump 3 stops is higher than the level of the detector 23 which defines the water level in the tank 1 at stop pump 3 for correct inflation of tank 1.
- the detector 23 immersed in water then emits a signal to the control means 22 which triggers the emptying / filling cycle of the chamber 6 of the device as previously described.
- the water level 21 in the tank reaches the level of the detector 23 which is no longer submerged in water.
- the corresponding signal sent by the detector 23 to the control means 22 allows the latter to stop the filling / emptying cycle of the device.
- the solenoid valves for water discharge 10, water filling 12 and air intake 14 are and remain closed.
- the chamber 6 can optionally be fitted with an upper detector 25 at the top of the chamber in the vertical tube 15 and with a lower detector 26 to indicate the level of emptying 9 of the chamber 6.
- the detectors level can be simple electrical contacts which emit different signals in the presence and absence of water at their level and which are connected to the control means 22.
- FIG. 2 shows a variant of the system which differs from the previously described mode by its method of filling the chamber 6 and injecting air into the tank 1.
- the filling of the chamber 6 takes place directly using of the pump 3.
- the air contained in the chamber 6 is injected through the non-return valve 8 into the pipe 2 downstream of the valve 8, the pipe 2 conveying the volume of air injected into the tank 1.
- Chamber 6 is formed by a section of pipe 2 which forms an elbow.
- the vertical part of the bent section is part of the pumping discharge line of the pipe 2.
- the vertical tube 15 connecting the air intake solenoid valve 14 and the top of the chamber 6 forms a compression chamber which traps air preventing the water conveyed in the chamber 6 from coming into contact with the inlet solenoid valve 14. According to this embodiment, each filling of the chamber 6 requires starting the associated pump 3.
- the mode illustrated in FIG. 3 is substantially identical to the mode illustrated in FIG. 2 except as regards the shape of the chamber 6 of the system. Instead of having a bent section, the chamber 6 can simply be constituted by an inclined section of the pipe 2.
- FIG. 4 shows a simplified embodiment of the system of the invention.
- the check valve 5 associated with the pump 3 is removed.
- stopping the pump 3 and opening the air intake solenoid valve 14 brings the water level 9 back into the pipeline at the same level as the surface 17 of the pumped water.
- the emptying level 9 coincides with the surface 17 pumping water.
- the filling of the chamber 6 is carried out by means of the pump 3 and the air admitted by the solenoid valve 14 (which is now closed) into the chamber 6 is expelled into the tank 1 via the non-return valve. return 8 and part of the pipe 2 upstream of the tank 1.
- the chamber 6 is emptied by stopping the pump 3 and opening the air intake solenoid valve 14 but only, as before, if there is a lack of air in the tank 1.
- the height of line 2 thus drained may be too large to inject a correct volume of air into the reservoir 1. It then suffices to close the solenoid valve 14 for air intake, ie after a predetermined time after stopping the pump 3, or when the water level of the lower detector 26 placed at a predetermined height of the pipe 2 exceeds it.
- the drain level 9 ′ is then greater than the surface 17 of pumping water. We can thus adjust the volume of the chamber 6 of the device.
- the chamber 6 is produced in the form of a balloon, the upper wall of which communicates with the vertical air intake tube 15 and the air injection tube 18 towards the tank 1 via the check valve. -back 19.
- the filling and emptying of the chamber 6 is carried out by means of a two-way solenoid valve 27, the first 27a is connected to the filling line 11 and the second 27b connected to the line evacuation 28.
- the solenoid valve 27 communicates with the interior of the chamber 6 via a vertical tube 29 passing through the bottom of the balloon forming the chamber 6 and the upper end of which can exceed the bottom of the chamber by a height h. It will be appreciated that the emptying level 9 of the chamber 6 is defined by the height of the upper end of the vertical tube 29.
- an upper detector 25 can be provided in the vertical air intake tube 15 and a lower detector 26 at the level secured to the upper end of the vertical communication tube 29.
- the air injection pipe 18 can be connected directly to the tank or to the pipe 2 in upstream of the reservoir.
- the regulation system comprises a vertical or horizontal cylindrical tank 1, the ends of which are slightly domed (balloon), an air compressor 30 and electrical contacts 23a, 23b assuming that it is a hydrophore (or regulation) tank for pumping on demand (or overpressure) with a single pump, for example delivering in line 2.
- a hydrophore (or regulation) tank for pumping on demand (or overpressure) with a single pump, for example delivering in line 2.
- the air compressor 30 communicates with the interior of the balloon 1 via an air line 18 opening into the upper wall 1a of the balloon 1.
- the upper 23a and lower 23b detectors set the predetermined high threshold and low threshold levels for the liquid in the tank 1 in order to regulate the flow of the liquid in the pipe 2.
- the high threshold and low threshold levels in the tank 1 correspond to upper and lower limit pressures defined for the flow of the fluid in the pipe 2.
- the detectors 23a and 23b are connected on the one hand to the air compressor 30 via a link 31 and on the other hand via a connection 32 to one or more pumps, not shown, which supply line 2 with liquid.
- the tank 1 In normal operation of the regulation system, the tank 1 is partly filled with the liquid flowing in the pipe 2.
- the level 21 of the liquid in the tank should be between the high threshold and low threshold levels determined by the detectors 23a and 23b.
- the detector 23a When the level 21 becomes higher than the height of the detector 23a, which corresponds to a pressure of the liquid which exceeds the determined upper pressure of the network, the detector 23a emits a signal to the control means 22 which stops the pumping supplying the pipe 2.
- the continuity of the supply of the pressurized liquid is then ensured by the liquid contained in the tank 1 which feeds via its lower part 1b the pipe 2.
- the tank 1 is emptied therefore, and when the level of the liquid 21 becomes lower than the height of the lower detector 23b, which means that the pressure of the liquid in the line 2 becomes lower than the authorized lower limit, the detector 23b sends a signal to the control means 22 which delivers a start signal via link 32 to start the pump. Then, again, the pressure in the line 2 increases and the level of the liquid 21 in the balloon 1 increases. In this way, the pressure of the liquid in line 2 can be regulated.
- the operation of the regulation system as what has just been described requires that the balloon 1 be correctly inflated, not only for its initial inflation, but also to compensate for a reduction in the volume of air inside the balloon 1 due to dissolving air in the liquid.
- the initial inflation of the balloon determines the upper and lower limit pressures of the network corresponding to the height of the balloon detectors 23a and 23b. An incorrect initial inflation of the balloon would therefore cause a shift in the range of allowable pressures either towards higher values or towards lower values, which could be harmful for line 2 and possibly for users.
- the pump stops if the level 21 of the liquid is higher than the upper threshold level indicated by the detector 23a, this means that the inflation of balloon 1 has become insufficient.
- the detector 23a immersed in the liquid sends a signal to the air compressor 30 via the control means 22 and the connection 31.
- the air compressor 30 starts and sends compressed air to the balloon via line 18 until the level 21 of the liquid reaches the level of the detector 23a, which then emits a stop signal to the air compressor 30 via the control means 22 and the link 31.
- the inflation of the balloon is restored correctly.
- the regulation system described above presents the detectors 23a and 23b fixed to the interior wall of the tank 1 and exposed to the liquid which may contain impurities.
- the deposition of impurities on the detectors 23a and 23b can deteriorate their long-term operation.
- the fixing of the detectors 23a and 23b requires the opening of windows through the side wall of the balloon 1 and there is no possibility of easy modifications of the position of these detectors, therefore of the adjustments.
- FIG. 7 illustrates a regulation system of the invention in an operating mode comparable to the system described above and illustrated in FIG. 6.
- the regulation system comprises a hollow bar 33 plunged vertically inside the balloon 1 from its upper part 1a.
- the lower end 33a of the hollow bar 33 is closed in order to completely isolate the interior of the hollow bar 33 from the interior of the balloon 1.
- two level detectors 23a and 23b are arranged inside the hollow bar 33 with a predetermined height difference defining high and low threshold levels of the liquid in the balloon 1.
- the hollow bar 33 is made in tubular form and mounted coaxially with the balloon 1.
- the central tube 33 is made from a non-metallic material to allow the installation of detectors 23a, 23b of the capacitive type or equivalent.
- the central tube 33 can also be metallic if detectors other than of the capacitive type and capable of acting through metallic walls are used.
- the sensors 23a and 23b can be adjusted in height inside the central tube 33 in order to adapt the balloon 1 to the pressure requirements of the pipe 2.
- the detectors 23a and 23b are protected by the wall of the central tube 33 against deposits of impurities conveyed by the liquid.
- the balloon 1 may include a valve 34 at its upper wall 1a which allows air to be discharged from the inside of the balloon 1 to the outside, this in order to avoid an undesirable overpressure at inside the balloon 1. This can be the case for example if the liquid gives off a gaseous mixture, for example air, in the balloon.
- the number of level detectors used for the tank can vary as required.
- a single level detector such as the high threshold level detector 23a inside the central tube 33.
- the triggering of the air compressor 30 by the detector 23a in case of insufficient air volume in the balloon 1 is produced according to the same principle as above.
- the system can operate both for regulating the pressure in the pipe 2 and for avoiding the pressure surge in the pipe 2.
- a valve 34 can be provided on the upper wall 1a of the balloon 1 if necessary. Since the operating principles of the various embodiments of the invention are comparable to each other, we will only describe their difference.
- the lower part 1b of the balloon 1 is provided with an airtight valve 35 which controls the communication between the balloon 1 and the pipe 2.
- An evacuation pipe 36 is provided between the lower part 1b of the balloon and the valve 35.
- the evacuation pipe 36 is connected to a drain valve 37.
- Such equipment facilitates the initial inflation of the balloon 1, either when the tank is put into service, or after a stop extended installation (in irrigation for example).
- the valve 35 is closed and the drain valve 37 is opened.
- the drain valve 37 is closed and the balloon 1 is inflated, by means of the pipe 18, opening in its upper part 1a, with compressed air coming from the air compressor 30 or from a compressed air bottle, up to the desired pressure corresponding to the correct inflation of the balloon. Then stop the injection of air and open the valve 35 to re-establish communication between the tank 1 and the pipe 2.
- the reservoir according to FIG. 9 differs from that illustrated in FIG. 7 in the design of the means for injecting the air into the balloon 1.
- an air injection device 38 is used which is connected on the one hand to the pipe 2 via a pipe 39 and on the other hand either to the lower part of the balloon 1 or to the pipe 2 upstream of the balloon 1 via a pipe 18 provided with a non-return valve 19.
- the device 38 makes it possible to introduce air into the balloon 1 by means of emptying and filling cycles an auxiliary tank or chamber 6 of the device.
- the filling of the auxiliary tank 6 with the liquid expels the air at the upper part of the auxiliary tank of the device in the balloon 1 via the connection line 18, the non-return valve 19 preventing the return of the air and the liquid in the auxiliary tank 6.
- the regulation system comprises an air injection device 40 which is integrated into the pipe 2 upstream of the balloon 1 in order to inject the air, if necessary, into the balloon 1 via line 2.
- an air injection device 40 which is integrated into the pipe 2 upstream of the balloon 1 in order to inject the air, if necessary, into the balloon 1 via line 2.
- the pipe 2 has an inlet 41 and an outlet 42 for the liquid in the balloon 1.
- the inlet 41 can be extended vertically upwards by a pipe 43 projecting inside the balloon 1.
- the purpose of such an extension 43 is to create an air trap injected into the liquid by the air injection device 40.
- the air conveyed by the liquid introduced into the balloon 1 via the inlet 41 rises in the balloon 1 to the separation surface 21 between the air and the liquid contained in the balloon 1 or terminates directly in the air zone if this surface 21 is located below the top of the pipe 43. This configuration therefore avoids any loss of useful volume in the balloon 1.
- FIG. 12 shows an alternative embodiment of the air trap constituted by the inlet 41, the possible vertical extension 43 and the outlet 42 for the liquid at the lower part 1b of the balloon 1.
- the difference in structure of the air trap between the modes illustrated in FIGS. 10 and 12 is better illustrated by FIGS. 11 and 13.
- the inlet 41 and the outlet 42 are constituted by two compartments of a tubular pipe 44 separated by a central wall 45.
- the section of the tubular pipe 44 advantageously corresponds to the sum of the sections of the pipe 2 immediately upstream and downstream of the tank 1.
- the inlet 41 and outlet 42 are independent of each other and are constituted by a simple bend in the pipe 2 opening into the lower part 1b of the balloon 1.
- an air trap is only used for the case where the injection of air into the balloon 1 is carried out via the pipe 2.
- the air trap can take various forms, it suffices that the air introduced into the balloon 1 through the inlet 41 cannot escape with the liquid at the outlet 42.
- the inlet 41 with possibly its extension 43 must be located at a level above the outlet 42.
- FIGS. 14 and 15 show two other embodiments of the air trap.
- the inlet 41 opens into the side wall of the balloon 1 above the bottom of the balloon, and the outlet 42 opens out into the bottom of the balloon.
- This mode is particularly suitable for wastewater, because tows or other long bodies conveyed by the liquid in the pipe 2 risk being wound around the extension 43 of the inlet 41 illustrated in FIGS. 10 to 13.
- the air traps described above require that all of the pumped water pass through the balloon. In the case of waste water, they risk causing deposits at the bottom of the tank, because all the materials transported in the waste water pass through the tank 1.
- the problem can be solved by the mode illustrated in Figure 15.
- the pipeline 2 has a part 2a with three openings and located immediately below the balloon 1.
- the upper opening of part 2a opens into the lower part 1b of the balloon 1.
- the liquid arrives through the intermediate opening of part 2a and leaves through the lower opening of this part of the pipe.
- the intermediate and lower openings are connected by a vertical or inclined pipe section of an angle ⁇ at least equal to 45 ° relative to the horizontal.
- the air trap according to FIG. 15 therefore makes it possible to limit the quantity of materials transported by the waste water which pass through the balloon 1.
- a safety device can be provided at the lower part 1b of the balloon at the outlet 42 for the liquid.
- the safety device comprises a float 46 made of light material, such as foam or plastic, a flexible membrane 47 and flexible lines 48.
- the flexible membrane 47 is fixed to the float 46 by the flexible lines 48.
- the lower part 1b of the balloon has an opening 1c closed by a horizontal plate 49 fixed to the balloon 1 by means of bolts.
- the plate 49 has an opening communicating with the outlet 42 for the liquid, on this opening being provided a grid 50.
- the float 46 on which the Archimedes' push of the liquid acts keeps the flexible membrane 47 fixed upward curved at the center of the grid 50.
- the water can therefore pass through the outlet 42.
- the float 46 lowers and the membrane 47 is applied to the grid 50 and to the plate 49, which prevents the complete emptying of the balloon 1.
- On the underside of the float 46 can be provided lugs 51 allowing the pressure of the liquid to be exerted uniformly on the membrane 47 even when the float 46 is in contact with it.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Vehicle Body Suspensions (AREA)
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
- Jet Pumps And Other Pumps (AREA)
- Pipe Accessories (AREA)
- Pipeline Systems (AREA)
- Load-Engaging Elements For Cranes (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Catching Or Destruction (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Wind Motors (AREA)
- Fluid-Pressure Circuits (AREA)
- Air Bags (AREA)
Abstract
Description
La présente invention concerne un système de régulation d'air pour un réservoir hydropneumatique équipant une canalisation hydraulique qui peut être un réseau de distribution en eau potable ou d'irrigation, ou un réseau d'évacuation d'eaux usées ou de liquides chimiques.The present invention relates to an air regulation system for a hydropneumatic reservoir equipping a hydraulic pipe which can be a distribution network for drinking water or irrigation, or a drainage network for waste water or chemical liquids.
Le réservoir hydropneumatique peut fonctionner en réservoir de régulation (ou hydrophore) pour réguler la pression de pompage et assurer la continuité du service dans la canalisation, dans une plage de pression entre un seuil haut et un seuil bas. Au dépassement du seuil haut de pression, la pompe (ou une des pompes) d'alimentation de la canalisation est arrêtée. Le réservoir de régulation fait alors un apport en eau dans la canalisation. Lorsque le seuil bas est atteint, la pompe est redémarrée pour assurer une pression suffisante dans la canalisation.The hydropneumatic reservoir can operate as a regulating reservoir (or hydrophore) to regulate the pumping pressure and ensure continuity of service in the pipeline, in a pressure range between a high threshold and a low threshold. When the high pressure threshold is exceeded, the pump (or one of the pumps) supplying the pipe is stopped. The regulation tank then supplies water to the pipeline. When the low threshold is reached, the pump is restarted to ensure sufficient pressure in the pipeline.
Le réservoir hydropneumatique peut également être utilisé comme un réservoir anti-bélier d'une canalisation hydraulique afin de compenser des effets de dépression et de surpression provoqués par exemple par un arrêt d'une pompe ou une fermeture de vanne. Le fonctionnement d'un tel réservoir est connu notamment par le brevet français 2 416 417 (ROCHE).The hydropneumatic tank can also be used as an anti-ram tank in a hydraulic pipe in order to compensate for the effects of depression and overpressure caused for example by a stopping of a pump or a valve closing. The operation of such a tank is known in particular from French patent 2,416,417 (ROCHE).
Un problème important pour assurer le bon fonctionnement du réservoir hydropneumatique réside dans le maintien d'un volume d'air constant dans le réservoir. En effet, le réservoir hydropneumatique contient, en fonctionnement, de l'eau ou un liquide quelconque en écoulement dans la canalisation, et de l'air enfermé dans le réservoir juste au-dessus de la surface d'eau. La dissolution de l'air dans l'eau ou inversement le dégagement gazeux du liquide pouvant se produire dans certains cas créent une variation du volume d'air enfermé dans le réservoir. Il est donc nécessaire d'apporter des solutions permettant d'introduire de l'air dans le réservoir en cas d'insuffisance, et d'évacuer de l'air en trop du réservoir dans le cas contraire.An important problem for ensuring the proper functioning of the hydropneumatic reservoir lies in maintaining a constant volume of air in the reservoir. Indeed, the hydropneumatic tank contains, in operation, water or any liquid flowing in the pipe, and air trapped in the tank just above the water surface. The dissolution of air in water or vice versa the gassing of the liquid which can occur in certain cases create a variation of the volume of air trapped in the tank. It is therefore necessary to provide solutions making it possible to introduce air into the tank in the event of insufficiency, and to evacuate excess air from the tank in the contrary case.
D'une manière générale, l'apport en air dans le réservoir hydropneumatique est assuré au moyen d'un compresseur d'air ou d'un injecteur d'air extérieur.In general, the air supply to the hydropneumatic tank is ensured by means of an air compressor or a outside air injector.
Le compresseur d'air a pour inconvénient principal que l'air introduit dans le réservoir contient des gouttelettes ou vapeurs d'huile envoyées par le compresseur. Si la présence d'huile ainsi apportée dans le réservoir n'est pas gênante pour l'évacuation des eaux usées, il n'en est pas de même pour l'alimentation en eau potable.The main drawback of the air compressor is that the air introduced into the tank contains droplets or oil vapors sent by the compressor. If the presence of oil thus brought into the tank does not interfere with the evacuation of wastewater, it is not the same for the supply of drinking water.
Les injecteurs d'air permettent de supprimer les entraînements d'huile dans l'air injecté au réservoir hydropneumatique. Ils ne permettent pas de compenser avec exactitude la variation du volume d'air dans le réservoir. En effet, seule l'expérience permet jusqu'à présent de fixer le volume d'air supplémentaire à apporter au réservoir en fonction notamment de la contenance du réservoir et de la pression de l'eau dans la canalisation, étant donné que la dissolution de l'air au contact de l'eau dépend de nombreux facteurs. Comme conséquence, il peut se produire, soit une insuffisance, soit un surplus d'air injecté dans le réservoir qui provoquent une incapacité de régulation correcte et, pour le second cas, des poches d'air pouvant être véhiculées par l'eau dans la canalisation et donner naissance à des coups de bélier.Air injectors eliminate oil entrainment in the air injected into the hydropneumatic tank. They do not allow to compensate with exactitude the variation of the volume of air in the tank. Indeed, only experience has so far made it possible to fix the additional volume of air to be supplied to the tank, in particular as a function of the capacity of the tank and of the pressure of the water in the pipe, since the dissolution of air in contact with water depends on many factors. As a consequence, either an insufficiency or a surplus of air injected into the tank can occur, which cause a failure of correct regulation and, for the second case, air pockets which can be transported by the water in the pipeline and give birth to water hammer.
En outre, l'injecteur d'air classique souffre d'autres imperfections: l'utilisation approximative du volume disponible dans l'injecteur pour le cycle de remplissage en eau (injection d'air dans le réservoir) / vidange (introduction de l'air dans le dispositif), l'absence de moyens de protection de la soupape d'admission d'air du dispositif contre le risque de détérioration par contact avec l'eau (notamment eaux usées), l'absence de préoccupation de la qualité de l'air injecté dans le réservoir, et dans le cas d'une canalisation avec pompe immergée, l'utilisation d'un siphon de vidange dans la canalisation qui crée une perte en rendement de la pompe immergée à cause de l'évacuation permanente d'eau pompée par le siphon, et chaque démarrage de la pompe immergée entraîne nécessairement une injection de l'air dans le réservoir même si une telle injection n'est pas demandée.In addition, the conventional air injector suffers from other imperfections: the approximate use of the volume available in the injector for the water filling cycle (air injection into the tank) / emptying (introduction of the air in the device), the absence of means to protect the device's air intake valve against the risk of deterioration by contact with water (in particular waste water), the lack of concern for the quality of the air injected into the tank, and in the case of a pipe with submerged pump, the use of a drain siphon in the pipe which creates a loss of efficiency of the submerged pump due to the permanent evacuation of water pumped by the siphon, and each start of the submersible pump necessarily results in an injection of air into the tank even if such an injection is not requested.
Le réservoir hydropneumatique comprend en général un corps creux dénommé ballon qui communique avec la canalisation pour contenir le liquide. Le ballon peut être muni ou non d'une vessie. Pour un ballon sans vessie, il est nécessaire de prévoir un moyen d'injection de l'air dans le ballon afin de compenser la dissolution de l'air dans le liquide à l'intérieur du ballon.The hydropneumatic reservoir generally comprises a hollow body called a balloon which communicates with the pipe to contain the liquid. The balloon may or may not have a bladder. For a balloon without bladder, it is necessary to provide a means of injection air in the flask to compensate for the dissolution of air in the liquid inside the flask.
Jusqu'à présent, la détection du dépassement des niveaux seuil du liquide dans un ballon sans vessie est généralement obtenue à l'aide de contacts électriques montés sur la paroi latérale du ballon à travers une fenêtre pratiquée sur ladite paroi. Cette solution présente des inconvénients sur le plan pratique, notamment le problème de dépôt d'impuretés sur les contacts électriques dont le fonctionnement peut en être altéré et des difficultés voire impossibilités pour la modification des réglages.Up to now, the detection of the exceeding of the threshold levels of the liquid in a balloon without a bladder is generally obtained using electrical contacts mounted on the side wall of the balloon through a window made on said wall. This solution has drawbacks from a practical point of view, in particular the problem of depositing impurities on the electrical contacts, the functioning of which may be impaired and difficulties or even impossibilities for modifying the settings.
Par ailleurs, un problème supplémentaire existe lorsque l'injection d'air dans le réservoir hydropneumatique est effectuée via la canalisation d'eau. En effet, la quantité d'air introduite dans le réservoir via la canalisation n'est pas totale, car une partie de l'air injecté dans la canalisation en amont du réservoir est véhiculée directement par la canalisation en aval du réservoir sans entrer dans le réservoir. Il en résulte une moindre efficacité du système, difficile d'ailleurs à déterminer, et la présence d'air dans la canalisation en aval du réservoir peut poser de sérieux problèmes sur le plan hydraulique.Furthermore, an additional problem exists when the injection of air into the hydropneumatic tank is carried out via the water pipe. In fact, the quantity of air introduced into the tank via the pipe is not total, because part of the air injected into the pipe upstream of the tank is conveyed directly by the pipe downstream of the tank without entering the tank. This results in lower efficiency of the system, which is moreover difficult to determine, and the presence of air in the pipe downstream of the tank can pose serious problems from a hydraulic point of view.
La présente invention a pour objet de remédier aux inconvénients précités en proposant un système de régulation d'air pour réservoir hydropneumatique qui permet d'introduire un volume d'air correspondant précisément au complément nécessaire au réservoir.The object of the present invention is to remedy the aforementioned drawbacks by proposing an air regulation system for a hydropneumatic reservoir which makes it possible to introduce an air volume corresponding precisely to the complement necessary for the reservoir.
L'invention a également pour objet un système de régulation d'air permettant de fournir un volume d'air constant à chaque cycle de remplissage et de vidange du système.The invention also relates to an air regulation system making it possible to supply a constant volume of air at each filling and emptying cycle of the system.
L'invention a en outre pour objet un système de régulation d'air dont le moyen d'admission d'air est protégé contre la détérioration ou le colmatage au contact du liquide.The invention further relates to an air regulation system whose air intake means is protected against deterioration or clogging in contact with the liquid.
L'invention a encore pour objet un système de régulation d'air qui fournit au réservoir hydropneumatique de l'air compatible avec le liquide véhiculé dans la canalisation hydraulique permettant d'éviter la pollution du liquide par l'air introduit.Another subject of the invention is an air regulation system which supplies the hydropneumatic reservoir with air compatible with the liquid conveyed in the hydraulic pipe making it possible to avoid pollution of the liquid by the air introduced.
Le système de régulation d'air pour un réservoir hydropneumatique d'une canalisation hydraulique selon l'invention, comprend une chambre, un moyen de remplissage d'eau de la chambre, un moyen de vidange d'eau de la chambre, un moyen d'introduction automatique d'air dans la chambre pendant la vidange, et un moyen d'injection automatique de l'air de la chambre vers le réservoir pendant le remplissage. Selon l'invention, le système comprend en outre un moyen de commande relié à au moins un détecteur de dépassement d'un niveau seuil du liquide contenu dans le réservoir, et aux moyens de remplissage et de vidange d'eau de la chambre. Lorsque le détecteur fournit un signal correspondant à une insuffisance de volume d'air dans le réservoir, le moyen de commande déclenche le cycle de remplissage/vidange de la chambre jusqu'à ce que le détecteur indique que le volume d'air dans le réservoir est redevenu suffisant.The air regulation system for a hydropneumatic reservoir of a hydraulic pipe according to the invention, comprises a chamber, means for filling the chamber with water, means for emptying water from the chamber, means for automatically introducing air into the chamber during emptying, and means for automatically injecting air from the chamber to the tank during filling. According to the invention, the system further comprises a control means connected to at least one detector for exceeding a threshold level of the liquid contained in the tank, and to the means for filling and draining water from the chamber. When the detector provides a signal corresponding to an insufficient volume of air in the tank, the control means initiates the filling / emptying cycle of the chamber until the detector indicates that the air volume in the tank has become sufficient again.
Grâce à l'invention, on peut maîtriser avec précision le problème de dissolution de l'air au contact de l'eau dans le réservoir de régulation.Thanks to the invention, the problem of dissolving air in contact with water in the regulation tank can be precisely controlled.
Selon un mode de réalisation de l'invention, on peut équiper le sommet de la chambre d'un détecteur de niveau du liquide, relié au moyen de commande pour indiquer la fin du remplissage de la chambre. Le moyen de commande peut alors déclencher la phase de vidange de la chambre à ce moment précis. De même, on peut équiper le fond inférieur de la chambre d'un détecteur de niveau du liquide relié au moyen de commande, pour indiquer la fin de la vidange pour permettre au moyen de commande de déclencher la phase de remplissage de la chambre. Ainsi, le volume d'air injecté dans le réservoir est constant pour chaque cycle de remplissage/vidange de la chambre du système et, surtout, les phases remplissage/vidange de la chambre peuvent se succéder sans temps mort tant que le manque d'air persiste.According to one embodiment of the invention, the top of the chamber can be fitted with a liquid level detector, connected to the control means to indicate the end of filling of the chamber. The control means can then trigger the chamber emptying phase at this precise moment. Similarly, it is possible to equip the lower bottom of the chamber with a liquid level detector connected to the control means, to indicate the end of the emptying to allow the control means to initiate the filling phase of the chamber. Thus, the volume of air injected into the tank is constant for each filling / emptying cycle of the system chamber and, above all, the filling / emptying phases of the chamber can follow one another without dead time as long as the lack of air persists.
Avantageusement, la chambre du système de régulation d'air comporte un tube sensiblement vertical dont l'extrémité inférieure débouche dans la paroi supérieure de la chambre, l'extrémité supérieure du tube étant pourvue d'une électro-vanne pour l'admission de l'air dans la chambre. Le tube vertical joue le rôle d'une chambre de compression entre l'électro-vanne d'admission de l'air et la surface du liquide dans la chambre empêchant le liquide d'atteindre l'électro-vanne d'admission de l'air, ce qui permet de protéger l'électro-vanne contre une détérioration possible au contact du liquide, surtout dans le cas des eaux usées ou des liquides chimiques.Advantageously, the chamber of the air regulation system comprises a substantially vertical tube, the lower end of which opens into the upper wall of the chamber, the upper end of the tube being provided with a solenoid valve for the admission of the in the room. The vertical tube acts as a compression chamber between the air intake solenoid valve and the surface of the liquid in the chamber preventing the liquid from reaching the solenoid valve air intake, which protects the solenoid valve against possible deterioration in contact with the liquid, especially in the case of waste water or chemical liquids.
De préférence, l'électro-vanne d'admission de l'air du système est connectée à une extrémité d'une conduite, l'autre extrémité de la conduite étant placée au voisinage immédiat de la surface de l'eau à pomper, de façon à ce que l'air injecté par le système dans le réservoir soit compatible avec l'eau véhiculée par la canalisation. Ce point est particulièrement important pour une canalisation d'alimentation en eau potable afin d'éviter tout risque de pollution de l'eau par l'air injecté. En effet, l'air atmosphérique au voisinage de l'électro-vanne d'admission de l'air peut contenir des particules nocives qui peuvent détériorer la qualité de l'eau.Preferably, the air intake solenoid valve of the system is connected to one end of a pipe, the other end of the pipe being placed in the immediate vicinity of the surface of the water to be pumped, so that the air injected by the system into the tank is compatible with the water carried by the pipe. This point is particularly important for a drinking water supply pipe in order to avoid any risk of pollution of the water by the injected air. In fact, atmospheric air in the vicinity of the air intake solenoid valve may contain harmful particles which can deteriorate the quality of the water.
Selon l'invention, le réservoir hydropneumatique peut comprendre en outre une barre creuse rendue solidaire du réservoir et plongée verticalement vers le bas dans le réservoir. L'extrémité inférieure de la barre creuse est fermée de façon à former une cavité longitudinale isolée de l'intérieur du réservoir par la paroi de la barre creuse. Dans la cavité de la barre est (sont) logé(s) le(s) détecteur(s) de dépassement de niveau seuil.According to the invention, the hydropneumatic reservoir may further comprise a hollow bar made integral with the reservoir and plunged vertically downward into the reservoir. The lower end of the hollow bar is closed so as to form a longitudinal cavity isolated from the interior of the tank by the wall of the hollow bar. In the bar cavity is (are) housed the threshold level overshoot detector (s).
De préférence, la hauteur du ou des détecteur(s) dans la barre creuse peut être réglée de façon à permettre la modification des niveaux seuil du liquide dans le corps creux du réservoir selon besoin. Le(s) détecteur(s) peu(veu)t être du type capacitif ou équivalent qui fourni(ssen)t des signaux différents lorsqu'il y a présence ou absence du liquide à leur hauteur.Preferably, the height of the detector (s) in the hollow bar can be adjusted so as to allow the modification of the threshold levels of the liquid in the hollow body of the reservoir as required. The detector (s) can be of the capacitive or equivalent type which provides different signals when there is presence or absence of the liquid at their height.
Grâce à l'invention, on supprime le problème de résistance à la pression, d'étanchéité et de dépôt d'impuretés connus pour les moyens de détection classiques et on peut adapter facilement le réservoir pour réguler la pression du liquide à des plages différentes selon les besoins liés à la nature de la canalisation et à son nouveau régime hydraulique souhaité. De plus, on peut choisir des barres creuses de faible diamètre résistantes aux fortes pressions.Thanks to the invention, the problem of resistance to pressure, sealing and deposition of impurities known for conventional detection means is eliminated and the reservoir can be easily adapted to regulate the pressure of the liquid to different ranges according to the needs linked to the nature of the pipeline and its new desired hydraulic regime. In addition, you can choose hollow bars of small diameter resistant to high pressures.
Selon un autre mode de réalisation de l'invention, le système comprend un piège à air associé au réservoir hydropneumatique dans le cas où l'air est injecté dans le réservoir par l'intermédiaire de la canalisation. Le piège à air permet de supprimer les départs d'air dans la canalisation en aval du réservoir, ce qui supprime les problèmes qui peuvent en résulter et rend une efficacité totale au système.According to another embodiment of the invention, the system comprises an air trap associated with the hydropneumatic reservoir in the case where air is injected into the tank through the pipeline. The air trap makes it possible to suppress the air flows in the pipe downstream of the tank, which eliminates the problems which can result therefrom and returns total efficiency to the system.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la description détaillée de quelques modes de réalisation pris à titre nullement limitatif et illustrés par les dessins annexés, sur lesquels :
- les figures 1A, 1B montrent schématiquement le fonctionnement du système de l'invention,
- les figures 2 et 3 représentent deux variantes du système par rapport au mode illustré sur les figures 1A et 1B,
- la figure 4 est une variante du système pour le cas d'une pompe immergée sans clapet de retenue associé à la pompe,
- la figure 5 illustre une autre variante du système de l'invention avec la chambre séparée de la canalisation,
- la figure 6 est un schéma montrant un réservoir hydropneumatique de l'invention avec les détecteurs de niveau seuil immergés dans le liquide,
- la figure 7 est un schéma montrant un réservoir hydropneumatique selon l'invention avec un tube creux pour les détecteurs de niveau seuil,
- la figure 8 est un schéma montrant une variante de réalisation de l'invention,
- la figure 9 est un schéma montrant une autre variante de réalisation de l'invention,
- la figure 10 est un schéma montrant une autre variante de réalisation de l'invention,
- la figure 11 est une vue en coupe selon XI-XI de la figure 10,
- la figure 12 est un schéma montrant une autre variante de réalisation de l'invention,
- la figure 13 est une vue en coupe selon XIII-XIII de la figure 12,
- la figure 14 est un schéma montrant un piège à air selon l'invention,
- la figure 15 est un schéma montrant un autre piège à air selon l'invention, et
- la figure 16 est un schéma montrant un dispositif de sécurité selon l'invention.
- FIGS. 1A, 1B schematically show the operation of the system of the invention,
- FIGS. 2 and 3 represent two variants of the system compared to the mode illustrated in FIGS. 1A and 1B,
- FIG. 4 is a variant of the system for the case of a submerged pump without a check valve associated with the pump,
- FIG. 5 illustrates another variant of the system of the invention with the chamber separated from the pipeline,
- FIG. 6 is a diagram showing a hydropneumatic reservoir of the invention with the threshold level detectors immersed in the liquid,
- FIG. 7 is a diagram showing a hydropneumatic reservoir according to the invention with a hollow tube for the threshold level detectors,
- FIG. 8 is a diagram showing an alternative embodiment of the invention,
- FIG. 9 is a diagram showing another variant embodiment of the invention,
- FIG. 10 is a diagram showing another variant embodiment of the invention,
- FIG. 11 is a sectional view along XI-XI of FIG. 10,
- FIG. 12 is a diagram showing another variant embodiment of the invention,
- FIG. 13 is a sectional view along XIII-XIII of FIG. 12,
- FIG. 14 is a diagram showing an air trap according to the invention,
- FIG. 15 is a diagram showing another air trap according to the invention, and
- FIG. 16 is a diagram showing a safety device according to the invention.
Comme montré sur les figures 1A et 1B, le système de régulation d'air est destiné à un réservoir hydropneumatique 1 sous forme d'un ballon, sans vessie, dont la partie inférieure 1b est connectée à une canalisation hydraulique 2. Le système comprend un dispositif d'injection d'air installé en amont du réservoir 1 dans la canalisation 2 et en aval d'une pompe d'alimentation 3 immergée ou non dans une retenue d'eau 4 qui peut être un puits, un forage ou une bâche. Un clapet de retenue 5 est associé à la pompe d'alimentation 3. Il s'agit du clapet de pied de cette pompe ou d'un clapet installé en aval et qui évite tout retour d'eau. Le clapet 5 peut ne pas être prévu, notamment si un détecteur de niveau d'eau 26 mentionné ci-après est installé.As shown in FIGS. 1A and 1B, the air regulation system is intended for a
Le dispositif d'injection d'air comprend une chambre 6 formée par un tronçon de canalisation 2, le tronçon 6 étant délimité dans le sens de l'écoulement normal 7 de l'eau dans la canalisation 2, d'une part à son extrémité aval par un clapet anti-retour 8 monté sur la canalisation 2 en amont du réservoir 1, et d'autre part à son extrémité amont par un niveau d'eau 9 défini par une électro-vanne d'évacuation d'eau 10. L'extrémité amont du tronçon formant chambre 6 est à une cote inférieure à l'extrémité aval du tronçon. Une conduite 11 relie la canalisation 2 en aval du clapet anti-retour 8 au tronçon 6 afin de permettre le remplissage de la chambre 6 en eau. Une électro-vanne 12 est installée sur la conduite 11 pour contrôler le remplissage de la chambre 6 en eau par la conduite 11. L'électro-vanne d'évacuation 10 constitue un moyen de vidange de la chambre 6, l'eau évacuée étant éventuellement collectée dans un réservoir de rejet 13.The air injection device comprises a
Le dispositif d'injection d'air comprend en outre une électro-vanne d'admission d'air 14 reliée d'une part à la chambre 6 par l'intermédiaire d'un tube vertical 15 débouchant dans la paroi supérieure au sommet de la chambre 6, et d'autre part à une conduite 16 qui prélève de l'air au voisinage de la surface d'eau 17 de la retenue d'eau 4. Ainsi, l'air introduit dans la chambre 6 via la conduite 16, l'électro-vanne d'admission 14 et le tube vertical 15 est compatible avec l'eau véhiculée dans la canalisation 2 (notamment exempt de pollution). La paroi supérieure de la chambre 6 communique avec la partie inférieure 1b du réservoir hydropneumatique 1 via une conduite 18 équipée d'un clapet anti-retour 19.The air injection device further comprises an air
Le principe d'injection d'air dans le réservoir 1 est relativement simple. La pompe d'alimentation 3 s'arrête, le clapet associé 5 empêchant l'eau contenue dans la canalisation 2 en aval de la pompe 3 de s'échapper par cette dernière. S'il y a manque d'air dans le réservoir 1, l'électro-vanne d'évacuation 10 s'ouvre pour faire la vidange de la chambre 6 jusqu'à ce que le niveau de vidange 9 soit atteint. En même temps que l'ouverture de l'électro-vanne d'évacuation 10, on ouvre l'électro-vanne d'admission d'air 14 dans la chambre 6. Le clapet anti-retour 8 empêche l'eau en aval contenue dans la canalisation 2 de passer dans la chambre 6. Il en est de même pour le clapet anti-retour 19 qui empêche l'eau du réservoir 1 de pénétrer dans la chambre 6. Pendant la vidange, l'électro-vanne 12 de remplissage reste fermée.The principle of injecting air into the
En fin de vidange, la chambre 6 est remplie d'air comme illustré sur la figure 1A. On ferme alors les électro-vannes d'évacuation d'eau 10 et d'admission d'air 14 et on ouvre l'électro-vanne de remplissage 12. La conduite 11 permet alors d'alimenter la chambre 6 en eau contenue dans la canalisation 2 en aval du clapet anti-retour 8. L'air contenu dans la chambre 6 est chassé par la conduite 18 vers le réservoir 1 (figure 1B). Les bulles d'air 20 ainsi créées dans l'eau contenue dans le réservoir 1 remontent jusqu'à la surface 21 qui représente la séparation entre l'eau et l'air dans le réservoir 1. L'air ainsi introduit dans le réservoir 1 contribue donc à l'augmentation du volume d'air du réservoir. A la fin de la phase de remplissage de la chambre 6, si le volume d'air introduit n'est pas suffisant, le cycle de vidange et de remplissage de la chambre 6 recommence.At the end of emptying, the
Selon l'invention, le système de régulation d'air comprend un moyen de commande 22 qui est relié à au moins un détecteur 23 via une liaison 24 pour indiquer le dépassement d'un niveau seuil dans le réservoir 1 par la surface d'eau 21 pour un état donné (arrêt de pompe par exemple). Le moyen de commande 22 est relié également aux électro-vannes d'évacuation d'eau 10, de remplissage d'eau 12 et d'admission d'air 14 afin de commander leurs ouvertures et fermetures pour le fonctionnement du cycle remplissage/vidange de la chambre 6 en fonction du signal émis par le détecteur 23.According to the invention, the air regulation system comprises a control means 22 which is connected to at least one
Dans le cas illustré sur les figures 1A et 1B, le niveau d'eau 21 dans le réservoir 1 à l'arrêt de la pompe 3 est supérieur au niveau du détecteur 23 qui définit le niveau d'eau dans le réservoir 1 à l'arrêt de la pompe 3 pour un gonflage correct du réservoir 1. Cela signifie que le volume d'air contenu dans le réservoir 1 devient inférieur au volume normal nécessaire, à cause de la dissolution de l'air dans l'eau. Le détecteur 23 immergé dans l'eau émet alors un signal au moyen de commande 22 qui déclenche le cycle de vidange/remplissage de la chambre 6 du dispositif comme précédemment décrit. Lorsque le volume d'air apporté par le dispositif au réservoir 1 est suffisant pour compenser la perte du volume d'air dans le réservoir 1, le niveau d'eau 21 dans le réservoir atteint le niveau du détecteur 23 qui n'est plus immergé dans l'eau. Le signal correspondant émis par le détecteur 23 au moyen de commande 22 permet à ce dernier d'arrêter le cycle de remplissage/vidange du dispositif. Lorsque la pompe d'alimentation 3 démarre pour alimenter la canalisation 2, les électro-vannes d'évacuation d'eau 10, de remplissage d'eau 12 et d'admission d'air 14 sont et demeurent fermées.In the case illustrated in FIGS. 1A and 1B, the
Afin d'augmenter la précision du volume d'air introduit dans le réservoir 1 à chaque cycle de remplissage/vidange de la chambre 6 du dispositif mais surtout pour que les phases remplissage/vidange de la chambre 6 se succèdent sans temps mort tant que le manque d'air persiste, on peut éventuellement équiper la chambre 6 d'un détecteur supérieur 25 au sommet de la chambre dans le tube vertical 15 et d'un détecteur inférieur 26 pour indiquer le niveau de vidange 9 de la chambre 6. Les détecteurs de niveau peuvent être de simples contacts électriques qui émettent des signaux différents en présence et en absence de l'eau à leur niveau et qui sont reliés au moyen de commande 22.In order to increase the accuracy of the volume of air introduced into the
La figure 2 montre une variante du système qui diffère du mode précédemment décrit par son mode de remplissage de la chambre 6 et d'injection de l'air dans le réservoir 1. Selon ce mode de réalisation en effet, le remplissage de la chambre 6 s'effectue directement au moyen de la pompe 3. L'air contenu dans la chambre 6 est injecté à travers le clapet anti-retour 8 dans la canalisation 2 en aval du clapet 8, la canalisation 2 véhiculant le volume d'air injecté jusque dans le réservoir 1.FIG. 2 shows a variant of the system which differs from the previously described mode by its method of filling the
La chambre 6 est formée par un tronçon de canalisation 2 qui fait un coude. La partie verticale du tronçon coudé fait partie de la conduite de refoulement de pompage de la canalisation 2. Le tube vertical 15 reliant l'électro-vanne d'admission d'air 14 et le sommet de la chambre 6 forme une chambre de compression qui emprisonne de l'air interdisant à l'eau véhiculée dans la chambre 6 d'entrer en contact avec l'électro-vanne d'admission 14. Selon ce mode de réalisation, chaque remplissage de la chambre 6 nécessite un démarrage de la pompe associée 3.
Le mode illustré sur la figure 3 est sensiblement identique au mode illustré à la figure 2 sauf en ce qui concerne la forme de la chambre 6 du système. Au lieu d'avoir un tronçon coudé, la chambre 6 peut tout simplement être constituée par un tronçon incliné de la canalisation 2.The mode illustrated in FIG. 3 is substantially identical to the mode illustrated in FIG. 2 except as regards the shape of the
La figure 4 montre un mode de réalisation simplifié du système de l'invention. On supprime le clapet de retenue 5 associé à la pompe 3. Dans ce cas, l'arrêt de la pompe 3 et l'ouverture de l'électro-vanne d'admission d'air 14 ramènent le niveau d'eau 9 dans la canalisation au même niveau que la surface 17 de l'eau pompée. Par rapport au mode de réalisation illustré sur la figure 2, on n'a plus besoin de prévoir une électro-vanne d'évacuation 10 ni un détecteur inférieur de niveau 26 puisqu'à coup sûr, le niveau de vidange 9 coïncide avec la surface 17 de l'eau de pompage. Le remplissage de la chambre 6 est effectué au moyen de la pompe 3 et l'air admis par l'électro-vanne 14 (qui est maintenant fermée) dans la chambre 6 est chassé dans le réservoir 1 par l'intermédiaire du clapet anti-retour 8 et d'une partie de canalisation 2 en amont du réservoir 1. La vidange de la chambre 6 s'effectue par l'arrêt de la pompe 3 et l'ouverture de l'électro-vanne d'admission d'air 14 mais seulement, comme précédemment, s'il y a manque d'air dans le réservoir 1.FIG. 4 shows a simplified embodiment of the system of the invention. The
Dans le cas des ouvrages profonds, la hauteur de la canalisation 2 ainsi vidangée peut être trop importante pour injecter un volume d'air correct au réservoir 1. Il suffit alors de fermer l'électro-vanne 14 d'admission d'air, soit au bout d'un temps prédéterminé après l'arrêt de la pompe 3, soit au dépassement par le niveau d'eau du détecteur inférieur 26 placé à une hauteur prédéterminée de la canalisation 2. Le niveau de vidange 9' est alors supérieur à la surface 17 d'eau de pompage. On peut ainsi régler le volume de la chambre 6 du dispositif.In the case of deep structures, the height of
Au lieu de prendre un tronçon de la canalisation 2 comme chambre pour le dispositif d'injection d'air, il est possible de prévoir une chambre 6 séparée de la canalisation 2 comme le montre la figure 5. Il est ainsi possible de faire fonctionner le dispositif de l'invention indépendamment de l'état de fonctionnement de la pompe 3 associée à la canalisation 2 (figure 1A), alors que dans le cas où la chambre 6 fait partie intégrante de la canalisation 2, le dispositif ne peut fonctionner qu'en relation avec la pompe 3. Le fonctionnement du dispositif selon la figure 5 est comparable à celui illustré sur les figures 1A et 1B.Instead of taking a section of the
Selon la figure 5, la chambre 6 est réalisée sous forme d'un ballon dont la paroi supérieure communique avec le tube vertical 15 d'admission d'air et le tube d'injection d'air 18 vers le réservoir 1 via le clapet anti-retour 19. Le remplissage et la vidange de la chambre 6 s'effectuent au moyen d'une électro-vanne 27 à deux voies, la première 27a est reliée à la conduite de remplissage 11 et la seconde 27b reliée à la conduite d'évacuation 28. L'électro-vanne 27 communique avec l'intérieur de la chambre 6 via un tube vertical 29 traversant le fond du ballon formant chambre 6 et dont l'extrémité supérieure peut dépasser le fond de la chambre d'une hauteur h. On conçoit bien que le niveau de vidange 9 de la chambre 6 est défini par la hauteur de l'extrémité supérieure du tube vertical 29. Il est donc possible de régler le volume utile de la chambre pour l'injection d'air en faisant varier la hauteur h du tube vertical 29. Avantageusement, on peut prévoir un détecteur supérieur 25 dans le tube vertical 15 d'admission d'air et un détecteur inférieur 26 au niveau rendu solidaire de l'extrémité supérieure du tube vertical 29 de communication. La conduite 18 d'injection de l'air peut être reliée directement au réservoir ou à la canalisation 2 en amont du réservoir.According to FIG. 5, the
Selon un mode particulier de réalisation de l'invention illustré sur la figure 6, le système de régulation comprend un réservoir 1 cylindrique vertical ou horizontal dont les extrémités sont légèrement bombées (ballon), un compresseur d'air 30 et des contacts électriques 23a, 23b en supposant qu'il s'agit d'un réservoir hydrophore (ou de régulation) pour un pompage à la demande (ou surpression) avec une seule pompe par exemple débitant dans la canalisation 2. Toutefois, ce qui est précisé ci-après peut être généralisé, moyennant des modifications mineures, aux réservoirs hydrophores équipant des installations comportant plusieurs pompes et aux réservoirs anti-bélier.According to a particular embodiment of the invention illustrated in FIG. 6, the regulation system comprises a vertical or horizontal
Le compresseur d'air 30 communique avec l'intérieur du ballon 1 via une conduite d'air 18 débouchant dans la paroi supérieure la du ballon 1.The
Les détecteurs supérieur 23a et inférieur 23b fixent les niveaux de seuil haut et de seuil bas prédéterminés pour le liquide dans le ballon 1 en vue de réguler l'écoulement du liquide dans la canalisation 2. Les niveaux de seuil haut et de seuil bas dans le ballon 1 correspondent à des pressions limites supérieure et inférieure définies pour l'écoulement du fluide dans la canalisation 2. Les détecteurs 23a et 23b sont reliés d'une part au compresseur d'air 30 via une liaison 31 et d'autre part via une liaison 32 à une ou plusieurs pompes non représentées qui alimentent la canalisation 2 en liquide.The upper 23a and lower 23b detectors set the predetermined high threshold and low threshold levels for the liquid in the
En fonctionnement normal du système de régulation, le ballon 1 est en partie rempli par le liquide qui s'écoule dans la canalisation 2. Le niveau 21 du liquide dans le ballon devrait se trouver entre les niveaux seuil haut et seuil bas déterminés par les détecteurs 23a et 23b. Lorsque le niveau 21 devient supérieur à la hauteur du détecteur 23a, ce qui correspond à une pression du liquide qui dépasse la pression supérieure déterminée du réseau, le détecteur 23a émet un signal au moyen de commande 22 qui arrête le pompage alimentant la canalisation 2. La continuité de la fourniture du liquide sous pression est alors assurée par le liquide contenu dans le ballon 1 qui alimente via sa partie inférieure 1b la canalisation 2. Le ballon 1 se vidange donc et lorsque le niveau du liquide 21 devient inférieur à la hauteur du détecteur inférieur 23b, ce qui signifie que la pression du liquide dans la canalisation 2 devient inférieure à la limite inférieure autorisée, le détecteur 23b envoie un signal au moyen de commande 22 qui délivre un signal de démarrage via la liaison 32 pour mettre en marche la pompe. Alors, de nouveau, la pression dans la canalisation 2 augmente et le niveau du liquide 21 dans le ballon 1 augmente. De cette façon, on peut réguler la pression du liquide dans la canalisation 2.In normal operation of the regulation system, the
Le fonctionnement du système de régulation comme ce qui vient d'être décrit nécessite que la ballon 1 soit correctement gonflé, non seulement pour son gonflage initial, mais également pour compenser une diminution du volume d'air à l'intérieur du ballon 1 due à la dissolution de l'air dans le liquide.The operation of the regulation system as what has just been described requires that the
Le gonflage initial du ballon détermine les pressions limites supérieure et inférieure du réseau correspondant à la hauteur des détecteurs 23a et 23b du ballon. Un mauvais gonflage initial du ballon entraînerait donc un décalage de la plage des pressions admises soit vers des valeurs supérieures soit vers des valeurs inférieures, ce qui pourrait être néfaste pour la canalisation 2 et éventuellement pour les usagers.The initial inflation of the balloon determines the upper and lower limit pressures of the network corresponding to the height of the
Partant d'un bon gonflage du ballon, lorsque la pompe s'arrête (est à l'arrêt pour un réservoir anti-bélier), si le niveau 21 du liquide est supérieur au niveau seuil supérieur indiqué par le détecteur 23a, cela signifie que le gonflage du ballon 1 est devenu insuffisant. Le détecteur 23a immergé dans le liquide envoie un signal au compresseur d'air 30 via le moyen de commande 22 et la liaison 31. Le compresseur d'air 30 démarre et envoie de l'air comprimé dans le ballon via la conduite 18 jusqu'à ce que le niveau 21 du liquide atteigne le niveau du détecteur 23a, lequel émet alors un signal d'arrêt au compresseur d'air 30 via le moyen de commande 22 et la liaison 31. Le gonflage du ballon est rétabli correctement.Starting from a good inflation of the balloon, when the pump stops (is stopped for an anti-ram tank), if the
Le système de régulation décrit précédemment présente les détecteurs 23a et 23b fixés à la paroi intérieure du ballon 1 et exposés au liquide qui peut contenir des impuretés. Le dépôt d'impuretés sur les détecteurs 23a et 23b peut détériorer leur fonctionnement à long terme. De plus, la fixation des détecteurs 23a et 23b nécessite l'ouverture de fenêtres à travers la paroi latérale du ballon 1 et il n'y a pas de possibilité de modifications aisées de la position de ces détecteurs, donc des réglages.The regulation system described above presents the
La figure 7 illustre un système de régulation de l'invention dans un mode de fonctionnement comparable au système décrit précédemment et illustré sur la figure 6. Le système de régulation comprend une barre creuse 33 plongée verticalement à l'intérieur du ballon 1 à partir de sa partie supérieure 1a. L'extrémité inférieure 33a de la barre creuse 33 est fermée afin d'isoler complètement l'intérieur de la barre creuse 33 par rapport à l'intérieur du ballon 1. En prenant la même hypothèse que précédemment, c'est-à-dire un réservoir hydrophore et une seule pompe, deux détecteurs de niveau 23a et 23b sont disposés à l'intérieur de la barre creuse 33 avec une différence de hauteur prédéterminée définissant des niveaux seuil haut et seuil bas du liquide dans le ballon 1.FIG. 7 illustrates a regulation system of the invention in an operating mode comparable to the system described above and illustrated in FIG. 6. The regulation system comprises a
De préférence, la barre creuse 33 est réalisée sous forme tubulaire et montée coaxialement au ballon 1. Le tube central 33 est réalisé à partir d'une matière non métallique pour permettre l'installation des détecteurs 23a, 23b de type capacitif ou équivalent. Le tube central 33 peut également être métallique si des détecteurs autres que de type capacitif et pouvant agir au travers de parois métalliques sont utilisés. Avantageusement, les capteurs 23a et 23b peuvent être réglés en hauteur à l'intérieur du tube central 33 afin d'adapter le ballon 1 aux exigences en pression de la canalisation 2. Pour rendre les capteurs 23a et 23b réglables en hauteur, on peut utiliser des tringles plongées dans le tube 33 et sur lesquelles sont montés les détecteurs. On peut également envisager des butées à des hauteurs déterminées dans le tube pour caler les détecteurs. Les détecteurs 23a et 23b sont protégés par la paroi du tube central 33 contre des dépôts d'impuretés véhiculées par le liquide.Preferably, the
Le ballon 1 peut comporter une soupape 34 à sa paroi supérieure la qui permet d'évacuer de l'air de l'intérieur du ballon 1 vers l'extérieur, cela dans le but d'éviter une surpression non souhaitable à l'intérieur du ballon 1. Cela peut être le cas par exemple si le liquide dégage un mélange gazeux, par exemple de l'air, dans le ballon.The
Le fonctionnement du système illustré sur la figure 7 pour la régulation en pression de la canalisation est identique au fonctionnement du système de la figure 6 et ne sera pas davantage décrit.The operation of the system illustrated in FIG. 7 for regulating the pressure of the pipe is identical to the operation of the system of FIG. 6 and will not be described further.
Bien entendu comme indiqué précédemment, le nombre de détecteurs de niveau utilisés pour le réservoir peut varier selon besoin. Par exemple dans le cas où le réservoir est utilisé comme un ballon anti-bélier, on peut se contenter d'un seul détecteur de niveau, tel que le détecteur de niveau seuil haut 23a à l'intérieur du tube central 33. Le déclenchement du compresseur d'air 30 par le détecteur 23a en cas d'insuffisance de volume d'air dans le ballon 1 est réalisé selon le même principe que ci-dessus.Of course, as indicated above, the number of level detectors used for the tank can vary as required. For example, in the case where the tank is used as an anti-ram balloon, one can be satisfied with a single level detector, such as the high
Pour les autres modes de réalisation de l'invention qui sont illustrés sur les figures 8 à 13, le système peut fonctionner aussi bien pour la régulation en pression dans la canalisation 2 que pour éviter le coup de bélier dans la canalisation 2. De même, on peut prévoir une soupape 34 sur la paroi supérieure 1a du ballon 1 en cas de besoin. Etant donné que les principes de fonctionnement des différents modes de réalisation de l'invention sont comparables l'un à l'autre, on se contentera de décrire leur différence.For the other embodiments of the invention which are illustrated in FIGS. 8 to 13, the system can operate both for regulating the pressure in the
Selon le mode illustré sur la figure 8, la partie inférieure 1b du ballon 1 est pourvue d'une vanne 35 étanche à l'air qui contrôle la communication entre le ballon 1 et la canalisation 2. Une conduite d'évacuation 36 est prévue entre la partie inférieure 1b du ballon et la vanne 35. La conduite d'évacuation 36 est reliée à un robinet de vidange 37. Un tel équipement facilite le gonflage initial du ballon 1, soit à la mise en service du réservoir, soit après un arrêt prolongé de l'installation (en irrigation par exemple). Pour ce faire, on ferme la vanne 35 et on ouvre le robinet de vidange 37. Lorsque le ballon 1 est vidé, on ferme le robinet de vidange 37 et on gonfle le ballon 1, grâce à la conduite 18, débouchant dans sa partie supérieure 1a, avec de l'air comprimé provenant du compresseur d'air 30 ou d'une bouteille à air comprimé, jusqu'à la pression désirée correspondant au gonflage correct du ballon. On arrête ensuite l'injection de l'air et on ouvre la vanne 35 pour rétablir la communication entre le ballon 1 et la canalisation 2.According to the mode illustrated in FIG. 8, the
L'équipement qui vient d'être décrit peut être utilisé pour les autres modes de réalisation décrits et illustrés. Il suffit de prévoir un orifice à la partie supérieure du réservoir pour permettre le gonflage initial du réservoir à l'aide d'une bouteille à air comprimé.The equipment which has just been described can be used for the other embodiments described and illustrated. It suffices to provide an orifice at the top of the tank to allow the initial inflation of the tank using a compressed air bottle.
Le réservoir selon la figure 9 diffère de celui illustré sur la figure 7 en la conception du moyen d'injection de l'air dans le ballon 1. Au lieu d'avoir un compresseur d'air 30 qui risque d'introduire des gouttelettes ou vapeurs d'huile dans l'air injecté au ballon 1, on utilise un dispositif d'injection d'air 38 qui est relié d'une part à la canalisation 2 via une conduite 39 et d'autre part soit à la partie inférieure du ballon 1 soit à la canalisation 2 en amont du ballon 1 via une conduite 18 pourvue d'un clapet anti-retour 19. Le dispositif 38 permet d'introduire de l'air dans le ballon 1 grâce à des cycles de vidange et de remplissage d'un réservoir auxiliaire ou chambre 6 du dispositif. Le remplissage du réservoir auxiliaire 6 par le liquide chasse l'air à la partie supérieure du réservoir auxiliaire du dispositif dans le ballon 1 via la conduite de liaison 18, le clapet anti-retour 19 interdisant le retour de l'air et du liquide dans le réservoir auxiliaire 6.The reservoir according to FIG. 9 differs from that illustrated in FIG. 7 in the design of the means for injecting the air into the
Comme illustré sur la figure 10, le système de régulation comprend un dispositif d'injection d'air 40 qui est intégré à la canalisation 2 en amont du ballon 1 afin d'injecter l'air, en cas de besoin, dans le ballon 1 via la canalisation 2. Quelques modes de réalisation du dispositif d'injection d'air 40 ont déjà été décrits précédemment et illustrés sur les figures 1 à 4.As illustrated in FIG. 10, the regulation system comprises an
A la partie inférieure 1b du ballon 1, la canalisation 2 présente une entrée 41 et une sortie 42 pour le liquide dans le ballon 1. L'entrée 41 peut être prolongée verticalement vers le haut par une conduite 43 faisant saillie à l'intérieur du ballon 1. Le but d'un tel prolongement 43 est de créer un piège à air injecté dans le liquide par le dispositif d'injection d'air 40. L'air véhiculé par le liquide introduit dans le ballon 1 par l'intermédiaire de l'entrée 41 remonte dans le ballon 1 jusqu'à la surface de séparation 21 entre l'air et le liquide contenus dans le ballon 1 ou aboutit directement dans la zone d'air si cette surface 21 est située en-dessous du sommet de la conduite 43. Cette configuration évite donc toute perte de volume utile dans le ballon 1.In the
La figure 12 montre une variante de réalisation du piège à air constitué par l'entrée 41, le prolongement vertical éventuel 43 et la sortie 42 du liquide à la partie inférieure 1b du ballon 1. La différence de structure du piège à air entre les modes illustrés sur les figures 10 et 12 est mieux illustrée par les figures 11 et 13.FIG. 12 shows an alternative embodiment of the air trap constituted by the
Afin de ne pas créer de perte de charge dans la canalisation 2, il est préférable d'avoir la même section transversale pour l'entrée 41 que pour la canalisation 2 immédiatement en amont du ballon 1. Il en est de même pour la section droite de la sortie 42 située au fond du ballon 1 par rapport a la section de la canalisation 2 immédiatement en aval du ballon 1. Tel qu'illustré sur la figure 11, l'entrée 41 et la sortie 42 sont constituées par deux compartiments d'une conduite tubulaire 44 séparée par une paroi centrale 45. La section de la conduite tubulaire 44 correspond avantageusement à la somme des sections de la canalisation 2 immédiatement en amont et en aval du ballon 1. Selon la figure 13, les entrée 41 et sortie 42 sont indépendantes l'une de l'autre et sont constituées par un simple coude de la canalisation 2 débouchant dans la partie inférieure 1b du ballon 1.In order not to create a pressure drop in
Bien entendu, la conception d'un piège à air n'est utilisée que pour le cas où l'injection de l'air dans le ballon 1 est réalisée par l'intermédiaire de la canalisation 2. A part les structures illustrées sur les figures 10 à 13, le piège à air peut prendre des formes diverses, il suffit en effet que l'air introduit dans le ballon 1 par l'entrée 41 ne puisse pas s échapper avec le liquide à la sortie 42.Of course, the design of an air trap is only used for the case where the injection of air into the
D'une manière générale, pour réaliser un piégeage d'air dans le ballon 1, l'entrée 41 avec éventuellement son prolongement 43 doit être située à un niveau au dessus de la sortie 42.In general, to carry out air trapping in the
Les figures 14 et 15 montrent deux autres modes de réalisation du piège à air. Selon la figure 14, l'entrée 41 débouche dans la paroi latérale du ballon 1 au dessus du fond du ballon, et la sortie 42 débouche au fond du ballon. Ce mode est adapté notamment en eaux usées, car des filasses ou autres corps longs véhiculés par le liquide dans la canalisation 2 risquent de s'enrouler autour du prolongement 43 de l'entrée 41 illustré sur les figures 10 à 13.Figures 14 and 15 show two other embodiments of the air trap. According to FIG. 14, the
Les pièges à air précédemment décrits nécessitent que toute l'eau pompée transite dans le ballon. Dans le cas des eaux usées, ils risquent d'entraîner des dépôts au fond du ballon, car toutes les matières transportées dans les eaux usées passent par le ballon 1. Le problème peut être résolu par le mode illustré sur la figure 15. La canalisation 2 présente une partie 2a à trois ouvertures et située immédiatement en dessous du ballon 1. L'ouverture supérieure de la partie 2a débouche dans la partie inférieure 1b du ballon 1. Le liquide arrive par l'ouverture intermédiaire de la partie 2a et sort par l'ouverture inférieure de cette partie de canalisation. Les ouvertures intermédiaire et inférieure sont reliées par un tronçon de conduite vertical ou incliné d'un angle ϑ au moins égal à 45° par rapport à l'horizontale.The air traps described above require that all of the pumped water pass through the balloon. In the case of waste water, they risk causing deposits at the bottom of the tank, because all the materials transported in the waste water pass through the
Le piège à air selon la figure 15 permet donc de limiter la quantité des matières transportées par les eaux usées qui transitent par le ballon 1.The air trap according to FIG. 15 therefore makes it possible to limit the quantity of materials transported by the waste water which pass through the
Afin d'empêcher la vidange accidentelle totale du ballon 1 et la fuite d'air depuis le ballon vers la canalisation 2, on peut prévoir un dispositif de sécurité à la partie inférieure 1b du ballon à la sortie 42 du liquide.In order to prevent the total accidental emptying of the
Comme illustré sur la figure 16, le dispositif de sécurité comprend un flotteur 46 en matériau léger, tel qu'une mousse ou une matière plastique, une membrane souple 47 et des suspentes souples 48. La membrane souple 47 est fixée au flotteur 46 par les suspentes souples 48. La partie inférieure 1b du ballon présente une ouverture 1c obturée par une plaque horizontale 49 fixée au ballon 1 au moyen de boulons. La plaque 49 présente une ouverture communiquant avec la sortie 42 pour le liquide, sur cette ouverture étant prévu une grille 50.As illustrated in FIG. 16, the safety device comprises a
Le flotteur 46 sur lequel agit la poussée d'Archimède du liquide maintient incurvée vers le haut la membrane souple 47 fixée au centre de la grille 50. L'eau peut donc passer par la sortie 42. Lorsque le niveau d'eau baisse exagérément dans le ballon 1, le flotteur 46 s'abaisse et la membrane 47 s'applique sur la grille 50 et sur la plaque 49, ce qui empêche la vidange complète du ballon 1. Sur la face inférieure du flotteur 46 peuvent être prévus des ergots 51 permettant à la pression du liquide de s'exercer uniformément sur la membrane 47 même lorsque le flotteur 46 est en contact avec elle.The
Claims (24)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT93400771T ATE153746T1 (en) | 1993-03-25 | 1993-03-25 | AIR CONTROL SYSTEM FOR HYDROPNEUMATIC TANK |
ES93400771T ES2105149T3 (en) | 1993-03-25 | 1993-03-25 | AIR REGULATION SYSTEM FOR A HYDRONEUMATIC TANK. |
DK93400771.7T DK0617227T3 (en) | 1993-03-25 | 1993-03-25 | Air control system for hydropneumatic container |
EP93400771A EP0617227B1 (en) | 1993-03-25 | 1993-03-25 | Air control system for hydropneumatic reservoir |
DE69311091T DE69311091T2 (en) | 1993-03-25 | 1993-03-25 | Air control system for hydropneumatic tanks |
DZ940023A DZ1760A1 (en) | 1993-03-25 | 1994-03-16 | Air regulation system for hydropneumatic tank. |
CA002159097A CA2159097C (en) | 1993-03-25 | 1994-03-23 | Air regulation system for hydropneumatic reservoir |
PCT/FR1994/000317 WO1994021957A1 (en) | 1993-03-25 | 1994-03-23 | Air regulation system for hydropneumatic reservoir |
JP52073394A JP3285358B2 (en) | 1993-03-25 | 1994-03-23 | Air control system for hydraulic pneumatic tank |
US08/535,138 US5647392A (en) | 1993-03-25 | 1994-03-23 | Air regulation system for hydropneumatic reservoir |
CN94191589A CN1046346C (en) | 1993-03-25 | 1994-03-23 | Air regulation system for hydropneumatic reservoir |
MA23455A MA23147A1 (en) | 1993-03-25 | 1994-03-23 | AIR REGULATION SYSTEM FOR HYDROPNEUMATIC TANK. |
TNTNSN94028A TNSN94028A1 (en) | 1993-03-25 | 1994-03-24 | AIR REGULATION SYSTEM FOR HYDROPNEUMATIC TANK |
GR970402197T GR3024558T3 (en) | 1993-03-25 | 1997-08-27 | Air control system for hydropneumatic reservoir. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93400771A EP0617227B1 (en) | 1993-03-25 | 1993-03-25 | Air control system for hydropneumatic reservoir |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0617227A1 true EP0617227A1 (en) | 1994-09-28 |
EP0617227B1 EP0617227B1 (en) | 1997-05-28 |
Family
ID=8214690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93400771A Expired - Lifetime EP0617227B1 (en) | 1993-03-25 | 1993-03-25 | Air control system for hydropneumatic reservoir |
Country Status (14)
Country | Link |
---|---|
US (1) | US5647392A (en) |
EP (1) | EP0617227B1 (en) |
JP (1) | JP3285358B2 (en) |
CN (1) | CN1046346C (en) |
AT (1) | ATE153746T1 (en) |
CA (1) | CA2159097C (en) |
DE (1) | DE69311091T2 (en) |
DK (1) | DK0617227T3 (en) |
DZ (1) | DZ1760A1 (en) |
ES (1) | ES2105149T3 (en) |
GR (1) | GR3024558T3 (en) |
MA (1) | MA23147A1 (en) |
TN (1) | TNSN94028A1 (en) |
WO (1) | WO1994021957A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2739170A1 (en) * | 1995-09-25 | 1997-03-28 | Roche Emile | HYDROPNEUMATIC ANTI-BELIER TANK WITH AIR INTAKE AND REGULATION DEVICE, AIR INTAKE METHOD |
EP0895020A1 (en) | 1997-08-01 | 1999-02-03 | Emile Roche | Device for introducing air into a hydropneumatic reservoir |
FR2930014A1 (en) * | 2008-04-14 | 2009-10-16 | Charlatte Reservoirs Soc Par A | DEVICE AND METHOD FOR INTRODUCING AIR IN A HYDROPNEUMATIC RESERVOIR |
FR3138263A1 (en) * | 2022-07-29 | 2024-02-02 | Pierre-Marie Delmas | Autonomous water pumping and distribution device |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6917544B2 (en) | 2002-07-10 | 2005-07-12 | Saifun Semiconductors Ltd. | Multiple use memory chip |
US7136304B2 (en) | 2002-10-29 | 2006-11-14 | Saifun Semiconductor Ltd | Method, system and circuit for programming a non-volatile memory array |
US7178004B2 (en) | 2003-01-31 | 2007-02-13 | Yan Polansky | Memory array programming circuit and a method for using the circuit |
US7638850B2 (en) | 2004-10-14 | 2009-12-29 | Saifun Semiconductors Ltd. | Non-volatile memory structure and method of fabrication |
US8053812B2 (en) | 2005-03-17 | 2011-11-08 | Spansion Israel Ltd | Contact in planar NROM technology |
US7786512B2 (en) | 2005-07-18 | 2010-08-31 | Saifun Semiconductors Ltd. | Dense non-volatile memory array and method of fabrication |
JP4915897B2 (en) * | 2005-07-19 | 2012-04-11 | 東京エレクトロン株式会社 | Pulsation reduction device and inspection device |
US7668017B2 (en) | 2005-08-17 | 2010-02-23 | Saifun Semiconductors Ltd. | Method of erasing non-volatile memory cells |
US8116142B2 (en) | 2005-09-06 | 2012-02-14 | Infineon Technologies Ag | Method and circuit for erasing a non-volatile memory cell |
WO2007035104A1 (en) * | 2005-09-21 | 2007-03-29 | Ottestad Breathing Systems As | An arrangement in a pipe system for distribution of liquid |
US7808818B2 (en) | 2006-01-12 | 2010-10-05 | Saifun Semiconductors Ltd. | Secondary injection for NROM |
US7760554B2 (en) | 2006-02-21 | 2010-07-20 | Saifun Semiconductors Ltd. | NROM non-volatile memory and mode of operation |
US7692961B2 (en) | 2006-02-21 | 2010-04-06 | Saifun Semiconductors Ltd. | Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection |
US8253452B2 (en) | 2006-02-21 | 2012-08-28 | Spansion Israel Ltd | Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same |
US7701779B2 (en) | 2006-04-27 | 2010-04-20 | Sajfun Semiconductors Ltd. | Method for programming a reference cell |
US8322362B2 (en) * | 2008-07-31 | 2012-12-04 | Ethosystems, Llc | Backup pneumatic water pressure device |
US20140373938A1 (en) * | 2010-10-27 | 2014-12-25 | Jaidip Shah | Liquid Supply System |
BR112014004749A2 (en) * | 2011-09-06 | 2017-03-21 | Basf Se | conductive piping system for conveying molten salt and method for draining conductive piping system for conveying molten salt |
CN103672416B (en) * | 2013-12-06 | 2016-03-02 | 中国石油大学(华东) | A kind of non-intervention type piezoelectric type gas pipe leakage infrasonic wave detection apparatus |
CN103672415B (en) * | 2013-12-06 | 2016-01-27 | 中国石油大学(华东) | Based on the gas pipe leakage detection of non-intervention type sensor and navigation system and method |
CN103644461B (en) * | 2013-12-06 | 2016-03-02 | 中国石油大学(华东) | A kind of non-intervention type capacitor type gas pipe leakage infrasonic wave detection apparatus |
US20160290372A1 (en) * | 2015-04-01 | 2016-10-06 | Deere & Company | Fluid circulation system |
KR101630395B1 (en) * | 2015-06-19 | 2016-06-14 | (주)에스엠테크 | Protection system against water hammer using for Operationg status analysys algorithm |
KR101722078B1 (en) * | 2015-09-18 | 2017-03-31 | 플로우테크 주식회사 | Water piping system and the control method thereof |
ITUB20154014A1 (en) * | 2015-09-29 | 2017-03-29 | Certech Spa Con Socio Unico | Compensator device for volumetric pumps. |
CN107228479A (en) * | 2016-03-25 | 2017-10-03 | 郭富通 | A kind of pre- temperature constant water heater |
CN106871233A (en) * | 2017-04-13 | 2017-06-20 | 山西意迪光华电力勘测设计有限公司 | The expansion moisturizing voltage-stabilizing system and its regulation and control method of cogeneration of heat and power central heating network |
CN108105591B (en) * | 2017-12-28 | 2021-03-19 | 陈崇勇 | On-off device |
US10883663B2 (en) * | 2018-05-24 | 2021-01-05 | Rolls-Royce North American Technologies Inc | Rapid fill container system |
CN114110431B (en) * | 2021-11-16 | 2023-07-18 | 华海(北京)科技股份有限公司 | Energy-saving air supply system of integrated air compression station and regulation and control method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3347256A (en) * | 1964-12-21 | 1967-10-17 | Phillips Petroleum Co | Pressure surge suppression in pipe lines |
US4182358A (en) * | 1976-07-12 | 1980-01-08 | Vsesojuzny Nauchno-Issledovatelsky Institut Komplexnoi Avtomatizatsii Neftyanoi I Gazovoi Promyshlennosti | System for limiting rate of pressure rise in pipeline during hydraulic impact |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2416417A1 (en) * | 1978-02-06 | 1979-08-31 | Roche Emile | ANTIBELIER TANK WITH AUTOMATIC AIR REGULATION |
-
1993
- 1993-03-25 ES ES93400771T patent/ES2105149T3/en not_active Expired - Lifetime
- 1993-03-25 DE DE69311091T patent/DE69311091T2/en not_active Expired - Lifetime
- 1993-03-25 DK DK93400771.7T patent/DK0617227T3/en active
- 1993-03-25 AT AT93400771T patent/ATE153746T1/en active
- 1993-03-25 EP EP93400771A patent/EP0617227B1/en not_active Expired - Lifetime
-
1994
- 1994-03-16 DZ DZ940023A patent/DZ1760A1/en active
- 1994-03-23 JP JP52073394A patent/JP3285358B2/en not_active Expired - Lifetime
- 1994-03-23 MA MA23455A patent/MA23147A1/en unknown
- 1994-03-23 US US08/535,138 patent/US5647392A/en not_active Expired - Lifetime
- 1994-03-23 CA CA002159097A patent/CA2159097C/en not_active Expired - Fee Related
- 1994-03-23 CN CN94191589A patent/CN1046346C/en not_active Expired - Fee Related
- 1994-03-23 WO PCT/FR1994/000317 patent/WO1994021957A1/en active Application Filing
- 1994-03-24 TN TNTNSN94028A patent/TNSN94028A1/en unknown
-
1997
- 1997-08-27 GR GR970402197T patent/GR3024558T3/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3347256A (en) * | 1964-12-21 | 1967-10-17 | Phillips Petroleum Co | Pressure surge suppression in pipe lines |
US4182358A (en) * | 1976-07-12 | 1980-01-08 | Vsesojuzny Nauchno-Issledovatelsky Institut Komplexnoi Avtomatizatsii Neftyanoi I Gazovoi Promyshlennosti | System for limiting rate of pressure rise in pipeline during hydraulic impact |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2739170A1 (en) * | 1995-09-25 | 1997-03-28 | Roche Emile | HYDROPNEUMATIC ANTI-BELIER TANK WITH AIR INTAKE AND REGULATION DEVICE, AIR INTAKE METHOD |
WO1997012171A1 (en) * | 1995-09-25 | 1997-04-03 | Charlatte S.A. | Hydropneumatic anti-hammer tank with an air intake and control device, and air intake method |
EP0895020A1 (en) | 1997-08-01 | 1999-02-03 | Emile Roche | Device for introducing air into a hydropneumatic reservoir |
FR2766883A1 (en) * | 1997-08-01 | 1999-02-05 | Emile Roche | AIR INTRODUCTION DEVICE FOR A HYDROPNEUMATIC TANK |
US6047721A (en) * | 1997-08-01 | 2000-04-11 | Roche; Emile | Air introduction device for a hydro-pneumatic reservoir |
FR2930014A1 (en) * | 2008-04-14 | 2009-10-16 | Charlatte Reservoirs Soc Par A | DEVICE AND METHOD FOR INTRODUCING AIR IN A HYDROPNEUMATIC RESERVOIR |
EP2110597A1 (en) | 2008-04-14 | 2009-10-21 | Charlatte Reservoirs | Device and method for introducing air in a hydropneumatic tank |
US8132587B2 (en) | 2008-04-14 | 2012-03-13 | Charlatte Reservoirs | Apparatus and method for introducing air into a hydropneumatic reservoir |
FR3138263A1 (en) * | 2022-07-29 | 2024-02-02 | Pierre-Marie Delmas | Autonomous water pumping and distribution device |
Also Published As
Publication number | Publication date |
---|---|
DE69311091D1 (en) | 1997-07-03 |
JP3285358B2 (en) | 2002-05-27 |
MA23147A1 (en) | 1994-10-01 |
CN1046346C (en) | 1999-11-10 |
CN1119887A (en) | 1996-04-03 |
CA2159097C (en) | 2004-10-19 |
EP0617227B1 (en) | 1997-05-28 |
US5647392A (en) | 1997-07-15 |
DZ1760A1 (en) | 2002-02-17 |
GR3024558T3 (en) | 1997-12-31 |
JPH08511078A (en) | 1996-11-19 |
ES2105149T3 (en) | 1997-10-16 |
CA2159097A1 (en) | 1994-09-29 |
ATE153746T1 (en) | 1997-06-15 |
DE69311091T2 (en) | 1998-01-08 |
TNSN94028A1 (en) | 1995-04-25 |
DK0617227T3 (en) | 1997-12-22 |
WO1994021957A1 (en) | 1994-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0617227B1 (en) | Air control system for hydropneumatic reservoir | |
EP0818603A1 (en) | Oil pumping method and facility | |
FR2707681A1 (en) | Pressurized toilet flushing device, flushing valve and air induction device. | |
EP2542727A1 (en) | Leak detection on flush valve | |
EP3194670A1 (en) | Device for toilets | |
EP2307624B1 (en) | Automatic and rapid opening flush system for full-tank discharge | |
EP2110597B1 (en) | Device and method for introducing air in a hydropneumatic tank | |
EP0003700B1 (en) | Desurging tank with automatic air control | |
FR2647829A1 (en) | DEVICE FOR FITTING THE EXIT END OF A DRAIN SIPHONING PIPE | |
EP0678632A1 (en) | Controlling device for a drain-syphon | |
EP0895020B1 (en) | Device for introducing air into a hydropneumatic reservoir | |
EP1182355B1 (en) | Apparatus for deep ground drainage | |
FR2526084A1 (en) | IMPROVEMENTS IN LIQUID SUPPLY SYSTEMS, IN PARTICULAR FUEL FOR AERONAUTICAL ENGINES | |
EP0852684B1 (en) | Hydropneumatic anti-hammer tank with an air intake and control device, and air intake method | |
FR2621083A1 (en) | Submerged pump for taking up liquid from a pipe, particularly a deep water-discharge pipe for nuclear power station cooling water | |
CA2362710C (en) | Leachate and depollution pneumatic pump with sleeve valve | |
WO2007015006A1 (en) | Step device for filtering water of a pool | |
EP2110594A1 (en) | Anti-hammer hydropneumatic tank for hydraulic conduit equipped with an improved blocking device | |
BE553245A (en) | ||
FR2851620A1 (en) | Tub emptying device for emptying e.g. rain water, has suction tube with free end descending in hollow portion between inclined planes at tubs bottom, and immersion unit moving back and forth towards front of floater | |
BE423714A (en) | ||
FR2845359A1 (en) | Liquid anti-overflow device for tank interrupts suction of air in tank and comprises decanter connected to tank and pump having pipe connected to tank bottom point enabling decanter contents to be purged into tank | |
BE498973A (en) | ||
BE497415A (en) | ||
FR2845706A1 (en) | Automatic flushing system e.g. for septic tank has floating scoop that interacts with shutter and is connected by flexible pipe to outlet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19950126 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960802 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
REF | Corresponds to: |
Ref document number: 153746 Country of ref document: AT Date of ref document: 19970615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69311091 Country of ref document: DE Date of ref document: 19970703 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970829 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2105149 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19970826 Ref country code: GR Ref legal event code: FG4A Free format text: 3024558 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20120220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20120224 Year of fee payment: 20 Ref country code: MC Payment date: 20120220 Year of fee payment: 20 Ref country code: FR Payment date: 20120223 Year of fee payment: 20 Ref country code: CH Payment date: 20120322 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120315 Year of fee payment: 20 Ref country code: PT Payment date: 20120220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20120327 Year of fee payment: 20 Ref country code: DK Payment date: 20120227 Year of fee payment: 20 Ref country code: IT Payment date: 20120326 Year of fee payment: 20 Ref country code: GB Payment date: 20120320 Year of fee payment: 20 Ref country code: GR Payment date: 20120222 Year of fee payment: 20 Ref country code: BE Payment date: 20120329 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120228 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69311091 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69311091 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120223 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Owner name: *CHARLATTE Effective date: 20130325 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20130325 Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20130325 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20130324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130326 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130324 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 153746 Country of ref document: AT Kind code of ref document: T Effective date: 20130325 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MA Ref document number: 970402197 Country of ref document: GR Effective date: 20130326 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120323 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130403 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130325 |