EP0611389B1 - Verwendungen von 1,1,1,3,3,3-hexafluoropropan - Google Patents
Verwendungen von 1,1,1,3,3,3-hexafluoropropan Download PDFInfo
- Publication number
- EP0611389B1 EP0611389B1 EP92924370A EP92924370A EP0611389B1 EP 0611389 B1 EP0611389 B1 EP 0611389B1 EP 92924370 A EP92924370 A EP 92924370A EP 92924370 A EP92924370 A EP 92924370A EP 0611389 B1 EP0611389 B1 EP 0611389B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- impeller
- cfc
- compressor
- centrifugal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000003507 refrigerant Substances 0.000 claims abstract description 49
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 claims description 31
- 238000005057 refrigeration Methods 0.000 claims description 14
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims description 9
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 2
- 229940029284 trichlorofluoromethane Drugs 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 1
- 238000007906 compression Methods 0.000 description 9
- 230000006835 compression Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
- C07D207/452—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
- C08G73/125—Unsaturated polyimide precursors the unsaturated precursors containing atoms other than carbon, hydrogen, oxygen or nitrogen in the main chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/24—Only one single fluoro component present
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
Definitions
- This invention relates to the use of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) as a refrigerant, heat transfer media, gaseous dielectric, sterilant carrier, polymerization media, particulate removal fluid, carrier fluid, buffing abrasive agent, displacement drying agent, and as a power cycle working fluid. More particularly, it relates to 1,1,1,3,3,3-hexafluoropropane as a highly effective and potentially environmentally safe refrigerant for use in refrigeration equipment utilizing centrifugal compression.
- HFC-236fa 1,1,1,3,3,3-hexafluoropropane
- thermodynamics wherein a cooling medium, such as a refrigerant, goes through a cycle so that it can be recovered for reuse.
- a cooling medium such as a refrigerant
- Commonly used cycles include vapor-compression, absorption, steam-jet or steam-ejector, and air.
- compressors there are various types of compressors that may be used in refrigeration applications. Compressors can be generally classified as reciprocating, rotary, jet, centrifugal, or axial-flow, depending on the mechanical means to compress the fluid, or as positive-displacement or dynamic, depending on how the mechanical elements act on the fluid to be compressed.
- a centrifugal compressor uses rotating elements to accelerate the refrigerant radially, and typically includes an impeller and diffuser housed in a casing.
- Centrifugal compressors usually take fluid in at an impeller eye, or central inlet of a circulating impeller, and accelerate it radially outwardly. Some static pressure rise occurs in the impeller, but most of the pressure rise occurs in the diffuser section of the casing, where velocity is converted to static pressure.
- Each impeller-diffuser set is a stage of the compressor.
- Centrifugal compressors are built with from 1 to 12 or more stages, depending on the final pressure desired and the volume of refrigerant to be handled.
- the pressure ratio, or compression ratio, of a compressor is the ratio of absolute discharge pressure to the absolute inlet pressure.
- Pressure delivered by a centrifugal compressor is practically constant over a relatively wide range of capacities.
- a centrifugal compressor Unlike a positive displacement compressor, a centrifugal compressor depends entirely on the centrifugal force of the high speed impeller to compress the vapor passing through the impeller. There is no positive displacement, but rather what is called dynamic-compression.
- the pressure a centrifugal compressor can develop depends on the tip speed of the impeller. Tip speed is the speed of the impeller measured at its tip and is related to the diameter of the impeller and its revolutions per minute.
- the capacity of the centrifugal compressor is determined by the size of the passages through the impeller. This makes the size of the compressor more dependent on the pressure required than the capacity.
- a centrifugal compressor is fundamentally a high volume, low pressure machine.
- a centrifugal compressor works best with a low pressure refrigerant, such as trichlorofluoromethane (CFC-11).
- CFC-11 trichlorofluoromethane
- suction pressure in the compressor is from about 457 to 635 mm (18 to 25 inches) of vacuum depending on the evaporator temperature required, and the discharge pressure is near atmospheric pressure.
- a single stage impeller can be used with CFC-11 for air conditioning suction temperatures.
- a two-stage impeller is common for many conditions. In operation, the discharge of the first stage impeller goes to the suction intake of a second impeller. Each stage can build up a compression ratio of about 4 to 1, that is, the absolute discharge pressure can be 4 times the absolute suction pressure.
- Centrifugal compressors range in size from 200 to 10,000 kilowatts of refrigeration capacity.
- CFC-11 1,2,2-trichloro-trifluoroethane (CFC-113) or 1,3-dichlorotetrafluoroethane (CFC-114) can be used as the refrigerant in place of CFC-11 without changing the compressor except for providing a properly sized motor.
- centrifugal compressors that were designed for CFC-113 or CFC-114.
- a centrifugal compressor is designed for the refrigerant with which it is to be used. That is, a centrifugal compressor is typically designed by first selecting a refrigerant, and then determining the desired refrigeration capacity and power source. Once these variables are known, the diameter of the impeller, the size of the impeller opening, and the number of stages are designed to achieve the desired refrigeration capacity.
- a problem with replacing chlorofluorocarbons with alternative refrigerants for use in existing centrifugal compressors is that unless the alternative refrigerant matches certain physical criteria, the alternative refrigerant will not work in the existing centrifugal compressor.
- Important criteria include the "tip speed" of a refrigerant, meaning the speed of the impeller as measured at its tip for a given centrifugal compressor, and the density and molecular weight the refrigerant.
- a centrifugal compressor If it is desired to replace a refrigerant in a centrifugal compressor, and the replacement refrigerant does not perform as well as the original refrigerant, it is possible to design a compressor for the replacement refrigerant and to replace the original compressor. However, replacing an existing compressor is not possible in all cases. For example, a centrifugal compressor may be so large (such as is used in the cooling systems of large buildings) that it cannot be replaced by a redesigned compressor. In such cases, the replacement refrigerant must work in the original compressor.
- EP-A-0445611 is concerned with the provision of lubricants for refrigerating equipment. This document mentions 1,1,1,3,3,3-hexafluoropropane among a list of hydrofluorocarbons but does not suggest its use in refrigerant equipment utilizing centrifugal compression.
- JP-A-90-272086 discloses a large number of hydrogen-containing halogenated hydrocarbons which are stated to be suitable as refrigerant media.
- R-236fa (1,1,1,3,3,3-hexafluoropropane) is mentioned but this does not suggest its use in refrigeration equipment utilizing centrifugal compression.
- the present invention relates to the discovery that 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) may be used as a refrigerant, and more particularly as a refrigerant for use in centrifugal compression refrigeration equipment.
- HFC-236fa 1,1,1,3,3,3-hexafluoropropane
- centrifugal compressor There are three important choices in selecting or designing a centrifugal compressor; the diameter of the impeller, which means the length from the end of one of the impeller blades to the end of the opposite blade, the width of the passage in the impeller and the refrigerant.
- the impeller and refrigerant must be selected in a combination that best suits a desired application.
- the diameter of the impeller depends on the discharge pressure that must be achieved. For a given rotative speed, a large impeller diameter provides a higher tip speed, which results in a higher pressure ratio. Tip speed means the tangential velocity of the refrigerant leaving the impeller. If a centrifugal compressor that uses CFC-114 as a refrigerant is driven by an electric motor operating at 85 revolutions per second (r/s), and the impeller diameter of the compressor is 0.575 meters, the impeller generates a tip speed of 153.4 m/s.
- CFC-114 a refrigerant that may be used in equipment designed for CFC-114 and that performs similarly to CFC-114.
- a refrigerant must be such that when it is used, the impeller achieves a tip speed that matches, or nearly matches, the tip speed of the impeller when CFC-114 is used.
- HFC-236fa provides a tip speed identical or nearly identical to the tip speed of CFC-114 when the two refrigerants are used in the same operating equipment.
- centrifugal compressors are designed to maintain high efficiencies, especially when the compressors are used with machines that operate at low capacities.
- One way to increase the efficiency of the compressor without increasing the width between the impeller blades is to use a refrigerant with a low density, such as CFC-114, which reduces the friction on the narrow impeller faces relative to the flowrate through the impeller.
- the liquid density of CFC-114 is 1.555 g/cc at room temperature, and the liquid density of 1,1,1,3,3,3-hexafluoropropane is 1.230 g/cc at room temperature.
- the lower density of HFC-236fa may increase the efficiency of a centrifugal compressor at low capacities, and at least should allow the centrifugal compressor to operate at the same efficiency as when CFC-114 is used.
- the molecular weight of the refrigerant is an important design consideration for centrifugal compressors.
- the molecular weight of CFC-114 is 170.9 and the molecular weight of 1,1,1,3,3,3-hexafluoropropane is 152.0.
- HFC-236fa Another important physical property of HFC-236fa is that it boils at - 1.5°C, which is close to the boiling point of 3.6°C of CFC-114.
- Tip speed can be estimated by making some fundamental relationships for refrigeration equipment that uses centrifugal compressors.
- equation 8 is based on some fundamental assumptions, it provides a good estimate of the tip speed of the impeller and provides an important way to compare tip speeds of refrigerants.
- Table 1 shows theoretical tip speeds for dichlorotetrafluoroethane (CFC-114), 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), and ammonia.
- CFC-114 dichlorotetrafluoroethane
- HFC-236fa 1,1,1,3,3,3-hexafluoropropane
- ammonia ammonia.
- the conditions assumed for this comparison are that the refrigerant is compressed from a saturated vapor at 4.4 degrees Celsius (40 degrees Fahrenheit) to a pressure corresponding to a condensing temperature of 43.3 degrees Celsius (110 degrees Fahrenheit). These are typical conditions under which a centrifugal chiller performs.
- the diameter of the impeller is 0.575 meters, and, for CFC-114, the compressor is driven by an electric motor operating at 85 r/s.
- the compressor is driven by a motor operating at 88 r/s.
- HFC-236fa As a drop in replacement in equipment designed for CFC-114 and having a wheel diameter of 0.575 meters, HFC-236fa produces a tip speed of 159.3 m/s with a motor operating speed of 88 r/s. This operating speed could be accommodated using the same motor as used in the present equipment. Alternatively, the wheel size can be increased to 0.6 meters to operate the motor at 85 r/s. Thus, it is possible to use HFC-236fa in existing equipment designed for CFC-114 with little or no equipment modification.
- This example compares the performance of HFC-236fa to CFC-114 in a centrifugal chiller.
- the size of the impeller in this example is 0.762 meters.
- HFC-236fa may be used as a replacement for CFC-114.
- Some modifications to the motor for compressors designed for use with CFC-114 may be necessary to use HFC-236fa as a drop-in replacement, such as gearing up or gearing down the motor.
- this invention relates to the discovery that HFC-236fa may be used as a refrigerant for centrifugal compressors designed for use with CFC-11, CFC-113 and CFC-114, with replacement of CFC-114 being preferred.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Organic Insulating Materials (AREA)
Claims (1)
- Verfahren zur Erzeugung von Kühlung, das die Bereitstellung eines Zentrifugalverdichters, der zur Verwendung von Trichlorfluormethan, 1,2,2-Trichlortrifluorethan oder 1,2-Dichlortetrafluorethan als Kühlmittel ausgelegt ist, die Verdichtung des Kühlmittels in dem Zentrifugalverdichter und das Verdampfen des Kühlmittels in der Nachbarschaft eines zu kühlenden KÖrpers umfaßt, dadurch gekennzeichnet, daß das in dem Zentrifugalverdichter verwendete Kühlmittel 1,1,1,3,3,3-Hexafluorpropan ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78864691A | 1991-11-06 | 1991-11-06 | |
US788646 | 1991-11-06 | ||
PCT/US1992/009633 WO1993009200A1 (en) | 1991-11-06 | 1992-11-05 | Uses of 1,1,1,3,3,3-hexafluoropropane |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0611389A1 EP0611389A1 (de) | 1994-08-24 |
EP0611389B1 true EP0611389B1 (de) | 1996-02-28 |
Family
ID=25145130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92924370A Expired - Lifetime EP0611389B1 (de) | 1991-11-06 | 1992-11-05 | Verwendungen von 1,1,1,3,3,3-hexafluoropropan |
Country Status (8)
Country | Link |
---|---|
US (1) | US5662825A (de) |
EP (1) | EP0611389B1 (de) |
JP (1) | JPH07504262A (de) |
AU (1) | AU3070192A (de) |
CA (1) | CA2123083C (de) |
DE (1) | DE69208681T2 (de) |
ES (1) | ES2085051T3 (de) |
WO (1) | WO1993009200A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993009200A1 (en) * | 1991-11-06 | 1993-05-13 | E.I. Du Pont De Nemours And Company | Uses of 1,1,1,3,3,3-hexafluoropropane |
EP0687286B1 (de) * | 1993-03-02 | 1996-10-16 | E.I. Du Pont De Nemours And Company | Zusammensetzungen die hexafluorpropan enthalten |
US6230501B1 (en) | 1994-04-14 | 2001-05-15 | Promxd Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
DE10141447A1 (de) * | 2001-08-23 | 2003-03-13 | Solvay Fluor & Derivate | Verwendung von 1,1,1,3,3-Pentafluorbutan |
US20030208923A1 (en) * | 2002-04-01 | 2003-11-13 | Lewis Donald C. | High temperature dehumidification drying system |
KR101733256B1 (ko) | 2009-09-16 | 2017-05-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 트랜스-1,1,1,4,4,4-헥사플루오로-2-부텐을 포함하는 칠러 장치 및 그 내에서 냉각을 생성하는 방법 |
US9651308B1 (en) | 2016-09-08 | 2017-05-16 | Donald C. Lewis | High temperature dehumidification drying system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4312188A (en) * | 1977-10-25 | 1982-01-26 | Consolidated Natural Gas Service Company, Inc. | Heat pump system |
EP0127365A3 (de) * | 1983-05-20 | 1988-03-16 | Imperial Chemical Industries Plc | Wärmepumpen |
FR2575152B1 (fr) * | 1984-12-26 | 1987-02-20 | Rhone Poulenc Spec Chim | Procede de preparation de composes porteurs d'un groupe difluoromethylene ou trifluoromethyle |
US4687588A (en) * | 1986-08-05 | 1987-08-18 | Calmac Manufacturing Corporation | Refrigerant mixture of trichlorofluoromethane and dichlorohexafluoropropane |
JP2631524B2 (ja) * | 1988-09-02 | 1997-07-16 | 三菱樹脂株式会社 | 組立式貯液槽 |
DE3903336A1 (de) * | 1989-02-04 | 1990-08-09 | Bayer Ag | Verwendung von c(pfeil abwaerts)3(pfeil abwaerts)- bis c(pfeil abwaerts)5(pfeil abwaerts)-polyfluoralkanen als treibgase |
JP2841451B2 (ja) * | 1989-04-14 | 1998-12-24 | 旭硝子株式会社 | 作動媒体 |
DE4006827A1 (de) * | 1990-03-05 | 1991-09-12 | Hoechst Ag | Verwendung von esteroelen als schmiermittel fuer kaeltemittelverdichter |
US5035830A (en) * | 1990-03-21 | 1991-07-30 | E. I. Du Pont De Nemours And Company | Binary azeotropic compositions of hexafluoropropylene/ethylene cyclic dimer with methanol or ethanol |
US5076064A (en) * | 1990-10-31 | 1991-12-31 | York International Corporation | Method and refrigerants for replacing existing refrigerants in centrifugal compressors |
WO1993009200A1 (en) * | 1991-11-06 | 1993-05-13 | E.I. Du Pont De Nemours And Company | Uses of 1,1,1,3,3,3-hexafluoropropane |
-
1992
- 1992-11-05 WO PCT/US1992/009633 patent/WO1993009200A1/en active IP Right Grant
- 1992-11-05 EP EP92924370A patent/EP0611389B1/de not_active Expired - Lifetime
- 1992-11-05 CA CA002123083A patent/CA2123083C/en not_active Expired - Fee Related
- 1992-11-05 AU AU30701/92A patent/AU3070192A/en not_active Abandoned
- 1992-11-05 ES ES92924370T patent/ES2085051T3/es not_active Expired - Lifetime
- 1992-11-05 JP JP5508770A patent/JPH07504262A/ja active Pending
- 1992-11-05 DE DE69208681T patent/DE69208681T2/de not_active Expired - Fee Related
-
1995
- 1995-01-27 US US08/379,108 patent/US5662825A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2085051T3 (es) | 1996-05-16 |
CA2123083A1 (en) | 1993-05-13 |
CA2123083C (en) | 2003-06-03 |
EP0611389A1 (de) | 1994-08-24 |
US5662825A (en) | 1997-09-02 |
DE69208681D1 (de) | 1996-04-04 |
AU3070192A (en) | 1993-06-07 |
JPH07504262A (ja) | 1995-05-11 |
DE69208681T2 (de) | 1996-08-14 |
WO1993009200A1 (en) | 1993-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0595937B1 (de) | Verwendung von 1,2,2,3,3-pentafluorpropan | |
EP0331760B1 (de) | Kühlmittel | |
US7401475B2 (en) | Thermodynamic systems operating with near-isothermal compression and expansion cycles | |
US3748057A (en) | Rotary compressor with cooling | |
US20060245944A1 (en) | Cooling apparatus powered by a ratioed gear drive assembly | |
WO2006094304A2 (en) | Refrigeration/air-conditioning apparatus powered by an engine exhaust gas driven turbine | |
JP2005519214A (ja) | 遠心圧縮機 | |
EP0611389B1 (de) | Verwendungen von 1,1,1,3,3,3-hexafluoropropan | |
US4831828A (en) | Cryogenic refrigerator having a convection system to cool a hermetic compressor | |
JPH01108291A (ja) | 冷媒 | |
US4311025A (en) | Gas compression system | |
US4494386A (en) | Vapor refrigeration cycle system with constrained rotary vane compressor and low vapor pressure refrigerant | |
US3937034A (en) | Gas compressor-expander | |
US5275006A (en) | Rotary two-phase refrigeration apparatus and method | |
JP2545879B2 (ja) | 冷 媒 | |
US7210301B2 (en) | Use of 1,1,1,3,3-pentafluorobutane as a refrigerant in a turbocompressor cooling system | |
JPH075880B2 (ja) | 冷 媒 | |
EP0149413A2 (de) | Verfahren und Vorrichtung zum Kühlen | |
EP0882109A1 (de) | Kühlzusammensetzung die 1,1,2,2-tetrafluoroethan enthält | |
JP2867932B2 (ja) | 冷 媒 | |
US3306062A (en) | Refrigeration system | |
CN118111042A (zh) | 压缩装置、空调器及控制方法和控制装置 | |
RU2084775C1 (ru) | Способ получения холода в холодильной установке | |
JPS6071859A (ja) | ヒ−トポンプ | |
JPS61110849A (ja) | 過給ヒートポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940429 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19941123 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69208681 Country of ref document: DE Date of ref document: 19960404 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2085051 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: MINNESOTA MINING AND MANUFACTURING COMPANY Effective date: 19961127 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: MINNESOTA MINING AND MANUFACTURING COMPANY |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBL | Opposition procedure terminated |
Free format text: ORIGINAL CODE: EPIDOS OPPC |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 19980529 |
|
NLR2 | Nl: decision of opposition | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20071104 Year of fee payment: 16 Ref country code: ES Payment date: 20071219 Year of fee payment: 16 Ref country code: DE Payment date: 20071101 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071127 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071031 Year of fee payment: 16 Ref country code: FR Payment date: 20071108 Year of fee payment: 16 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090601 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081105 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090603 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081105 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20081106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081130 |