EP0605334B1 - Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung - Google Patents

Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung Download PDF

Info

Publication number
EP0605334B1
EP0605334B1 EP93420507A EP93420507A EP0605334B1 EP 0605334 B1 EP0605334 B1 EP 0605334B1 EP 93420507 A EP93420507 A EP 93420507A EP 93420507 A EP93420507 A EP 93420507A EP 0605334 B1 EP0605334 B1 EP 0605334B1
Authority
EP
European Patent Office
Prior art keywords
image
thermal
dye
support member
dye material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93420507A
Other languages
English (en)
French (fr)
Other versions
EP0605334A1 (de
Inventor
Mitchell S. C/O Eastman Kodak Company Burberry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP0605334A1 publication Critical patent/EP0605334A1/de
Application granted granted Critical
Publication of EP0605334B1 publication Critical patent/EP0605334B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/46Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography characterised by the light-to-heat converting means; characterised by the heat or radiation filtering or absorbing means or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/46Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography characterised by the light-to-heat converting means; characterised by the heat or radiation filtering or absorbing means or layers
    • B41M5/465Infrared radiation-absorbing materials, e.g. dyes, metals, silicates, C black

Definitions

  • the present invention is directed to the generation of prints from electronic data and, more particularly, to a novel thermal printing method and apparatus that employs reverse exposure of the dye-donor and receiver to obtain improved latitude in the printing process.
  • Thermal transfer systems have been used to generate prints from pictures which have been recorded from a color video camera or other electronic source, or which have been stored electronically from any source.
  • the image is first separated into color separations, e.g. by passing the image through color filters and converting the respective color-separated images into electrical signals representing, for example, the cyan, magenta and yellow images.
  • these electrical signals are individually transmitted to a printer where each color is individually printed to generate a full color image.
  • a thermal printer cyan, magenta and yellow dye-donor elements (sheets) are placed sequentially face-to-face with a dye-receiving element (sheet) and the mated dye-donor and receiver elements are inserted between a thermal printing head and a platen.
  • the preferred method of thermal printing has heretofore employed the "forward" exposure process wherein the mated sheets are oriented so that the dye-donor sheet is adjacent the thermal printing head which applies heat to the back of the dye-donor sheet to drive the image dye in the forward direction, toward the receiver sheet.
  • the thermal printing head has many heating elements which are sequentially actuated in response to the color signals. The process is then repeated for each of the other colors and a color hard copy is thus obtained which replicates the original image.
  • One such process and apparatus is disclosed in U.S. Patent No. 4,621,271.
  • the dye-donor sheet includes a material which strongly absorbs at the wavelength of the laser.
  • the absorbing material converts the light energy to thermal energy and transfers the heat to the dye in the immediate vicinity, thereby heating the dye to transfer it to the receiver.
  • the absorbing material may be present in a layer beneath the dye and/or it may be admixed with the dye.
  • the laser beam is modulated by the electronic signals which are representative of the shape and color of the original image, so that each dye is heated only in those areas in which its presence is required on the receiver to reconstruct the color of the original object. Further details of this process are found in British Patent No. 2,083,726A.
  • the present invention provides a thermal printing process and apparatus which assures the production of an image in which the density varies linearly with the power level supplied to the radiation-generating device without unwanted discontinuities or variations in the power-to-density relationship which adversely affect the quality of the image produced.
  • the method comprises the steps of: superposing a receiver member transparent to an information bearing radiation beam with the support member carrying the thermal dye material.
  • An information-bearing radiation beam is generated by supplying an information-bearing power signal to a radiation-generating device, and the thermal dye material is exposed to the information-bearing radiation beam through the receiver member to transfer thermal dye material from the support member to the receiver member to generate an image on the receiver member, with the image having a density which varies linearly with the power level supplied to the radiation-generating device.
  • the radiation beam has a wavelength in the infrared region and the receiver member is transparent to infrared radiation.
  • the radiation beam has a wavelength in the visible region and the receiver member is transparent to visible radiation.
  • FIG. 1 illustrates a pair of superposed thermal print elements comprising a dye-donor element 10 and a receiving element or sheet 12 disposed in spaced relationship thereto.
  • the dye-donor element 10 comprises a support member or sheet 14, a layer of a light-absorbing, heat-generating material 16 and a dye layer 18.
  • these components are usually coated as a thin film onto a flexible transparent support.
  • the receiver ordinarily consists of a thin polymer film coated on either an opaque or transparent support made of paper or a polymer sheet.
  • a thin gap having a thickness in the order of microns, is maintained between the dye-donor and receiver.
  • the gap may be provided by spacers consisting of finely dispersed beads coated on the surface of the dye-donor or the receiver.
  • Such an assembly may be exposed in the "forward" direction by an information-bearing radiation beam 20 which is produced by a light source such as a semiconductor laser which is driven by an information-bearing power signal in a manner well known in the art.
  • the information-bearing radiation beam is directed through the support layer 14, which must be transparent to the radiation beam 20, where the beam is absorbed by the light-absorbing, heat-generating layer 16 and is turned into heat which is transferred to the dye layer 18 in that area, transfering dye to the surface of receiver sheet 12.
  • This thermal print assemblage may also be exposed with a "reverse" exposure wherein an information-bearing radiation beam 22 is directed through the receiver element 12, which in this instance must be transparent to the beam 22 and then passes through the dye layer 18, also transparent to the information-bearing beam 22, to interact with the light-absorbing, heat-generatimg layer 16 to generate heat to transfer the dye from the layer 18 back in the "reverse" direction, to the receiver sheet 12.
  • FIG. 2 illustrates another form of a prior art thermal print assemblage comprising dye-donor element 10 and receiving element 12 disposed in spaced relationship thereto.
  • the dye-donor element 10 comprises a support member 14 and a dye layer 19 having the light-absorbing, heat-generating material admixed therein as taught in U.S. Pat. No. 5,126,760.
  • an information-bearing radiation beam 20 which passes through the support payer 14 into the dye layer 19 wherein it is absorbed by the incorporated light-absorbing, heat-generating material to transfer dye in that layer to the receiver sheet 12. No "reverse" exposure of this type of prior art thermal print media has been known before the present invention.
  • a thermal print medium having an incorporated light-absorbing, heat-generating material admixed in the dye layer can be advantageously exposed in the "reverse" direction.
  • FIG. 3 Such a process is illustrated in FIG. 3, wherein the dye-donor material 10, having a support 14 and dye layer 19 having admixed therewith the light-absorbing, heat-generating material, is exposed by an information-bearing radiation beam 22 entering through the transparent receiver 12 to transfer dye from layer 19 back in the "reverse" direction to form an image on the facing surface of the receiver element 12.
  • Transparent receivers were prepared by coating approximately 1 ⁇ m thick butvar on 7 mil Poly(ethylene terephthalate) support.
  • a reference dye-donor was prepared on a 4 mil Poly(ethylene terephthalate) support by coating 1.29 g/M 2 of a mixture of cyan colored image dyes, 0.075 g/M 2 of a cellulosic binder, and 0.65 mg/M 2 of an IR absorbing dye, from a melt solution in dichloro-methane. The resulting dried dye-donor coating was about 1 ⁇ m thick.
  • a progression of layer thicknesses was prepared from melts, identical to the reference melt, having dry coverages, 0.25, 0.5, 1.0, 2.0, 4.0 and 5.0 times the reference coating thickness.
  • Sensitometric data were obtained from step tablets and were printed on receivers using an 830nm diode laser focused to a spot approximately 14 ⁇ m in diameter. Prints were scanned at 70 cm/s , with 10 ⁇ m spacing between scan lines, and the laser power was varied in 16 equal increments from 0 to 37 mW. The printed receivers were fused in acetone vapor at room temperature for 7 minutes. Status A red transmission densities were read from the printed receivers using a calibrated X-Rite 310 Photographic Densitometer. The results are summarized in Table 1.
  • D max is the Status A red transmission density obtained from a patch written at maximum power (37 mW, 1.5x10 -6 cm 2 spot, 70 cm/s scan rate).
  • Speed is defined as the inverse of the power required to achieve 0.3 density.
  • Contrast is defined as the slope of density vs. laser power, determined at 1/2 D max density.
  • the reference thickness ,t ref was chosen to give the best compromise between D max , speed and contrast, with forward exposure, and corresponds to a coverage close to the upper limit for image dye as taught in the prior art.
  • D max density increased with dye-donor thickness up to twice the reference thickness, t ref ; however, at or above twice t ref , dye density falls off sharply at lower laser powers. This is indicated by the decrease in speed and the increase in contrast.
  • t ref no dye transfer occurred at any laser power up to 37 mW.
  • Reverse exposure also showed increasing D max density with increasing dye-donor thickness up to a point; however, D max did not fall off at higher coverages, but approached a limiting value.
  • the speed and contrast also increased over this range, approaching limiting values.
  • the contrast remained low over the entire thickness range, relative to forward exposure.
  • the dependence of dye transfer density on laser power remained essentially linear at all coverages. Therefore, a print engine based on reverse exposure of a dye-donor having the light-absorbing, heat-generating material mixed with the image dye is more robust and less sensitive to coating variations in dye-donor thickness when the dye layer is thick. It is recognized that the optimum thickness for forward exposure depends upon the available laser power and spot size. It is further noted that, for thick dye-donors and limited laser powers, reverse exposure exhibits higher speeds and D max .
  • Multi-pass dye-donors present several advantages over single use dye-donors such as less wasted material, and less time wasted in changing the dye-donors. It also allows a flexibility in design such as the use of dye-donor rollers or other opaque substrates.
  • Dye donors according to the present invention, were printed successively onto transparent receivers in the forward and reverse direction. For forward exposure the receiver was placed on the platen and dye-donor placed, dye-side down, on top. After the first print exposure, the two films were removed and a new receiver placed on the platen. The used dye-donor was re-registered manually to print over the exposed area.
  • the reference dye-donor with a thickness of (1x) was exposed in the forward direction and gave a higher D max . Attempts to print from the same dye-donor more than once however, resulted in excessive loss of dye density and unwanted patterns in the second image from the previous exposure. Reverse exposures of the reference coating produced similarly less than satisfactory results. At five times the reference thickness (1x) forward exposure produced no dye transfer at all, whereas a reverse exposure resulted in a density of 2.6 at D max . Successive transfers from the same dye-donor resulted in little loss of D max , which was still above 2.4 after 5 passes. Excessive loss occured only after the dye layer was exhausted, in this case after about 7 or 8 passes. At higher dye coverages more passes could be printed from a single dye-donor.
  • printing can be a continuous process.
  • a four station printer can simultaneously print full color records of the images.
  • time per print can be that of one station.
  • reversed exposure thermal printing provides a process which is less sensitive to dye coating thickness variations and to limits on the thickness of the dye layer.
  • the relationship of the image density produced to the laser power remains linear over a broader range of conditions.
  • the printing apparatus of the present invention can utilize a thick dye donor in many forms and laser-induced dye transfer via an exposure through a transparent receiver. In fact there is essentially no limit to the thickness of the dye donor layer with reverse exposure. Also, transferred-dye-density is less sensitive to variations in the thickness of the dye-donor.
  • dye-donor layers With the use of thick dye-donor layers, reverse exposure can result in higher sensitivity, which is analogous to higher photographic speed, lower contrast, which in turn results in less image contouring, and better print uniformity. Since the dye layer can be essentially infinitely thick when exposing through the receiver, dye rollers, drums or solid dye rollers, can be used in place of coated dye-donor films, as noted in the above-mentioned copending patent applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electronic Switches (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Claims (10)

  1. Verfahren zum thermischen Drucken mit einem Farbstoff-Donor für das thermische Drucken mit einem Licht in Wärme umwandelnden Material, vermischt mit dem thermischen Farbstoffmaterial (19) auf einem Trägerteil (14), wobei das thermische Farbstoffmaterial (19) auf dem Trägerteil (14) eine Dicke aufweist, die größer ist oder gleich ist 5 µm, wobei das Verfahren die Stufen umfaßt:
    Aufbringen eines Empfängerteiles (12), das transparent für einen Informationen tragenden Strahlungsstrahl (22) ist, auf das Trägerteil (14), das das thermische Farbstoffmaterial (19) trägt,
    Erzeugung eines Informationen tragenden Strahlungsstrahls (22) durch Einführung eines Informationen tragenden Energiesignals in eine Strahlung erzeugende Vorrichtung, und
    Exponierung des thermischen Farbstoffmaterials (19) durch das Empfängerteil (12) mit dem Informationen tragenden Strahlungsstrahl (22) zum Zwecke der Überführung von thermischem Farbstoffmaterial (19) von dem Trägerteil (14) auf das Empfängerteil (12) unter Erzeugung eines Bildes auf dem Empfängerteil (12), wobei das Bild eine Dichte aufweist, die linear abweicht von dem Energieniveau über einen Energie-Schwellenwert, das der strahlungserzeugenden Vorrichtung zugeführt wird.
  2. Verfahren zum thermischen Druck nach Anspruch 1, bei dem das erzeugte Bild unempfindlich ist gegenüber Veränderungen in der Dicke des thermischen Farbstoffmaterials (19) auf dem Trägerteil (14).
  3. Verfahren zum thermischen Druck nach Anspruch 1, bei dem der Strahlungsstrahl (22) eine Wellenlänge im infraroten Bereich hat und bei dem das Empfängerteil (12) transparent für infrarote Strahlung ist.
  4. Verfahren zum thermischen Druck nach Anspruch 1, bei dem der Strahlungsstrahl (22) eine Wellenlänge im sichtbaren Bereich hat und bei dem das Empfängerteil (12) transparent gegenüber sichtbarer Strahlung ist.
  5. Verfahren zum thermischen Druck mit einem Farbstoff-Donor für den thermischen Druck mit einem Licht in Wärme umwandelnden Material, vermischt mit dem thermischen Farbstoffmaterial (19) auf einem Trägerteil (14), wobei das thermische Farbstoffmaterial (19) auf dem Trägerteil (14) eine Dicke von größer als oder gleich 5 µm aufweist, wobei das Verfahren die Stufen umfaßt:
    Auflegen eines Empfängerteiles (12), das transparent gegenüber einem Informationen tragenden Strahlungsstrahl (22) ist, auf das Trägerteil (14), das das thermische Farbstoffmaterial (19) aufweist,
    Erzeugung eines Informationen tragenden Strahlungsstrahls (22) durch Zuführung eines Informationen tragenden Energiesignals in eine Strahlung erzeugende Vorrichtung, und
    Exponierung des thermischen Farbstoffmaterials (19) durch das Empfängerteil (12) mit dem Informationen tragenden Strahlungsstrahl (22) zum Zwecke der Übertragung von thermischem Farbstoffmaterial (19) von dem Trägerteil (14) auf das Empfängerteil (12) unter Erzeugung eines Bildes auf dem Empfängerteil (12), wobei das Bild eine Dichte hat, die linear variiert mit dem Energieniveau oberhalb eines Mindest-Energie-Schwellenwertes, das der strahlungserzeugenden Vorrichtung zugeführt wird, und das relativ unempfindlich ist gegenüber Veränderungen in der Dicke des thermischen Farbstoffmaterials (19) auf dem Trägerteil (14).
  6. Verfahren zum thermischen Druck mit einem Farbstoff-Donor für den thermischen Druck mit einem Licht in Wärme umwandelnden Material, vermischt mit dem thermichen Farbstoffmaterial (19) auf einem Trägerteil (14), wobei das thermische Farbstoffmaterial (19) auf dem Trägerteil (14) eine Dicke aufweist, die größer ist oder gleich 5 µm, wobei das Verfahren die Stufen umfaßt:
    Aufbringen eines Empfängerteils (12), das transparent für einen Informationen tragenden Strahlungsstrahl (22) ist, auf das Trägerteil (14) mit dem thermischen Farbstoffmaterial (19),
    Erzeugung eines Informationen tragenden Strahlungsstrahles (22) durch Einführung eines Informationen tragenden Energiesignals in eine Strahlung erzeugende Vorrichtung,
    Exponierung des thermischen Farbstoffmaterials (19) durch das Empfängerteil (12) mit dem Informationen tragenden Strahlungsstrahl (22) unter Übertragung von thermischem Farbstoffmaterial (19) von dem Trägerteil (14) auf das Empfängerteil (12) zur Erzeugung eines ersten Bildes auf dem Empfängerteil (12), wobei das Bild eine Dichte hat, die linear variiert mit dem Energieniveau oberhalb eines Energie-Schwellenwertes, das der Strahlung erzeugenden Vorrichtung zugeführt wird, und
    Wiederholung der im vorstehenden beschriebenen Stufen mit dem gleichen Farbstoff-Donor zur Erzeugung eines zweiten Bildes.
  7. Verfahren zum thermischen Druck nach Anspruch 6, wobei das zweite Bild identisch mit dem ersten Bild ist.
  8. Verfahren zum thermischen Druck nach Anspruch 7, wobei das zweite Bild in übergeordneter Beziehung zu dem ersten Bild erzeugt wird, um die Bilddichte zu erhöhen.
  9. Verfahren zum thermischen Druck nach Anspruch 6, bei dem das zweite Bild von dem ersten Bild verschieden ist.
  10. Verfahren zum thermischen Druck nach Anspruch 9, bei dem das zweite Bild auf einem zweiten Empfängerblatt erzeugt wird.
EP93420507A 1992-12-28 1993-12-22 Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung Expired - Lifetime EP0605334B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99698992A 1992-12-28 1992-12-28
US996989 1992-12-28

Publications (2)

Publication Number Publication Date
EP0605334A1 EP0605334A1 (de) 1994-07-06
EP0605334B1 true EP0605334B1 (de) 1997-10-01

Family

ID=25543523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93420507A Expired - Lifetime EP0605334B1 (de) 1992-12-28 1993-12-22 Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung

Country Status (3)

Country Link
EP (1) EP0605334B1 (de)
JP (1) JPH071751A (de)
DE (1) DE69314304T2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841464A (en) * 1995-10-25 1998-11-24 Gerber Scientific Products, Inc. Apparatus and method for making graphic products by laser thermal transfer
DE10051850A1 (de) * 2000-03-30 2001-10-11 Aurentum Innovationstechnologi Druckverfahren und Druckmaschine hierfür
DE10191123D2 (de) 2000-03-30 2003-06-05 Aurentum Innovationstechnologi Druckverfahren und Druckmaschine hierfür

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284266A (en) * 1968-10-16 1972-08-02 Nat Res Dev Improvements in printing
WO1994006635A1 (en) * 1992-09-11 1994-03-31 Imperial Chemical Industries Plc Printing method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110497A (ja) * 1983-11-22 1985-06-15 Mitsui Toatsu Chem Inc 画像形成材料
US4833124A (en) * 1987-12-04 1989-05-23 Eastman Kodak Company Process for increasing the density of images obtained by thermal dye transfer
US4865198A (en) * 1988-02-01 1989-09-12 R. J. Reynolds Tobacco Company Overwrapped package with tamper indicating means
US4804975A (en) * 1988-02-17 1989-02-14 Eastman Kodak Company Thermal dye transfer apparatus using semiconductor diode laser arrays
US5017547A (en) * 1990-06-26 1991-05-21 Eastman Kodak Company Use of vacuum for improved density in laser-induced thermal dye transfer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284266A (en) * 1968-10-16 1972-08-02 Nat Res Dev Improvements in printing
WO1994006635A1 (en) * 1992-09-11 1994-03-31 Imperial Chemical Industries Plc Printing method and apparatus

Also Published As

Publication number Publication date
DE69314304T2 (de) 1998-04-23
DE69314304D1 (de) 1997-11-06
EP0605334A1 (de) 1994-07-06
JPH071751A (ja) 1995-01-06

Similar Documents

Publication Publication Date Title
US4876235A (en) Dye-receiving element containing spacer beads in a laser-induced thermal dye transfer
EP0321922B1 (de) Teilchen aufweisende Abstandsschicht für Farbstoff-Donorelemente zur Verwendung bei der laserinduzierten thermischen Farbstoffübertragung
CA1040004A (en) Method and apparatus for making a printing plate from a porous substrate
US5126760A (en) Direct digital halftone color proofing involving diode laser imaging
EP0603556B1 (de) Farbstoff enthaltende Teilchen für die Laser-induzierte thermische Farbstoffübertragung
US5053381A (en) Dual laminate process for thermal color proofing
GB2083726A (en) Preparation of multi-colour prints by laser irradiation and materials for use therein
US5278576A (en) Intermediate receiver opaque support
US5183798A (en) Multiple pass laser printing for improved uniformity of a transferred image
EP0605334B1 (de) Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung
US5424759A (en) Dye rollers for laser thermal dye transfer
JP2592206B2 (ja) カラーフィルターアレイ素子の製造方法
GB2355813A (en) Process for obtaining a diffusion resistant lenticular element
US5358923A (en) Color sheet and color transfer method using the same
EP0518349A1 (de) Mischung von blaugrünen und gelben Farbstoffen zur Erzeugung eines grünen Farbtons für Farbfilteranordnungselemente
EP0716934B1 (de) Aufzeichnungselement für Ablation durch Laser
JP2608379B2 (ja) レーザー誘導感熱色素転写用色素供与体素子
US5742401A (en) Laser-exposed thermal recording element
US5714301A (en) Spacing a donor and a receiver for color transfer
US5800960A (en) Uniform background for color transfer
EP0603568B1 (de) Mischung von Farbstoff enthaltenden Teilchen für die Laser-induzierte thermische Farbstoffübertragung
EP0727317B1 (de) 2-Cyano-3,3-diarylacrylat-UV-Farbstoffe anwendedes Laseraufzeichnungsverfahren
US6243127B1 (en) Process of forming an image using a multilayer metal coalescence thermal recording element
US5288689A (en) Method for fusing thermal dye transfer images
JP2001293961A (ja) アブレーション画像の形成方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19941216

17Q First examination report despatched

Effective date: 19960215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69314304

Country of ref document: DE

Date of ref document: 19971106

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001204

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011102

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021222