EP0608006B1 - Rotoren für die Analytik und Verfahren zur Analyse biologischer Fluide - Google Patents
Rotoren für die Analytik und Verfahren zur Analyse biologischer Fluide Download PDFInfo
- Publication number
- EP0608006B1 EP0608006B1 EP94104814A EP94104814A EP0608006B1 EP 0608006 B1 EP0608006 B1 EP 0608006B1 EP 94104814 A EP94104814 A EP 94104814A EP 94104814 A EP94104814 A EP 94104814A EP 0608006 B1 EP0608006 B1 EP 0608006B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- fluid
- rotor
- metering chamber
- metering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 C1*2=*C=C3C2C13 Chemical compound C1*2=*C=C3C2C13 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/491—Blood by separating the blood components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/07—Centrifugal type cuvettes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00237—Handling microquantities of analyte, e.g. microvalves, capillary networks
Definitions
- the invention relates to a rotor for centrifuging biological samples including a liquid phase, comprising a bulk fluid chamber, a metering chamber connected to the bulk fluid chamber and being positioned radially outward from the bulk fluid chamber, an overflow chamber connected to the metering chamber, a receiving chamber positioned radially outward from the metering chamber, and a capillary connecting means for delivering the fluid from the metering chamber to the receiving chamber.
- the invention relates to a method for delivering a predetermined volume of fluid to a receiving chamber in a rotor for centrifuging biological samples including a liquid phase, wherein a volume of fluid greater than the predetermined volume is introduced into a bulk fluid chamber, the rotor is spinned at a first rotational speed to effect the radially outward flow of the fluid from the bulk fluid chamber into a metering chamber such that excess fluid flows out of the metering chamber into an overflow chamber, and a predetermined volume of fluid remains in the metering chamber, and fluid from the metering chamber is delivered from the metering chamber to the receiving chamber.
- a capillary connecting means for delivering the fluid from a metering chamber to a receiving chamber being provided by a straight capillary which is used to hold the fluid in the receiving chamber by capillary force and the friction of the meniscus of the fluid which hinders an escape of air from the receiving chamber.
- a straight capillary which is used to hold the fluid in the receiving chamber by capillary force and the friction of the meniscus of the fluid which hinders an escape of air from the receiving chamber.
- the invention concerns a rotor as mentioned above, wherein the connecting means comprises a siphon through which the metering chamber is capable of preventing flow of fluid out of the metering chamber until after the metering chamber is full, wherein the elbow of the siphon is positioned so that it is substantially the same distance from the centre of the rotor as the radially most inward point of the metering chamber.
- the receiving chamber may be a separation chamber having a cell trap.
- a collection chamber may be connected to the receiving chamber and a plurality of cuvettes may be disposed radially outward from the collection chamber. Each cuvette may contain reagents necessary for analysis of the fluid.
- the rotor may be injection molded or machined.
- the invention concerns a method as mentioned above, wherein the fluid delivering from the metering chamber to the receiving chamber is practiced in stopping the rotation of the rotor, thereby priming a siphon connecting the metering chamber to the receiving chamber, followed by spinning the rotor, thereby initiating the operation of the siphon and emptying the metering chamber.
- Fig. 1 is a plan view of a middle layer of a centrifugal rotor.
- Fig. 2 is a plan view of a bottom layer of a centrifugal rotor.
- Fig. 3 shows a part of the bottom layer of Fig. 2.
- Fig. 4 shows two cross-sectional views along the line 27-27 of Fig. 3.
- Fig. 5 is a cross-sectional view of along line 28-28 of Fig. 2.
- Fig. 6 is a perspective view of an inlet channel showing the direction of flow in the discrete flow paths.
- Fig. 8 is a cross-sectional view along line 31-31 of Fig. 7.
- Fig. 9 is a plan view of a part of the centrifugal rotor showing a cuvette, a straight inlet channel and a reflective surface.
- the centrifugal rotor is in the form of a substantially solid disk including a top layer (not shown), middle layer 288, and bottom layer 322 laminated together to form a composite structure.
- each of the layers will be composed of the same material, usually a transparent plastic such as an acrylate, but it is possible that the layers will be composed of different materials and that each layer may include two or more different materials forming different portions of the layer.
- a receptacle is formed in the bottom layer 322 and is generally aligned with the vertical axis of the rotor. The receptacle is formed to mate with the drive shaft of a conventional centrifuge system.
- the top layer includes a blood application port and four vent ports.
- the blood application port and vent ports penetrate the entire thickness of the top layer and are aligned with various chambers formed in the middle layer 288 of the rotor.
- the middle layer 288 comprises a blood capillary 290 and a metering chamber 292 connected to the blood capillary 290 by a connecting channel 294.
- An overflow chamber 296 is connected to the metering chamber 292 through the overflow channel 298.
- the blood capillary 290, the metering chamber 292 and overflow chamber 296 preferably have capillary dimensions.
- An initial volume of fluid, such as whole blood, is introduced into the blood capillary 290 through blood application port in the top layer. As the rotor spins the initial volume partitions between the metering chamber 292 and the overflow chamber 296.
- the metering chamber 292 is sized to accept the predetermined amount of fluid desired to be split from the blood capillary 290.
- the first fluid entering the metering chamber 292 will fill the chamber, while excess fluid will overflow the metering chamber 292 and flow through connecting channel 294 and overflow channel 298 into overflow chamber 296.
- the overflow feature causes the original bulk amount of fluid to be split into two amounts, the first precisely measured amount and the excess fluid.
- a siphon 318 is used as the connecting means to control flow between the metering chamber 292 and separation chamber 300.
- the elbow 320 of the siphon 318 is positioned so that it is substantially the same distance from the center of the rotor as the radially most inward point of the metering chamber 292.
- the bottom layer 322 typically of a transparent plastic, such as acrylic, comprises a sample collection chamber 324 spaced radially inward from a plurality of peripheral cuvettes 326. Each cuvette 326 is connected to the collection chamber 324 by an inlet channel 328.
- the collection chamber may be formed in any shape, for instance, as a circle, a ring, or the like.
- Each inlet channel 328 comprises two discrete flow paths, a first flow path 340 for the flow of liquid into the cuvette 326 and a second flow path 342 for the flow of gas out of the cuvette.
- discrete refers to the fact that two flow paths 340 and 342 are separately defined and distinct from each other.
- the inlet channels 328 are preferably curved so as to prevent backwash or carryover when the contents of the cuvettes are agitated to effect mixing of the contents. Thus, cross contamination between cuvettes is avoided.
- the use of the flow paths 340 and 342 allow gas to escape easily from the cuvette 326 as it is filled and thus prevent the formation of bubbles in the cuvette 326, which can deleteriously affect the results of optical analyses.
- Figs. 4A, 4B and 8 show three possible configurations in which liquid flow path 340 has a greater depth than the gas flow path 342. Because of its greater depth, the fluid will preferentially flow down path 340, leaving path 342 available for the evacuation of gas from the cuvette 328.
- the liquid flow path 340 may be on the side of the inlet channel 328 toward the direction of rotation of the rotor, as shown in Figs. 4A and 4B. In this configuration, centrifugal force will urge the liquid along the "leading" wall.
- the inlet channel is not curved as shown in Fig. 9, the fluid flow path 340 may be in the center of the inlet channel 328, as shown in Fig. 8.
- the inlet channel 328 is conveniently formed such that it passes around a reflective surface 330 (described more fully, below). If a reflective surface 330 is present, the inlet channel 328 will typically pass around the reflective surface 330 on the side in the direction of rotation of the rotor. In the absence of a reflective surface 330, the inlet channel may be formed in any other generally radial configuration.
- inlet channels 328 having regions with different surface textures.
- the gas flow path 342 may be left unpolished, leaving a rough surface texture in that region, while the fluid flow path 340 is polished.
- the liquid flow path 340 may be treated so as to be hydrophilic whereas the gas flow path is treated so as to be hydrophobic.
- the manner of treatment to make the surfaces hydrophilic or hydrophobic is well known in the art and need not be recited here. Any known surface treatment may be used as desired so long as it is chemically inert to the fluids passing through the inlet channel 328.
- the rotor thus permits rapid filling of the cuvettes. Each cuvette is filled completely leaving little or no gas to interfere with subsequent optical analysis of the cuvettes contents.
- Fig. 7 it can be seen that optical analysis of the cuvette contents is facilitated by reflective surfaces 330 positioned radially inward from each cuvette 326 such that they are capable of deflecting a light beam between a generally vertical and a generally horizontal direction and which are oriented at about 45° from the vertical axis of the rotor.
- the "horizontal" and “vertical” directions are determined in relation to the axis of rotation of the rotor.
- the horizontal direction typically radial
- the vertical direction is parallel to the axis.
- the reflective surface 330 need not be oriented directly radially inward from the cuvette.
- the reflective surface 330 must be parallel to the side of the cuvette in the optical pathway. For instance, a horizontal light beam which does not pass radially through the rotor may be used. Thus, the reflective surface 330 will be placed on a radial plane different from that of the cuvette 326, as shown in Fig. 9.
- the reflective surface deflects a vertical light beam 332 from a light source 334 so that it passes radially through a fluid 336 in the cuvette 326. A light is then detected by the detector 338.
- the orientation of the reflective surfaces 330 is such that the positions of the detector 338 and light source 334 can be reversed. In the reversed configuration a horizontal light beam passes through the cuvette contents and is then deflected so that it passes vertically through the rotor where it is detected below the rotor.
- the reflective surfaces can be composed of any reflective surface known in the art which provides total internal reflection, and are typically air mirrors in which light is reflected at the acrylic-air interface. Alternatively, the surface can be coated or backed with a light reflective material.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Ecology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Centrifugal Separators (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Claims (9)
- Rotor zum Zentrifugieren von biologischen Proben, die eine Flüssigphase einschließen, umfassend eine Flüssigkeitsmassenkammer (304), eine Bemessungskammer (292), die mit der Flüssigkeitsmassenkammer (304) verbunden und radial auswärts von der Flüssigkeitsmassenkammer (304) angeordnet ist, eine Überlaufkammer (296), die mit der Bemessungskammer (292) verbunden ist, eine Aufnahmekammer (300), die radial auswärts von der Bemessungskammer (292) angeordnet ist, und ein kapillares Verbindungsmittel zum Liefern von Flüssigkeit von der Bemessungskammer (292) zur Aufnahmekammer (300), dadurch gekennzeichnet, daß die Verbindungsmittel einen Siphon (318) umfassen, durch den die Bemessungskammer (292) in der Lage ist, das Fließen von Flüssigkeit aus der Bemessungskammer (292) zu verhindern, bis die Bemessungskammer (292) gefüllt ist, wobei das Knie (320) des Siphons (318) derart positioniert ist, daß es sich im wesentlichen im gleichen Abstand vom Mittelpunkt des Rotors wie die radial am meisten einwärts gelegene Stelle der Bemessungskammer (292) befindet.
- Rotor nach Anspruch 1, dadurch gekennzeichnet, daß die Aufnahmekammer (300) eine Trennkammer ist, die eine Zellenfalle besitzt.
- Rotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Sammelkammer (324) mit der Aufnahmekammer (300) verbunden ist und eine Vielzahl von Küvetten (326) radial auswärts von der Sammelkammer (324) vorgesehen ist.
- Rotor nach Anspruch 3, dadurch gekennzeichnet, daß jede Küvette (326) Reagenzien enthält, die zur Analyse der Flüssigkeit notwendig sind.
- Rotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er spritzgegossen oder spanend bearbeitet ist.
- Verfahren zum Abgeben eines vorbestimmten Flüssigkeitsvolumens an eine Aufnahmekammer (300) in einem Rotor zum Zentrifugieren von biologischen Proben, die eine Flüssigphase einschließen, wobei ein Flüssigkeitsvolumen größer als das vorbestimmte Volumen in eine Flüssigkeitsmassenkammer (304) eingeführt, der Rotor mit einer ersten Drehgeschwindigkeit gedreht wird, um den radial auswärtigen Fluß der Flüssigkeit aus der Flüssigkeitsmassenkammer (304) in eine Bemessungskammer (292) zu bewirken, so daß überschüssige Flüssigkeit aus der Bemessungskammer (292) in eine Überlaufkammer (296) fließt, und ein vorbestimmtes Flüssigkeitsvolumen in der Bemessungskammer (292) bleibt, und Flüssigkeit aus der Bemessungskammer (292) aus der Bemessungskammer (292) in die Aufnahmekammer (300) geliefert wird, dadurch gekennzeichnet, daß die Flüssigkeitsabgabe von der Bemessungskammer (292) zur Aufnahmekammer (300) durch Anhalten der Drehung des Rotors vorgenommen wird, wodurch ein Siphon (318), der die Bemessungskammer (292) mit der Aufnahmekammer (300) verbindet, gefüllt wird, gefolgt von einem Drehen des Rotors, um den Betrieb des Siphons (318) in Gang zu setzen und die Bemessungskammer (292) zu leeren.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Aufnahmekammer (300) als eine Trennkammer verwendet wird und mit einer Zellenfalle versehen ist.
- Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Flüssigkeitsmassenkammer (304) als eine Verdünnungskammer verwendet wird und das Einführen der Flüssigkeit unter Voreinfüllen eines Verdünnungsmittels in die Flüssigkeitsmassenkammer (304) ausgeführt wird.
- Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß als biologische Probe Blut zentrifugiert wird.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/532,524 US5061381A (en) | 1990-06-04 | 1990-06-04 | Apparatus and method for separating cells from biological fluids |
US532524 | 1990-06-04 | ||
US678823 | 1991-04-01 | ||
US678762 | 1991-04-01 | ||
US07/678,824 US5122284A (en) | 1990-06-04 | 1991-04-01 | Apparatus and method for optically analyzing biological fluids |
US678824 | 1991-04-01 | ||
US07/678,762 US5186844A (en) | 1991-04-01 | 1991-04-01 | Apparatus and method for continuous centrifugal blood cell separation |
US07/678,823 US5173193A (en) | 1991-04-01 | 1991-04-01 | Centrifugal rotor having flow partition |
EP19910910787 EP0532591A4 (en) | 1990-06-04 | 1991-05-31 | Analytical rotors and methods for analysis of biological fluids |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910910787 Division EP0532591A4 (en) | 1990-06-04 | 1991-05-31 | Analytical rotors and methods for analysis of biological fluids |
EP91910787.0 Division | 1991-05-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0608006A2 EP0608006A2 (de) | 1994-07-27 |
EP0608006A3 EP0608006A3 (de) | 1995-10-18 |
EP0608006B1 true EP0608006B1 (de) | 1999-03-10 |
Family
ID=27504637
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910910787 Withdrawn EP0532591A4 (en) | 1990-06-04 | 1991-05-31 | Analytical rotors and methods for analysis of biological fluids |
EP94104814A Expired - Lifetime EP0608006B1 (de) | 1990-06-04 | 1991-05-31 | Rotoren für die Analytik und Verfahren zur Analyse biologischer Fluide |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910910787 Withdrawn EP0532591A4 (en) | 1990-06-04 | 1991-05-31 | Analytical rotors and methods for analysis of biological fluids |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP0532591A4 (de) |
JP (1) | JP3061414B2 (de) |
AU (1) | AU8083891A (de) |
CA (1) | CA2082827C (de) |
DE (1) | DE69130986T2 (de) |
WO (1) | WO1991018656A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7033747B2 (en) | 2001-04-11 | 2006-04-25 | Nagaoka & Co., Ltd | Multi-parameter assays including analysis discs and methods relating thereto |
US7054258B2 (en) | 2000-12-08 | 2006-05-30 | Nagaoka & Co., Ltd. | Optical disc assemblies for performing assays |
US7079468B2 (en) | 2000-12-08 | 2006-07-18 | Burstein Technologies, Inc. | Optical discs for measuring analytes |
US7091034B2 (en) | 2000-12-15 | 2006-08-15 | Burstein Technologies, Inc. | Detection system for disk-based laboratory and improved optical bio-disc including same |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5304348A (en) * | 1992-02-11 | 1994-04-19 | Abaxis, Inc. | Reagent container for analytical rotor |
US5591643A (en) * | 1993-09-01 | 1997-01-07 | Abaxis, Inc. | Simplified inlet channels |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
AU695602B2 (en) * | 1994-12-02 | 1998-08-20 | Vivolution A/S | Centrifuge reagent delivery system |
CN1249816A (zh) * | 1997-02-28 | 2000-04-05 | 伯斯坦恩实验室股份有限公司 | 盘片中的实验室 |
DE19857215B4 (de) | 1998-12-11 | 2008-04-10 | Dade Behring Marburg Gmbh | Multiküvettenrotor |
US6571651B1 (en) | 2000-03-27 | 2003-06-03 | Lifescan, Inc. | Method of preventing short sampling of a capillary or wicking fill device |
WO2001087485A2 (en) * | 2000-05-15 | 2001-11-22 | Tecan Trading Ag | Microfluidics devices and methods for high throughput screening |
GB2372464B (en) * | 2001-02-22 | 2003-05-14 | Vivascience Ltd | Method of isolating a charged compound |
AU2002219551A1 (en) * | 2001-12-28 | 2003-07-30 | Hitachi High-Technologies Corporation | Extractor, chemical analyzer, and chemical analyzing method |
JP2005345160A (ja) * | 2004-05-31 | 2005-12-15 | Advance Co Ltd | 生体情報分析ユニット |
DE102004046396A1 (de) | 2004-09-24 | 2006-04-13 | Land Baden-Württemberg, vertreten durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg, vertreten durch den Minister | Partikelsedimentationsvorrichtung und Verfahren zum Durchführen einer Partikelsedimentation |
JP3910208B2 (ja) * | 2005-01-24 | 2007-04-25 | 松下電器産業株式会社 | 送液装置及び送液方法 |
JP4619224B2 (ja) * | 2005-07-27 | 2011-01-26 | パナソニック株式会社 | 回転分析デバイス |
JP4802925B2 (ja) * | 2005-08-19 | 2011-10-26 | パナソニック株式会社 | 分析用デバイス、およびこれを使用する分析装置 |
DE102005048233A1 (de) * | 2005-10-07 | 2007-04-12 | Albert-Ludwigs-Universität Freiburg | Vorrichtung und Verfahren zum Handhaben einer flüssigen Probe unter Verwendung einer Siphon-Struktur |
DE102006003532B4 (de) * | 2006-01-24 | 2008-11-20 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Mikrofluidische Anordnung und modulares Lab-On-A-Chip-System |
JP4752546B2 (ja) * | 2006-03-03 | 2011-08-17 | パナソニック株式会社 | 遠心分離デバイス及び遠心分離方法 |
WO2008016271A1 (en) * | 2006-08-02 | 2008-02-07 | Jae Chern Yoo | Thin film chemical analysis apparatus and analysis method using the same |
JP4614992B2 (ja) * | 2007-07-27 | 2011-01-19 | パナソニック株式会社 | 分析用デバイスとこれを使用する分析装置および分析方法 |
WO2009044552A1 (ja) | 2007-10-04 | 2009-04-09 | Panasonic Corporation | 分析用デバイスとこれを使用する分析装置および分析方法 |
EP2219034B1 (de) | 2007-11-08 | 2019-04-17 | PHC Holdings Corporation | Analysevorrichtung und analyseverfahren damit |
JP5137007B2 (ja) * | 2007-11-14 | 2013-02-06 | ローム株式会社 | マイクロチップ |
WO2009099512A2 (en) * | 2008-02-04 | 2009-08-13 | Micropoint Biosciences, Inc. | Centrifugal fluid analyzer rotor |
JP5354947B2 (ja) * | 2008-04-24 | 2013-11-27 | パナソニック株式会社 | 生体分析用デバイスおよびそれを用いた試料定量攪拌方法 |
EP2256501B1 (de) | 2008-02-05 | 2021-07-07 | PHC Holdings Corporation | Analysevorrichtung sowie analyseapparatur und analyseverfahren unter verwendung der vorrichtung |
US7938030B2 (en) | 2008-02-06 | 2011-05-10 | Panasonic Corporation | Analytical device |
US7854893B2 (en) | 2008-03-28 | 2010-12-21 | Panasonic Corporation | Analysis device and an analysis apparatus using the analysis device |
JP5177533B2 (ja) * | 2008-09-25 | 2013-04-03 | ローム株式会社 | マイクロチップ |
US8486336B2 (en) | 2008-04-18 | 2013-07-16 | Rohm Co., Ltd. | Microchip |
WO2010007733A1 (ja) * | 2008-07-17 | 2010-01-21 | パナソニック株式会社 | 分析用デバイスとこの分析用デバイスを使用した分析方法 |
US9080993B2 (en) * | 2008-07-29 | 2015-07-14 | Sharp Kabushiki Kaisha | Microdevice, microchip apparatus and analysis method utilizing the same |
GB2464721C (en) | 2008-10-23 | 2013-08-14 | Biosurfit Sa | Jet deflection device |
GB2466644B (en) | 2008-12-30 | 2011-05-11 | Biosurfit Sa | Liquid handling |
JP2011075420A (ja) * | 2009-09-30 | 2011-04-14 | Shimadzu Corp | 遠心分離装置 |
GB2476474B (en) | 2009-12-22 | 2012-03-28 | Biosurfit Sa | Surface plasmon resonance detection system |
GB2479139A (en) | 2010-03-29 | 2011-10-05 | Biosurfit Sa | A liquid distribution and metering device |
PT3270141T (pt) | 2011-03-08 | 2020-08-28 | Univ Laval | Dispositivo centrípeto fluídico |
EP2688674B1 (de) * | 2011-03-24 | 2015-11-04 | Biosurfit, S.A. | Steuerung von den flussreihenfolge von flüssigkeit auf einer mikrofluidischen-vorrichtung |
CN102253226B (zh) * | 2011-04-07 | 2013-06-05 | 天津微纳芯科技有限公司 | 用于单试剂及多试剂法检测的集成芯片及检测方法 |
WO2013083822A1 (en) | 2011-12-08 | 2013-06-13 | Biosurfit S.A. | Sequential aliqoting and determination of an indicator of sedimentation rate |
AU2013341091B2 (en) * | 2012-11-07 | 2019-02-28 | Laboratory Corporation Of America Holdings | Methods and devices for processing samples and counting cells |
US10197480B2 (en) | 2012-11-07 | 2019-02-05 | Sandstone Diagnostics, Inc. | Methods and devices for processing samples and counting cells |
WO2014124179A1 (en) | 2013-02-07 | 2014-08-14 | Sandstone Diagnostics, Inc. | Automated sample processing, fluid distribution, and sedimentation assay |
MX365091B (es) * | 2013-04-15 | 2019-05-22 | Becton Dickinson Co | Dispositivo de recogida de fluidos biologicos y sistema de separacion y analisis de fluidos biologicos. |
ES2755490T3 (es) | 2013-04-15 | 2020-04-22 | Becton Dickinson Co | Dispositivo de extracción de fluidos biológicos y sistema de separación de fluidos biológicos |
JP6323274B2 (ja) * | 2014-09-16 | 2018-05-16 | 凸版印刷株式会社 | 試料分析チップ |
US10413902B2 (en) | 2015-07-17 | 2019-09-17 | Stat-Diagnostica & Innovation, S.L. | Apparatus for sample separation and collection |
JP6635286B2 (ja) * | 2015-07-22 | 2020-01-22 | エア・ウォーター・バイオデザイン株式会社 | 測定容器を備える測定装置 |
USD799715S1 (en) | 2015-10-23 | 2017-10-10 | Gene POC, Inc. | Fluidic centripetal device |
CN105842468B (zh) * | 2016-05-13 | 2017-12-22 | 绍兴普施康生物科技有限公司 | 一种微流控化学发光免疫检测装置及其使用方法 |
CA3029000C (en) * | 2016-06-27 | 2024-04-02 | Abaxis, Inc. | Devices with modified conduits |
JP7044715B2 (ja) * | 2016-12-28 | 2022-03-30 | 株式会社Mirai Genomics | 分析装置 |
KR101929414B1 (ko) | 2017-05-17 | 2018-12-14 | 울산과학기술원 | 미세 유체 희석 장치 및 이를 이용한 희석 방법 |
CN108646041B (zh) * | 2018-05-11 | 2024-02-02 | 石家庄禾柏生物技术股份有限公司 | 一种试剂盘通道的防倒流结构 |
CN108444801A (zh) * | 2018-05-11 | 2018-08-24 | 石家庄禾柏生物技术股份有限公司 | 一种具有变径排泡结构的反应囊 |
CN108469367A (zh) * | 2018-05-11 | 2018-08-31 | 石家庄禾柏生物技术股份有限公司 | 一种离心式血浆分离光盘 |
MX2021002156A (es) * | 2018-08-24 | 2021-04-28 | Zoetis Services Llc | Metodos para la fabricacion de un dispositivo de rotor microfluidico. |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792465A (fr) * | 1971-12-09 | 1973-03-30 | Atomic Energy Commission | Rotor perfectionne pour analyseur photometrique rotatif convenant en particulier dans des conditions d'apesanteur |
US3899296A (en) * | 1974-07-17 | 1975-08-12 | Us Energy | Whole blood analysis rotor for a multistation dynamic photometer |
US3901658A (en) * | 1974-07-30 | 1975-08-26 | Us Energy | Whole blood analysis rotor assembly having removable cellular sedimentation bowl |
FR2400700A1 (fr) * | 1977-08-18 | 1979-03-16 | Guigan Jean | Dispositif de conditionnement d'un echantillon de liquide en vue de son analyse |
IN154925B (de) * | 1979-10-26 | 1984-12-22 | Guigan Jean | |
CA1152353A (en) * | 1980-05-05 | 1983-08-23 | Georges Revillet | Multicuvette rotor for analyser |
FR2507325A1 (fr) * | 1981-06-05 | 1982-12-10 | Guigan Jean | Procede et dispositif pour la mise en contact successive d'un echantillon liquide avec plusieurs reactifs |
US4509856A (en) * | 1982-11-16 | 1985-04-09 | The United States Of America As Represented By The United States Department Of Energy | Rotor for centrifugal fast analyzers |
US4623519A (en) * | 1983-07-27 | 1986-11-18 | Societe Nationale Elf Aquitaine | Cell for analysis device, to collect a fraction of a liquid sample for reaction and analysis |
FI72660C (fi) * | 1984-01-11 | 1987-07-10 | Fluilogic Systems Oy | Centrifugeringsfoerfarande och centrifug foer tillaempning av detsamma. |
IL75019A (en) * | 1984-05-03 | 1989-08-15 | Abbott Lab | Sample processor card for carrying out chemical tests |
FR2572534B1 (fr) * | 1984-10-26 | 1986-12-26 | Guigan Jean | Procede destine a realiser l'analyse medicale d'un echantillon liquide a l'aide d'au moins un reactif sec, et dispositif pour la mise en oeuvre du procede |
FR2575293B1 (fr) * | 1984-12-21 | 1987-03-20 | Inovelf Sa | Rotor a pipetage dynamique pour dispositif d'analyse a centrifugation |
US4740472A (en) * | 1985-08-05 | 1988-04-26 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer |
FR2592170B1 (fr) * | 1985-12-20 | 1988-02-05 | Guigan Jean | Procede et dispositif pour delivrer une quantite predeterminee de plasma a partir d'un echantillon de sang en vue d'analyses. |
US4798577A (en) * | 1986-05-12 | 1989-01-17 | Miles Inc. | Separator device and method |
FR2600775B1 (fr) * | 1986-06-26 | 1990-03-23 | Kis Photo Ind | Dispositif d'analyse biomedicale |
US4847205A (en) * | 1987-04-08 | 1989-07-11 | Martin Marietta Energy Systems, Inc. | Device and method for automated separation of a sample of whole blood into aliquots |
-
1991
- 1991-05-31 DE DE1991630986 patent/DE69130986T2/de not_active Expired - Lifetime
- 1991-05-31 EP EP19910910787 patent/EP0532591A4/en not_active Withdrawn
- 1991-05-31 AU AU80838/91A patent/AU8083891A/en not_active Abandoned
- 1991-05-31 WO PCT/US1991/003840 patent/WO1991018656A1/en not_active Application Discontinuation
- 1991-05-31 CA CA002082827A patent/CA2082827C/en not_active Expired - Lifetime
- 1991-05-31 JP JP3510484A patent/JP3061414B2/ja not_active Expired - Lifetime
- 1991-05-31 EP EP94104814A patent/EP0608006B1/de not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7054258B2 (en) | 2000-12-08 | 2006-05-30 | Nagaoka & Co., Ltd. | Optical disc assemblies for performing assays |
US7079468B2 (en) | 2000-12-08 | 2006-07-18 | Burstein Technologies, Inc. | Optical discs for measuring analytes |
US7200100B2 (en) | 2000-12-08 | 2007-04-03 | Nagaoka & Co., Ltd. | Optical disc assemblies for performing assays |
US7366063B2 (en) | 2000-12-08 | 2008-04-29 | Burstein Technologies, Inc. | Optical discs for measuring analytes |
US7542383B2 (en) | 2000-12-08 | 2009-06-02 | Vindur Technologies, Inc. | Optical disc assemblies for performing assays |
US7599275B2 (en) | 2000-12-08 | 2009-10-06 | Vindur Technologies, Inc. | Optical discs for measuring analytes |
US7889615B2 (en) | 2000-12-08 | 2011-02-15 | Vindur Technologies, Inc. | Optical discs for measuring analytes |
US7091034B2 (en) | 2000-12-15 | 2006-08-15 | Burstein Technologies, Inc. | Detection system for disk-based laboratory and improved optical bio-disc including same |
US7033747B2 (en) | 2001-04-11 | 2006-04-25 | Nagaoka & Co., Ltd | Multi-parameter assays including analysis discs and methods relating thereto |
Also Published As
Publication number | Publication date |
---|---|
JP3061414B2 (ja) | 2000-07-10 |
DE69130986T2 (de) | 1999-09-30 |
AU8083891A (en) | 1991-12-31 |
DE69130986D1 (de) | 1999-04-15 |
EP0608006A3 (de) | 1995-10-18 |
EP0608006A2 (de) | 1994-07-27 |
WO1991018656A1 (en) | 1991-12-12 |
EP0532591A4 (en) | 1993-07-21 |
CA2082827A1 (en) | 1991-12-05 |
JPH05508709A (ja) | 1993-12-02 |
EP0532591A1 (de) | 1993-03-24 |
CA2082827C (en) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0608006B1 (de) | Rotoren für die Analytik und Verfahren zur Analyse biologischer Fluide | |
US5173193A (en) | Centrifugal rotor having flow partition | |
US5122284A (en) | Apparatus and method for optically analyzing biological fluids | |
US5061381A (en) | Apparatus and method for separating cells from biological fluids | |
US5186844A (en) | Apparatus and method for continuous centrifugal blood cell separation | |
US5242606A (en) | Sample metering port for analytical rotor having overflow chamber | |
EP0626071B1 (de) | Reagenzbehälter für analysen rotor | |
US5693233A (en) | Methods of transporting fluids within an analytical rotor | |
US5591643A (en) | Simplified inlet channels | |
US6153148A (en) | Centrifugal hematology disposable | |
US5409665A (en) | Simultaneous cuvette filling with means to isolate cuvettes | |
US7998411B2 (en) | Modified siphons for improving metering precision | |
EP0764266A1 (de) | Modifizierte siphone zur verbesserung der dosiergenauigkeit | |
EP0261531B1 (de) | Analysegerät | |
US20150314289A1 (en) | Valving system for use in centrifugal microfluidic platforms | |
US10888862B2 (en) | Acceleration-primed valving system for centrifugal microfluidics | |
US3771878A (en) | Centrifugal photometric analyzer | |
US4756883A (en) | Analysis device | |
CA2347669C (en) | Analytical rotors and methods for analysis of biological fluids | |
US5186709A (en) | Cuvette rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940326 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 532591 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: OSTOICH,VLADIMIR Inventor name: BRAYNIN,BORIS Inventor name: SCHEMBRI,CAROL T. Inventor name: BURD,TAMMY LEIGH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: OSTOICH,VLADIMIR Inventor name: BRAYNIN,BORIS Inventor name: SCHEMBRI,CAROL T. Inventor name: BURD,TAMMY LEIGH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19970821 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 532591 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19990310 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990310 |
|
REF | Corresponds to: |
Ref document number: 69130986 Country of ref document: DE Date of ref document: 19990415 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100527 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100525 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69130986 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20110530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110601 |