EP0616189B1 - Manufacturing method for a projectile fragmentation casing - Google Patents

Manufacturing method for a projectile fragmentation casing Download PDF

Info

Publication number
EP0616189B1
EP0616189B1 EP94103489A EP94103489A EP0616189B1 EP 0616189 B1 EP0616189 B1 EP 0616189B1 EP 94103489 A EP94103489 A EP 94103489A EP 94103489 A EP94103489 A EP 94103489A EP 0616189 B1 EP0616189 B1 EP 0616189B1
Authority
EP
European Patent Office
Prior art keywords
cap
structural fragments
case
explosive
outer case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103489A
Other languages
German (de)
French (fr)
Other versions
EP0616189A2 (en
EP0616189A3 (en
Inventor
Heinrich Dr. Hampel
Max Rentzsch
Hans Strauss
Gerald Rieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0616189A2 publication Critical patent/EP0616189A2/en
Publication of EP0616189A3 publication Critical patent/EP0616189A3/en
Application granted granted Critical
Publication of EP0616189B1 publication Critical patent/EP0616189B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • the invention relates to a method for producing a splinter body, in which construction splinters are pressed at least in one layer between two sleeves arranged centrally in one another.
  • a splinter body in which construction splinters are pressed at least in one layer between centrally arranged sleeves and which construction splinters are formed by explosive deformation between the inner sleeve and the outer sleeve with pre-fragmentation of the inner and outer sleeves, is known from DE-A-2 129 196.
  • a splinter body for splinter projectiles in which splinters designed as spheres are pressed in in one layer between two sleeves arranged centrally in one another.
  • the balls are brought from an initial pitch circle to a smaller prefabricated circle by tensioning the balls by external circular hammering.
  • the disadvantage of this is that the balls emigrate through this machining process and form so-called nests. This results in an imbalance for the projectile, which leads to an increased load on the weapon barrel and thus to a relatively high level of wear when fired.
  • the external ballistics is severely impaired, so that the trajectory is not reproducible in all cases.
  • the invention is therefore based on the object of proposing a method for producing the splinter casing, in which a uniform embedding of the balls and a reproducible roundness in the region of the mouth hole of a machined projectile casing is ensured.
  • the splinter body should also be inexpensive and easy to manufacture.
  • the splinter body according to the invention can be produced reproducibly. It is characterized by the fact that the fragments are uniformly fixed on the circumference in the splinter body, so that the inside and outside ballistics are not negatively influenced by the splinter body or by the splinter floor. The roundness in the mouth hole area of the splinter floor is guaranteed.
  • the spherical splinter bodies largely retain their original shape due to the very high forming speed of the outer sleeve.
  • the explosive deformation advantageously causes the inner and outer splinter shells to be pre-fragmented by the pre-shaped splinter shells. This results in a splinter effect of the construction splinters and also considerable splinter effects of the inner and outer shell of the splinter floor in the vicinity. The middle and far range for the splinter effect is covered by the construction splinters designed as spheres.
  • a major advantage is also that cracks do not occur in the shell of the shell either due to the manufacturing process or after a long storage period of the fragmentary bullets.
  • the special design of the explosive forming is decisive for this. This sees namely, that the detonation is initiated centrally on one end face, but the main area of action of the detonation waves extends over the circumference of the outer fragment shell.
  • the balls 32 are only embedded in the surrounding material, but the sleeve ends 48, 49 weld to one another. This is possible due to the special sleeve geometry and the blasting arrangement.
  • a base plate 1 fixes a deformation object 3 in a recess 2 and a cladding tube 4 on the circumference.
  • the deformation object 3 has a plastic cap 5 for detonation wave guidance at its free end.
  • the cap 5 surrounds the deformation object 3 with an edge 6 and carries a detonator capsule 7 with ignition lines 8 in the center.
  • the protrusion 11 is approximately a third of the distance 10.
  • the arrangement described is arranged upright on a base 12 made of sand in an indicated, air-evacuable container 13.
  • An explosive 9 lies in the cladding tube 4. The explosive 9 surrounds the cap 5 and only encases the deformation object on the circumference.
  • an inner sleeve 20 carries a mandrel 22 in a bore 21 for radial support.
  • the inner sleeve 20 can be designed as an extruded part or as a solid body.
  • the inner sleeve 20 also has a front collar 23 on a head 18, a cone 24, a two-stage recess 25 with an intermediate cone 26 with diameters 27, 28 and a cylindrical section 29 on the foot side.
  • balls 32 designed as structural splinters are arranged as tight ball packs 33 to 35.
  • the larger diameter spherical packing 33 centers an outer sleeve 40 together with the collar 23 in a conical end region 41 of the outer sleeve 40.
  • detonation waves propagate above the cap 5 corresponding to the distance 11 predominantly in the plane 19.
  • the deformation force in the direction of arrow 36 is therefore very small in relation to the centripetal deformation force of the explosive 9 over the entire length 16; this is one of the essential characteristics.
  • the detonation waves are then deflected via a conical outer surface 14 of the cap 5 into a cylinder region 15 of the deformation object 3.
  • the edge 6 of the cap 5 in connection with the collar 23 on the cone 24 prevent penetration of Fumes of explosives into the preform 3. This ensures that only the explosive deformation acting from the outside is effective on the deformation object 3.
  • the detonation waves then run in the cylinder region 15 in the direction of the base plate 1.
  • the deformation object 3 is deformed in the centripetal direction according to its total length 16 by the implementation of the explosive 9.
  • the mandrel 22 supports the inner sleeve 20.
  • the inner sleeve 20 can also be designed as a solid body which is then drilled out after the explosive shaping.
  • the outer sleeve 40 In explosive deformation, the outer sleeve 40 is deformed in all areas in the centripetal direction, so that all the annular gaps 42 to 46 drawn are not only completely bridged by the outer sleeve 40 but also the ball packs 33 to 35 in the inner and outer sleeves 20, 40 corresponding to the Heights 50 are molded and the inner and outer sleeves 20, 40 are welded gas-tight in the areas 29, 41, 47. These welding areas are indicated in FIG. 3 by dashed lines 51, 52.
  • the deformation object 3 shown in FIG. 2 has the outer contour designated 3.1 after the explosive deformation.
  • the dash-dotted outer contour 3.2 and inner contour 3.3 with an internal thread 3.4 in the mouth region 3.5 represents a finished chip body 3.6.
  • This body 3.6 has recesses 3.7 and 3.8 for the arrangement of a guide ring (not shown) and a base plate, also not shown.
  • the guide ring and the base plate can also be permanently and securely connected to the splinter body 3.6 by explosive deformation.
  • the deformation begins at the head 18, specifically from the collar 23, then extends continuously over the cone 24 along the entire inner sleeve 20.
  • the cone 24 just favors the deformation in the length range 31 of the smallest diameter 27 of the inner sleeve 20. This is where the greatest deformation takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Splitterkörpers, bei welchem Konstruktionssplitter wenigstens einlagig zwischen zwei zentrisch ineinander angeordneten Hülsen eingepreßt sind.The invention relates to a method for producing a splinter body, in which construction splinters are pressed at least in one layer between two sleeves arranged centrally in one another.

Ein Splitterkörper, bei dem Konstruktionssplitter wenigstens einlagig zwischen zentrisch ineinander angeordneten Hülsen eingepreßt sind und wobei diese Konstruktionssplitter durch Explosivumformen zwischen der Innenhülse und der Außenhülse unter Vorfragmentierung der Innen- und Außenhülse eingeformt sind, ist aus der DE-A-2 129 196 bekannt.A splinter body, in which construction splinters are pressed at least in one layer between centrally arranged sleeves and which construction splinters are formed by explosive deformation between the inner sleeve and the outer sleeve with pre-fragmentation of the inner and outer sleeves, is known from DE-A-2 129 196.

Aus der DE 28 52 657 ist ein Splitterkörper für Splittergeschosse bekannt, bei dem als Kugeln ausgebildete Splitter einlagig zwischen zwei zentrisch ineinander angeordneten Hülsen eingepreßt sind. Die Kugeln werden durch von außen erfolgendes Kalt-Rundhämmern von einem Ausgangsteilkreis auf einen kleineren Fertigteilkreis unter Verspannung der Kugeln gebracht. Nachteilig daran ist, daß durch dieses Bearbeitungsverfahren die Kugeln auswandern und sogenannte Nester bilden. Daraus resultiert für das Geschoß eine Unwucht, die beim Abschuß zu einer erhöhten Belastung des Waffenrohrs und damit zu einem relativ hohen Verschleiß führt. Außerdem ist die Außenballistik stark beeinträchtigt, so daß die Flugbahn nicht in allen Fällen reproduzierbar ist.
Weiterhin führt das Schmieden einer derartigen Geschoßhülle nach dem zerspanenden Verformen auf die endgültige äußere Kontur zum Freiwerden von Spannungen im Bereich des Mundloches. Die Folge ist ein Verzug im Mundlochbereich mit einer derartigen Unrundheit, daß die aufzuschraubenden Zünder teilweise nicht montiert werden können.
From DE 28 52 657 a splinter body for splinter projectiles is known, in which splinters designed as spheres are pressed in in one layer between two sleeves arranged centrally in one another. The balls are brought from an initial pitch circle to a smaller prefabricated circle by tensioning the balls by external circular hammering. The disadvantage of this is that the balls emigrate through this machining process and form so-called nests. This results in an imbalance for the projectile, which leads to an increased load on the weapon barrel and thus to a relatively high level of wear when fired. In addition, the external ballistics is severely impaired, so that the trajectory is not reproducible in all cases.
Furthermore, the forging of such a projectile shell after the shaping shaping onto the final outer contour leads to the release of tensions in the region of the mouth hole. The result is a delay in the mouth area with such a roundness that the detonators to be screwed on can not be partially installed.

Durch die langsame und stufenweise Schmiedeumformung verlieren die relativ weichen Schwermetall-Kugelsplitter ihre ursprüngliche Form.Due to the slow and gradual forging, the relatively soft heavy metal ball fragments lose their original shape.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung der Splitterhülle vorzuschlagen, bei dem eine gleichmäßige Einbettung der Kugeln und eine reproduzierbare Rundheit im Mundlochbereich einer zerspanend bearbeiteten Geschoßhülle gewährleistet ist. Der Splitterkörper soll darüberhinaus kostengünstig und einfach herstellbar sein.The invention is therefore based on the object of proposing a method for producing the splinter casing, in which a uniform embedding of the balls and a reproducible roundness in the region of the mouth hole of a machined projectile casing is ensured. The splinter body should also be inexpensive and easy to manufacture.

Die Erfindung löst diese Aufgabe mittels den Verfahrenschritte des Anspruches 1.
Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.
The invention solves this problem by means of the method steps of claim 1.
Advantageous further developments can be found in the subclaims.

Der erfindungsgemäße Splitterkörper ist reproduzierbar herzustellen. Er zeichnet sich dadurch aus, daß die Splitter umfangseitig gleichmäßig im Splitterkörper fixiert sind, so daß Innen- und Außenballistik nicht negativ durch den Splitterkörper bzw. durch das Splittergeschoß beeinflußt werden. Die Rundheit im Mundlochbereich des Splittergeschosses ist gewährleistet.The splinter body according to the invention can be produced reproducibly. It is characterized by the fact that the fragments are uniformly fixed on the circumference in the splinter body, so that the inside and outside ballistics are not negatively influenced by the splinter body or by the splinter floor. The roundness in the mouth hole area of the splinter floor is guaranteed.

Die kugelförmigen Splitterkörper behalten ihre ursprüngliche Form weitgehend bei, aufgrund der sehr hohen Umformgeschwindigkeit der Außenhülse.The spherical splinter bodies largely retain their original shape due to the very high forming speed of the outer sleeve.

Wesentlich ist auch die Dichtigkeit des Splitterbereiches zwischen den beiden Geschoßhüllen durch definierte Schweißzonen außerhalb des Splitterbereiches also im Boden- und Kopfbereich der Splitterhüllen.
Durch die Explosivumformung wird in vorteilhafter Weise eine Vorfragmentierung der inneren und äußeren Splitterhülle durch die vorgeformten Splitterhüllen bewirkt. Damit liegt eine Splitterwirkung der Konstruktionssplitter und auch beträchtliche Splitterwirkungen der Innen- und Außenhülle des Splittergeschosses im Nahbereich vor. Der mittlere und Fernbereich für die Splitterwirkung wird durch die als Kugeln ausgebildeten Konstruktionssplitter abgedeckt.
Ein wesentlicher Vorteil liegt auch dadurch vor, daß weder durch das Fertigungsverfahren noch nach langer Lagerzeit der Splittergeschosse Risse in den Geschoßhüllen auftreten. Maßgebend hierfür ist die spezielle Gestaltung der Explosivumformung. Diese sieht nämlich vor, daß zwar die Einleitung der Detonation zentral an einer Stirnseite erfolgt, jedoch der Hauptwirkungsbereich der Detonationswellen sich über den Umfang der äußeren Splitterhülle erstreckt.
Also important is the tightness of the splinter area between the two shell casings through defined welding zones outside the splinter area, that is to say in the bottom and top area of the splinter casings.
The explosive deformation advantageously causes the inner and outer splinter shells to be pre-fragmented by the pre-shaped splinter shells. This results in a splinter effect of the construction splinters and also considerable splinter effects of the inner and outer shell of the splinter floor in the vicinity. The middle and far range for the splinter effect is covered by the construction splinters designed as spheres.
A major advantage is also that cracks do not occur in the shell of the shell either due to the manufacturing process or after a long storage period of the fragmentary bullets. The special design of the explosive forming is decisive for this. This sees namely, that the detonation is initiated centrally on one end face, but the main area of action of the detonation waves extends over the circumference of the outer fragment shell.

Bei der Umformung der Außenhülse 40 werden die Kugeln 32 lediglich im umgebenden Material eingebettet, die Hülsenenden 48, 49 verschweißen jedoch miteinander. Dies ist aufgrund der speziellen Hülsengeometrie und der Sprenganordnung möglich.When the outer sleeve 40 is formed, the balls 32 are only embedded in the surrounding material, but the sleeve ends 48, 49 weld to one another. This is possible due to the special sleeve geometry and the blasting arrangement.

Es ist zwar aus der DE-C2 38 35 808 bekannt, als Verfahren zur Herstellung von Hartkerngeschossen das Explosivverformen vorzusehen. Hierbei kommt es darauf an, einen Geschoßkern herzustellen, dessen Eigenschaften über die Kernlänge reproduzierbar verändert werden können. Insbesondere soll die Geschoßspitze sehr spröde und der restliche Teil des Geschoßkernes duktil sein. Hierzu werden nicht vorgesinterte Pulverkörper unterschiedlicher Korngröße in ein Hüllrohr eingebracht. Das auf einer Unterlage stehende Hüllrohr wird dann mit Sprengstoff ummantelt, wobei kopfseitig eine Zündanordnung vorgesehen ist. Die mittlere Sprengstoffdicke im Kopfbereich beträgt etwa das dreifache der radialen Komponente des Sprengstoffs im Umfangbereich des Hüllrohres. Damit überwiegt die axialwirkende Verformungskomponente wesentlich stärker als die radialen Momente. Bei Übertragung dieses Verfahrens auf den erfindungsgemäßen Splitterkörper würde sowohl die Festigkeit der Splitter als auch die Rißfreiheit wenigstens der äußeren Splitterhülle nachteilig beeinflussen.It is known from DE-C2 38 35 808 to provide explosive molding as a method for producing hard core bullets. The important thing here is to produce a projectile core, the properties of which can be reproducibly changed over the core length. In particular, the tip of the projectile is said to be very brittle and the remaining part of the projectile core is ductile. For this purpose, powder particles of different grain sizes that are not presintered are introduced into a cladding tube. The cladding tube standing on a base is then coated with explosives, an ignition arrangement being provided on the head side. The average explosive thickness in the head area is approximately three times the radial component of the explosive in the peripheral area of the cladding tube. The axially acting deformation component thus predominates far more than the radial moments. When this method is transferred to the splinter body according to the invention, both the strength of the splinters and the absence of cracks would adversely affect at least the outer splinter shell.

Ein Ausführungsbeispiel der Erfindung ist anhand der Zeichnungen nachfolgend beschrieben.An embodiment of the invention is described below with reference to the drawings.

Es zeigt:

Figur 1
eine Anordnung zur Explosivumformung
Figur 2
ein Ausgangsteil vor der Explosivumformung und
Figur 3
das aus Fig. 2 hervorgehende Ausgangsteil in einem verformten Zustand und
Figur 4
eine Einzelheit IV gemäß Figur 3.
It shows:
Figure 1
an arrangement for explosive forming
Figure 2
an initial part before the explosive forming and
Figure 3
the output part shown in Fig. 2 in a deformed state and
Figure 4
a detail IV according to FIG. 3.

Nach Figur 1 fixiert eine Bodenplatte 1 in einer Ausnehmung 2 einen Verformungsgegenstand 3 und umfangsseitig ein Hüllrohr 4. Der Verformungsgegenstand 3 trägt an seinem freien Ende eine Kappe 5 aus Kunststoff zur Detonationswellenlenkung. Die Kappe 5 umgibt den Verformungsgegenstand 3 mit einem Rand 6 und trägt zentrisch eine Sprengkapsel 7 mit Zündleitungen 8. Das Hüllrohr 4 weist zum Verformungsgegenstand 3 in radialer Richtung einen Abstand 10 und zur Kappe 5 einen axialen Überstand 11 auf. Der Überstand 11 beträgt etwa ein Drittel des Abstandes 10. Die beschriebene Anordnung ist aufrechtstehend auf einer Unterlage 12 aus Sand in einem angedeuteten, luftevakuierbaren Behälter 13 angeordnet. Im Hüllrohr 4 liegt ein Sprengstoff 9. Der Sprengstoff 9 umgibt die Kappe 5 und umhüllt den Verformungsgegenstand nur umfangseitig.According to FIG. 1, a base plate 1 fixes a deformation object 3 in a recess 2 and a cladding tube 4 on the circumference. The deformation object 3 has a plastic cap 5 for detonation wave guidance at its free end. The cap 5 surrounds the deformation object 3 with an edge 6 and carries a detonator capsule 7 with ignition lines 8 in the center. The protrusion 11 is approximately a third of the distance 10. The arrangement described is arranged upright on a base 12 made of sand in an indicated, air-evacuable container 13. An explosive 9 lies in the cladding tube 4. The explosive 9 surrounds the cap 5 and only encases the deformation object on the circumference.

Nach Figur 2 trägt eine Innenhülse 20 in einer Bohrung 21 einen Dorn 22 zur radialen Abstützung. Die Innenhülse 20 kann als Fließpreßteil oder auch als Vollkörper ausgebildet sein.
Die Innenhülse 20 besitzt weiterhin einen stirnseitigen Bund 23 an einem Kopf 18, einen Konus 24, eine zweifach abgestufte Eindrehung 25 mit dazwischenliegendem Konus 26 mit Durchmessern 27, 28 und einen fußseitigen zylindrischen Abschnitt 29.
According to FIG. 2, an inner sleeve 20 carries a mandrel 22 in a bore 21 for radial support. The inner sleeve 20 can be designed as an extruded part or as a solid body.
The inner sleeve 20 also has a front collar 23 on a head 18, a cone 24, a two-stage recess 25 with an intermediate cone 26 with diameters 27, 28 and a cylindrical section 29 on the foot side.

In zylindrischen Längenbereichen 30, 31 und am Konus 26 sind als Konstruktionssplitter ausgebildete Kugeln 32 (Figur 4) als dichte Kugelpackungen 33 bis 35 angeordnet. Die durchmessergrößere Kugelpackung 33 zentriert eine Außenhülse 40 zusammen mit dem Bund 23 in einem konischen Stirnbereich 41 der Außenhülse 40.In cylindrical length regions 30, 31 and on the cone 26, balls 32 (FIG. 4) designed as structural splinters are arranged as tight ball packs 33 to 35. The larger diameter spherical packing 33 centers an outer sleeve 40 together with the collar 23 in a conical end region 41 of the outer sleeve 40.

Bei Zündung der Sprengkapsel 7 breiten sich Detonationswellen oberhalb der Kappe 5 entsprechend dem Abstand 11 vorwiegend in der Ebene 19 aus. Die Verformungskraft in Richtung des Pfeiles 36 ist daher sehr klein im Verhältnis zur zentripetalen Verformungskraft des Sprengstoffes 9 über die Gesamtlänge 16; dies ist eines der wesentlichen Merkmale. Die Detonationswellen werden dann über eine konische Außenfläche 14 der Kappe 5 in einen Zylinderbereich 15 des Verformungsgegenstandes 3 umgelenkt. Der Rand 6 der Kappe 5 in Verbindung mit dem Bund 23 an dem Konus 24 verhindern ein Eindringen von Sprengstoffschwaden in den Vervormungsgegenstand 3. Dadurch ist sichergestellt, daß auf den Verformungsgegenstand 3 nur die von außen wirkende Explosivumformung wirksam ist.
In dem Zylinderbereich 15 verlaufen dann die Detonationswellen in Richtung auf die Bodenplatte 1. Durch die Umsetzung des Sprengstoffes 9 wird der Verformungsgegenstand 3 in zentripetaler Richtung gemäß seiner Gesamtlänge 16 verformt. Hierbei stützt der Dorn 22 die Innenhülse 20 ab. Alternativ zu dem Dorn 22 kann die Innenhülse 20 auch als Vollkörper ausgebildet sein, der dann - nach der Explosivumformung - ausgebohrt wird.
When the detonator 7 is detonated, detonation waves propagate above the cap 5 corresponding to the distance 11 predominantly in the plane 19. The deformation force in the direction of arrow 36 is therefore very small in relation to the centripetal deformation force of the explosive 9 over the entire length 16; this is one of the essential characteristics. The detonation waves are then deflected via a conical outer surface 14 of the cap 5 into a cylinder region 15 of the deformation object 3. The edge 6 of the cap 5 in connection with the collar 23 on the cone 24 prevent penetration of Fumes of explosives into the preform 3. This ensures that only the explosive deformation acting from the outside is effective on the deformation object 3.
The detonation waves then run in the cylinder region 15 in the direction of the base plate 1. The deformation object 3 is deformed in the centripetal direction according to its total length 16 by the implementation of the explosive 9. Here, the mandrel 22 supports the inner sleeve 20. As an alternative to the mandrel 22, the inner sleeve 20 can also be designed as a solid body which is then drilled out after the explosive shaping.

Bei der Explosivumformung wird die Außenhülse 40 in allen Bereichen in zentripetaler Richtung verformt, so daß sämtliche gezeichnete Ringspalte 42 bis 46 nicht nur von der Außenhülse 40 vollständig überbrückt werden sondern auch die Kugelpackungen 33 bis 35 in die Innen- und Außenhülse 20, 40 entsprechend der Höhen 50 eingeformt und die Innen- und Außenhülse 20, 40 in den Bereichen 29, 41, 47 gasdicht verschweißt werden. Diese Verschweißungsbereiche sind in Figur 3 durch strichpunktiert gezeichnete Linien 51, 52 angedeutet.In explosive deformation, the outer sleeve 40 is deformed in all areas in the centripetal direction, so that all the annular gaps 42 to 46 drawn are not only completely bridged by the outer sleeve 40 but also the ball packs 33 to 35 in the inner and outer sleeves 20, 40 corresponding to the Heights 50 are molded and the inner and outer sleeves 20, 40 are welded gas-tight in the areas 29, 41, 47. These welding areas are indicated in FIG. 3 by dashed lines 51, 52.

Der aus Figur 2 hervorgehende Verformungsgegenstand 3 weist nach der Explosivumformung die mit 3.1 bezeichnete Außenkontur auf.The deformation object 3 shown in FIG. 2 has the outer contour designated 3.1 after the explosive deformation.

Die strichpunktiert gezeichnete Außenkontur 3.2 sowie Innenkontur 3.3 mit einem Innengewinde 3.4 im Mundlochbereich 3.5 stellt einen fertig bearbeiteten Splitterkörper 3.6 dar. Dieser Splitterkörper 3.6 weist Ausnehmungen 3.7 und 3.8 zur Anordnung eines nicht dargestellen Führungsringes und einer ebenfalls nicht dargestellten Bodenplatte auf. Der Führungsring als auch die Bodenplatte können ebenfalls durch Explosivumformung dauerhaft und sicher mit dem Splitterkörper 3.6 verbunden werden.The dash-dotted outer contour 3.2 and inner contour 3.3 with an internal thread 3.4 in the mouth region 3.5 represents a finished chip body 3.6. This body 3.6 has recesses 3.7 and 3.8 for the arrangement of a guide ring (not shown) and a base plate, also not shown. The guide ring and the base plate can also be permanently and securely connected to the splinter body 3.6 by explosive deformation.

Für einen rißfreien und gasdichten Splitterkörper 3.6 ist es wesentlich, daß die Verformung am Kopf 18 und zwar ab dem Bund 23 beginnt, sich dann über den Konus 24 stufenlos entlang der gesamten Innenhülse 20 erstreckt. Der Konus 24 begünstigt gerade die Verformung im Längenbereich 31 des kleinsten Durchmessers 27 der Innenhülse 20. Denn dort findet die größte Verformung statt.For a crack-free and gas-tight splinter body 3.6, it is essential that the deformation begins at the head 18, specifically from the collar 23, then extends continuously over the cone 24 along the entire inner sleeve 20. The cone 24 just favors the deformation in the length range 31 of the smallest diameter 27 of the inner sleeve 20. This is where the greatest deformation takes place.

Claims (8)

  1. Method of manufacturing a fragmentation body, in which at least a single layer of structural fragments (32) is pressed in between two cases (20,40), arranged concentrically one inside the other, this method having the following procedural stages:
    - Inserting the structural fragments (32) in a channel (25) of an inner case (20);
    - Pushing an outer case (40) onto the inner case (20);
    - Centring the forming object (3) comprising inner and outer cases (20,40) and structural fragments (32) in a base plate (1);
    - Placing a cap (5) provided with a conical outer face (14) on the forming object (3) for guiding the detonation waves, this cap (5) gripping the outer case (40) by means of a rim (6);
    - Fixing a covering tube (4) to the base plate (1), so that there is a space (10) in radial direction between this covering tube (4) and the outer case (40) and the covering tube (4) has an axial excess length (11) in relation to the cap (5), the excess length (11) being approximately one third of the space (10);
    - Arranging these specified components vertically in a vacuum-resistant container (13) on a support (12);
    - Inserting explosive substance (9) into the space between the covering tube (4) and the outer case (40), whilst this covering tube (4) and the outer case (40) are, as mentioned above, arranged in a vertical position on the support (12), the explosive substance (9) extending axially over a level end face of the cap (5) over the excess length (11) and the radial distance (10) defining the layer of explosive substance (9) on the circumferential side;
    - Evacuating the container (13);
    - Igniting a detonator (7), located concentrically on the cap (5), whereby, by means of this explosive forming taking place from outside, the structural fragments in the inner case (20) and the outer case (40) can be formed with prefragmenting of the still intact inner and outer cases (20,40);
    - Ventilating the container (13) with removal of the fragmentation body for the shape-cutting process.
  2. Method according to Claim 1,
    characterized in that
    the inner case (20) can be radially supported from the inside by a removable spike (22).
  3. Method according to Claim 1,
    characterized in that
    the structural fragments are held in a spacing grid (35) with compressible bars (35.1).
  4. Method according to Claim 1,
    characterized in that
    the inner and outer cases (20,40) have sections (29,47) which can be welded together outside a channel (25) for the structural fragments (32).
  5. Method according to Claim 1,
    characterized in that
    the inner and outer cases (20,40) are made of a carbon-containing steel or a stainless steel and the structural fragments are made of a heavy metal or steel.
  6. Method according to Claim 1,
    characterized in that
    the structural fragments (32) lie in the channel (25) of the inner case (20) which is graduated by different outer diameters (27,28) and a taper (26).
  7. Method according to Claim 1,
    characterized in that
    the cap (5) used in this method is made of a shock-absorbing material.
  8. Method according to Claim 1,
    characterized in that
    a head (18) on the detonating side of the inner case (20), for sealing off the intermediate space (annular opening 42-46) against the detonating products of the explosive substance, has a band (23) which lies adjacent to the inlet area of the outer case (40).
EP94103489A 1993-03-13 1994-03-08 Manufacturing method for a projectile fragmentation casing Expired - Lifetime EP0616189B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4308027A DE4308027A1 (en) 1993-03-13 1993-03-13 Splinter body for splinter projectiles and method for producing a splinter projectile
DE4308027 1993-03-13

Publications (3)

Publication Number Publication Date
EP0616189A2 EP0616189A2 (en) 1994-09-21
EP0616189A3 EP0616189A3 (en) 1995-01-18
EP0616189B1 true EP0616189B1 (en) 1996-06-05

Family

ID=6482720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103489A Expired - Lifetime EP0616189B1 (en) 1993-03-13 1994-03-08 Manufacturing method for a projectile fragmentation casing

Country Status (2)

Country Link
EP (1) EP0616189B1 (en)
DE (2) DE4308027A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538313A1 (en) 1995-10-14 2013-12-05 Diehl Stiftung & Co. Kg Method for manufacturing coil penetrator of fragment projectile, involves rolling individual heavy metal films on core, and interconnecting individual windings of coil by radial action of cylindrical detonation face
SE543620C2 (en) * 2017-12-05 2021-04-20 Bae Systems Bofors Ab Effect part with preformed elements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129196C3 (en) * 1971-06-12 1975-11-13 Fa. Diehl, 8500 Nuernberg Fragmentation body for fragmentation projectiles and warheads
DE2353204C3 (en) * 1973-10-24 1978-09-21 Fa. Diehl, 8500 Nuernberg Explosive projectile
DE2460013C3 (en) * 1974-12-19 1978-08-24 Sintermetallwerk Krebsoege Gmbh, 5608 Radevormwald Process for the production of metallic moldings
DE2557676A1 (en) * 1975-12-20 1977-06-30 Diehl Fa Projectile contg. fragments of depleted uranium alloy - giving high penetrating power esp. armour piercing and incendiary action
DE2852657C2 (en) * 1978-12-06 1984-10-04 Diehl GmbH & Co, 8500 Nürnberg Fragmentation body for fragmentation projectiles
DE3835808A1 (en) * 1988-10-21 1990-04-26 Rheinmetall Gmbh Method for producing hard-core projectiles (kinetic-energy projectiles)

Also Published As

Publication number Publication date
DE59400323D1 (en) 1996-07-11
EP0616189A2 (en) 1994-09-21
EP0616189A3 (en) 1995-01-18
DE4308027A1 (en) 1994-09-15

Similar Documents

Publication Publication Date Title
EP0101795B1 (en) Fragmentation projectile with splinter effect
DE2129196C3 (en) Fragmentation body for fragmentation projectiles and warheads
SE430002C (en) SPLITTLE SHELTER FOR PROJECTILES, BATTLES AND FUNDS
USH238H (en) Warhead casing of novel fragmentation design
EP0874212A2 (en) Fragmentation body for projectile
US20080141889A1 (en) Method of Enhancing the External Ballistics and Ensuring Consistent Terminal Ballistics of an Ammunition Projectile and Product Obtained
EP0214409B1 (en) Hollow charge training projectile
EP0616189B1 (en) Manufacturing method for a projectile fragmentation casing
DE3617415C2 (en) Sub-caliber sabot bullet
EP0012322B1 (en) Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material
DE2852657C2 (en) Fragmentation body for fragmentation projectiles
US4977657A (en) Method of producing a fragmentation jacket
DE3741141A1 (en) SPLITTER BODY FOR SPLITTER STOOLS
DE4131286C2 (en) Bottom of the case for a propellant charge case
DE2322728A1 (en) SPLITTER CASE FOR BULLETS, BATTLE HEADS, THROWING AMMUNITION, etc.
DE2310667A1 (en) SPLITTER CASE FOR BULLETS AND COMBAT HEADS, AND PROCESS FOR THEIR PRODUCTION
DE19736298B4 (en) Method and device for delaboring grenades with shaped charge
DE3120655C2 (en) Slotted piston ring and process for its manufacture
DE3822375C2 (en)
EP0108741A1 (en) Method for the production of a fragmentation device
DE2536308A1 (en) Fragment producing assembly for projectile or warhead - has preformed fragments held in open cage by embedding molten material
DE2612149C2 (en) Fragmentation cover for projectiles, warheads and the like.
DE866318C (en) Projectile with shaped charge
DE2538108A1 (en) Grenade launched by weapon - contains explosive charge which is housed between perforated disc and metal block
DE102007002979A1 (en) Projectile-forming charge comprises a first explosive body, an arrangement consisting of an inert disk made from a porous material and a channel filled with explosive, a second explosive body and a metal insert

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19950128

17Q First examination report despatched

Effective date: 19950324

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 59400323

Country of ref document: DE

Date of ref document: 19960711

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990329

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990526

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000309

EUG Se: european patent has lapsed

Ref document number: 94103489.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050308