EP0584327A1 - Process and installation for controlling the methane fermentation of organic materials - Google Patents

Process and installation for controlling the methane fermentation of organic materials

Info

Publication number
EP0584327A1
EP0584327A1 EP93905392A EP93905392A EP0584327A1 EP 0584327 A1 EP0584327 A1 EP 0584327A1 EP 93905392 A EP93905392 A EP 93905392A EP 93905392 A EP93905392 A EP 93905392A EP 0584327 A1 EP0584327 A1 EP 0584327A1
Authority
EP
European Patent Office
Prior art keywords
fermenter
measurements
fermentation
computer
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP93905392A
Other languages
German (de)
French (fr)
Inventor
Jean-François BETEAU
Philippe 6 Rue Du Bois-Taillis Graindorge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Inova Steinmueller GmbH
Original Assignee
L&C Steinmueller GmbH
VALORGA PROCESS SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&C Steinmueller GmbH, VALORGA PROCESS SA filed Critical L&C Steinmueller GmbH
Publication of EP0584327A1 publication Critical patent/EP0584327A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/813Continuous fermentation

Definitions

  • the present invention essentially relates to a process for controlling the methane fermentation of various organic materials.
  • These models can integrate one or more populations of microorganisms. They may or may not take into account the physico-chemical balances, the pH-inhibiting effect or volatile fatty acids which are essential metabolic intermediates, such as acetic acid.
  • purely biological mathematical models are known for diluted substrates, in one step, based on the acetate concentration, or in two steps, namely acidogenesis and methanogenesis, from simple substrates, such as glucose. These models take into account an inhibition of methanogenic activity by volatile non-ionized fatty acids, but they do not integrate pH as a state variable, in relation to the physico-chemical equilibria.
  • We also know of other biological mathematical models for diluted substrates of methanization taking into account the physico-chemical equilibria thus making it possible to integrate pH as a state variable and to consider its inhibitory role.
  • VFA volatile fatty acids
  • the object of the present invention is therefore to remedy these drawbacks in particular by proposing a method which makes it possible to control the state of methane fermentation, and this on the basis of a special model.
  • the subject of the invention is a process for controlling the methane fermentation of organic matter in at least one fermenter, and of the type consisting in carrying out physicochemical measurements on the fermenter, in processing these measurements in at least one computer allowing using a fermentation model to obtain a variable characteristic of the biological state of the fermenter, and to process this variable to deduce an order from the fermenter, characterized in that the above-mentioned physicochemical measurements are limited to two measurements, such as for example pH and volatile fatty acid content, the variable characteristic of the abovementioned biological state is the methanogenic biological activity, and the abovementioned fermentation model is adjusted as a function of the biomass present in the fermenter and organic matter to be treated with it.
  • the methanogenic biological activity is expressed by the calculator in the form of a specific growth rate ( ⁇ ) of the methanogenic bacteria of the biomass of the fermenter.
  • the above-mentioned fermentation model is adjusted on the basis of an experiment on a reduced scale which is carried out on a sample of material taken from the fermenter, and which consists in automatically monitoring the evolution over time of the pH, and the concentration of volatile fatty acids in the fermenter as well as the quantities of methane and carbon dioxide produced.
  • This fermentation model integrates the combination of biological phenomena including the inhibitory effect of non volatile fatty acids ionized and physico-chemical equilibria in the fermenter with pH as state variable.
  • the invention also relates to an installation for the execution of the above process and of the type essentially comprising at least one fermenter, sensors associated with this fermenter to allow physico-chemical measurements and at least one computer processing these measurements using the using a fermentation model, this installation being characterized in that the calculator audit, which, thanks to the fermentation model, transforms the physicochemical measurements into a variable characteristic of the biological state, is added another calculator ensuring the control at least one of the fermenters and in that said model is adjusted to the biomass present in the fermenter and to the substrate to be treated by a reduced-scale experimentation device essentially comprising a fermenter containing a sample of material taken from the fermenter mentioned in first, sensors associated with said fermenter and connected to at least one computer supplied ant the values of the parameters used to calibrate the aforementioned fermentation model.
  • This experimentation device can advantageously be located in another place than the implantation site of the fermenter.
  • the sensors of the experimentation device are capable of continuously measuring in pH, the quantities of CH-4 and of CO2 produced and the concentration of volatile fatty acids in the fermenter, while the parameters provided by the abovementioned calculator are :
  • FIG. 1 is a block diagram of an installation according to the principles of the invention.
  • Figure 2 is a surface illustrating the relationship between ⁇ methanogenic activity - - - pH and acetate concentration. ⁇ max
  • Figure 3 is a curve representing the cumulative production of methane as a function of time.
  • FIG. 1 we can see an installation for controlling the methane fermentation of organic materials, according to this invention, and which essentially comprises a fermenter FI with which sensors 10, 1 1 are associated to allow physico-chemical measurements, to know in particular a measurement of the pH and a measurement of the content of volatile fatty acids.
  • the sensors 10, 1 1 are connected to a computer C 1 processing these measurements using a fermentation model.
  • the computer C1 which processes the aforementioned measurements and which supplies a variable characteristic of the biological state of the fermenter FI, is connected to another computer C2 which processes this variable to calculate a command to be applied to the fermenter FI.
  • F2 a small laboratory fermenter which can be filled with organic matter from the fermenter FI, as shown by the dotted line between FI and F2.
  • sensors 12, 13, 14 and 15 With this fermenter F2 are associated sensors 12, 13, 14 and 15 themselves connected to one or more computers C3 processing the information coming from the sensors and supplying to the computer C1 the adjusted values of the characteristic parameters of the fermentation model incorporated in said computer Cl .
  • the F2-C3 assembly constitutes a small-scale experimentation device which, as will be explained below in detail, makes it possible to automatically monitor the evolution over time of the pH and of the concentration of volatile fatty acids as well as the quantities of methane and CO2 produced.
  • the small fermenter F2 is equipped with the means necessary to carry out the aforementioned reduced-scale experiment.
  • These means are, in particular, a means for introducing a direct substrate for methanogenesis, such as acetic acid, conventional means for stirring, heating, etc.
  • the installation which has just been described advantageously makes it possible to follow the progress of the methane fermentation without the need to monitor the flow rate and the quality of the biogas produced by the fermenter F 1, and this by performing only measurements on this fermenter in limited number, namely essentially a measurement of pH and a measurement of the content of volatile fatty acids.
  • the parameters of the fermentation model can easily be adjusted to local conditions (substrate, bacteria, operating conditions) governing the fermentation in the fermenter FI.
  • the information leaving the computer C1 is information which translates the overall state of the fermentation and which therefore makes it possible, via the computer C2, to obtain a control of the fermentation in the fermenter FI. This control could not be as effective if it were obtained directly from the physico-chemical measurements from the sensors 10, 11.
  • Methane fermentation includes 4 stages:
  • the hydrolysis step makes it possible to transform, if necessary, the complex molecules into simpler molecules.
  • Acidogenesis transforms these into fatty acids, alcohols, carbon dioxide and hydrogen.
  • Acetogenesis transforms the products of acidogenesis into immediate methane precursors such as acetic acid.
  • Methanogenesis mainly performs the synthesis of methane from acetic acid according to the simplified formula:
  • the fermentation model incorporated into the computer Cl and making it possible to provide a variable characteristic of the biological state takes account of the coupling of bacterial growth with the production of biogas, of the inhibition of the growth of methanogenic bacteria by an excess of non-ionized acetic acid, and acid-base equilibria of the liquid and gaseous phases.
  • is the specific growth rate of methanogenic bacteria consuming acetic acid
  • ⁇ max is the specific maximum growth rate of these same bacteria
  • Kj is the inhibition constant
  • K s is the saturation constant
  • [HS] is the concentration (g / 1) of non-ionized acetic acid
  • [S] is the concentration (g / 1) of total acetic acid
  • [S-] is the concentration (g / 1) of ionized acetic acid.
  • the ⁇ fermentation model makes it possible to calculate the value - - - as a function of the pH
  • the information is transmitted to the computer C2 which contains operating instructions for the fermenter FI, so that the computer C2 can act on various organs of the fermenter FI, such as a supply valve for example.
  • This procedure for adjusting the parameters of the model requires at most four tests by performing a range of acetic acid concentration and pH ranging from conditions that are not very inhibiting to conditions that are strongly inhibiting methanogenic bacteria.
  • these four tests are carried out by varying the initial pH value from 6.5 to 7 and the initial concentration of acetic acid, for example from 1 g / 1 to 15 g / 1.
  • the variations in the initial pH are obtained by adding 10% hydrochloric acid to the fermenter while the variations in the initial acetate concentration are obtained by adding a solution of acetic acid or acetate of calcium.
  • Figure 3 shows by way of example one of the curves recorded during these experiments.
  • the dots represent the measured values.
  • an adjustment method is used, which makes it possible to obtain the values of the parameters characteristic of this fermentation model by minimizing the difference between the measured values and the values calculated by the model.
  • the solid line in Figure 3 represents the simulated evolution for the experiment after this adjustment of the model.
  • H + the concentration of H + ions
  • K a the acid constant of acetic acid
  • C ⁇ 2d has the amount of dissolved carbon dioxide
  • IC the quantity of inorganic carbon
  • Z the quantity of cations
  • X the quantity of biomass
  • u the specific growth rate of the biomass
  • R3 the substrate / biomass yield
  • CH-4 cumulated the quantity of methane product cumulated
  • ICP the quantity of inorganic carbon released
  • R-2 the yield of carbon dioxide / biomass
  • V the volume of the experimental device fermenter
  • IC the amount of inorganic carbon.
  • the fifth algebraic equation represents the electroneutrality of the medium and introduces an additional variable Z, which is the set of cations present in the fermenter.
  • the state variables of the model are as follows: H + , HS, S-, B, C0 2 d, X, S, CH4 cum > ICP and Z.
  • the value of the R-2 yield of carbon dioxide on the biomass is fixed at 1.
  • the initial values of the pH, of the quantities of substrate S, of methane and of carbon dioxide are measured.
  • the biological parameters of the model are the maximum growth rate ⁇ max , the saturation constant Kg, the inhibition constant Ki, the methane yield compared to the biomass Rj, and the substrate yield compared to the biomass R3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La présente invention concerne un procédé et une installation de contrôle de la fermentation méthanique de matières organiques. Cette installation comprend essentiellement un fermenteur (F1), des capteurs (10, 11) associés à ce fermenteur pour permettre des mesures physico-chimiques et un calculateur (C1) traitant ces mesures à l'aide d'un modèle de fermentation, tandis qu'un calculateur (C2) transforme les données de (C1) en données agissant sur le fermenteur (F1), et un dispositif (F2-C3) d'expérimentation à échelle réduite permet d'ajuster les paramètres caractéristiques du modèle de fermentation incorporé dans le calculateur (C1). Cette installation permet, avec un minimum de mesures, de maintenir un fermenteur dans un état biologique optimal.The present invention relates to a method and an installation for controlling the methane fermentation of organic materials. This installation essentially comprises a fermenter (F1), sensors (10, 11) associated with this fermenter to allow physico-chemical measurements and a computer (C1) processing these measurements using a fermentation model, while '' a computer (C2) transforms the data from (C1) into data acting on the fermenter (F1), and a device (F2-C3) for small-scale experimentation allows the parameters characteristic of the fermentation model incorporated in the computer (C1). This installation allows, with a minimum of measures, to maintain a fermenter in an optimal biological state.

Description

"Procédé de contrôle de la fermentation méthanique de matières organiques et installation comportant application de ce procédé"."Method for controlling the methane fermentation of organic materials and installation comprising application of this method".
La présente invention a essentiellement pour objet un procédé de contrôle de la fermentation méthanique de matières organiques diverses.The present invention essentially relates to a process for controlling the methane fermentation of various organic materials.
Elle vise également une installation pour l'exécution de ce procédé.It also relates to an installation for the execution of this process.
Il a déjà été proposé de piloter des fermenteurs en utilisant des modèles mathématiques prenant en compte la diversité des matières à traiter ainsi que les fluctuations des comportements catalytiques des microorganismes.It has already been proposed to control fermenters using mathematical models taking into account the diversity of the materials to be treated as well as the fluctuations in the catalytic behaviors of microorganisms.
Il est également connu, pour piloter les fermenteurs, d'établir un modèle de fermentation anaérobie pour des substrats dilués ou de nature simple, mais pas pour des matières organiques concentrées ou complexes.It is also known, to control fermenters, to establish an anaerobic fermentation model for diluted or simple substrates, but not for concentrated or complex organic materials.
Ces modèles peuvent intégrer une ou plusieurs populations de microorganismes. Il peuvent prendre en compte ou non les équilibres physico-chimiques, l'effet inhibiteur du pH ou des acides gras volatils qui sont des intermédiaires métaboliques essentiels, tels que l'acide acétique.These models can integrate one or more populations of microorganisms. They may or may not take into account the physico-chemical balances, the pH-inhibiting effect or volatile fatty acids which are essential metabolic intermediates, such as acetic acid.
On connaît par ailleurs des modèles mathématiques purement biologiques pour des substrats dilués, en une étape, basés sur la concentration en acétate, ou en deux étapes, à savoir acidogénèse et méthanogénèse, à partir de substrats simples, tels que le glucose. Ces modèles prennent en compte une inhibition de l'activité méthanogène par les acides gras volatils non ionisés, mais ils n'intègrent pas le pH comme variable d'état, en relation avec les équilibres physico¬ chimiques. On connait encore d'autres modèles mathématiques biologiques pour des substrats dilués de la méthanisation prenant en compte les équilibres physico-chimiques permettant ainsi d'intégrer le pH comme variable d'état et d'envisager son rôle inhibiteur.In addition, purely biological mathematical models are known for diluted substrates, in one step, based on the acetate concentration, or in two steps, namely acidogenesis and methanogenesis, from simple substrates, such as glucose. These models take into account an inhibition of methanogenic activity by volatile non-ionized fatty acids, but they do not integrate pH as a state variable, in relation to the physico-chemical equilibria. We also know of other biological mathematical models for diluted substrates of methanization taking into account the physico-chemical equilibria thus making it possible to integrate pH as a state variable and to consider its inhibitory role.
Toutefois, ces derniers modèles ne tiennent pas compte de l'effet inhibiteur des acides gras volatils non ionisés, tels que l'acide acétique.However, these latter models do not take into account the inhibitory effect of non-ionized volatile fatty acids, such as acetic acid.
Mais, aucun des modèles ci-dessus n'intègre la combinaison des équilibres physico-chimiques, du pH comme variable d'état, et de l'effet inhibiteur des acides gras volatils non ionisés, et/ou ne prend en compte le cas des matières organiques concentrées ou complexes.However, none of the above models integrates the combination of physico-chemical equilibria, pH as a state variable, and the inhibitory effect of volatile non-ionized fatty acids, and / or does not take into account the concentrated or complex organic matter.
On sait encore que le pilotage des fermenteurs industriels de méthanisation exige nécessairement un grand nombre de mesures et d'analyses physico-chimiques complémentaires et en particulier la mesure de :We also know that the management of industrial anaerobic digestion fermenters necessarily requires a large number of additional physico-chemical measurements and analyzes, and in particular the measurement of:
- la quantité du biogaz produit et sa qualité (pourcentage de méthane et pourcentage en dioxyde de carbone),- the quantity of biogas produced and its quality (percentage of methane and percentage of carbon dioxide),
- le pH et la température,- pH and temperature,
- la qualité des entrants et sortants traités, et- the quality of incoming and outgoing treated, and
- la teneur en acides gras volatils (AGV) du milieu de fermentation, et/ou le pourcentage d'hydrogène du biogaz produit.- the content of volatile fatty acids (VFA) in the fermentation medium, and / or the percentage of hydrogen in the biogas produced.
D'une manière générale, le pilotage des fermenteurs sur la base des modèles antérieurement connus n'est pas satisfaisant, en ce sens que les modèles ne sont pas ajustés aux conditions opératoires spécifiques du site d'implantation des fermenteurs. Aussi, la présente invention a pour but de remédier notamment à ces inconvénients en proposant un procédé qui permet de contrôler l'état de la fermentation méthanique, et ce sur la base d'un modèle spécial.In general, the control of fermenters on the basis of previously known models is not satisfactory, in the sense that the models are not adjusted to the specific operating conditions of the implantation site of the fermenters. The object of the present invention is therefore to remedy these drawbacks in particular by proposing a method which makes it possible to control the state of methane fermentation, and this on the basis of a special model.
A cet effet, l'invention a pour objet un procédé de contrôle de la fermentation méthanique de matières organiques dans au moins un fermenteur, et du type consistant à effectuer sur le fermenteur des mesures physico-chimiques, à traiter ces mesures dans au moins un calculateur permettant à l'aide d'un modèle de fermentation d'obtenir une variable caractéristique de l'état biologique du fermenteur, et à traiter cette variable pour en déduire une commande du fermenteur, caractérisé en ce que les mesures physico-chimiques précitées sont limitées à deux mesures, telles que par exemple pH et teneur en acides gras volatils, la variable caractéristique de l'état biologique précitée est l'activité biologique méthanogène, et le modèle de fermentation précité est ajusté en fonction de la biomasse présente dans le fermenteur et des matières organiques à traiter par celui-ci.To this end, the subject of the invention is a process for controlling the methane fermentation of organic matter in at least one fermenter, and of the type consisting in carrying out physicochemical measurements on the fermenter, in processing these measurements in at least one computer allowing using a fermentation model to obtain a variable characteristic of the biological state of the fermenter, and to process this variable to deduce an order from the fermenter, characterized in that the above-mentioned physicochemical measurements are limited to two measurements, such as for example pH and volatile fatty acid content, the variable characteristic of the abovementioned biological state is the methanogenic biological activity, and the abovementioned fermentation model is adjusted as a function of the biomass present in the fermenter and organic matter to be treated with it.
Suivant une autre caractéristique de ce procédé, l'activité biologique méthanogène est exprimée par le calculateur sous la forme d'un taux de croissance spécifique (μ) des bactéries méthanogènes de la biomasse du fermenteur.According to another characteristic of this process, the methanogenic biological activity is expressed by the calculator in the form of a specific growth rate (μ) of the methanogenic bacteria of the biomass of the fermenter.
On précisera encore ici que le modèle de fermentation précité est ajusté à partir d'une expérimentation à échelle réduite qui est effectuée sur un échantillon de matière prélevé du fermenteur, et qui consiste à suivre automatiquement l'évolution dans le temps du pH, et la concentration en acides gras volatils dans le fermenteur ainsi que les quantités de méthane et de dioxyde de carbone produites.It will also be specified here that the above-mentioned fermentation model is adjusted on the basis of an experiment on a reduced scale which is carried out on a sample of material taken from the fermenter, and which consists in automatically monitoring the evolution over time of the pH, and the concentration of volatile fatty acids in the fermenter as well as the quantities of methane and carbon dioxide produced.
On comprend donc déjà que, dans ces conditions, on obtient une adaptation rapide et facile du modèle aux conditions opératoires du fermenteur sur son site d'implantation.It is therefore already understood that, under these conditions, a quick and easy adaptation of the model is obtained to the operating conditions of the fermenter on its implantation site.
Ce modèle de fermentation intègre la combinaison des phénomènes biologiques y compris l'effet inhibiteur des acides gras volatils non ionisés et des équilibres physico-chimiques dans le fermenteur avec le pH comme variable d'état.This fermentation model integrates the combination of biological phenomena including the inhibitory effect of non volatile fatty acids ionized and physico-chemical equilibria in the fermenter with pH as state variable.
L'invention vise également une installation pour l'exécution du procédé ci-dessus et du type comprenant essentiellement au moins un fermenteur, des capteurs associés à ce fermenteur pour permettre des mesures physico-chimiques et au moins un calculateur traitant ces mesures à l'aide d'un modèle de fermentation, cette installation étant caractérisée en ce qu'audit calculateur, assurant grâce au modèle de fermentation la transformation des mesures physico-chimiques en une variable caractéristique de l'état biologique, est adjoint un autre calculateur assurant la commande d'un au moins des fermenteurs et en ce que ledit modèle est ajusté à la biomasse présente dans le fermenteur et au substrat à traiter par un dispositif d'expérimentation à échelle réduite comprenant essentiellement un fermenteur contenant un échantillon de matière prélevé du fermenteur cité en premier lieu, des capteurs associés audit fermenteur et reliés à au moins un calculateur fournissant les valeurs des paramètres permettant de calibrer le modèle de fermentation précité.The invention also relates to an installation for the execution of the above process and of the type essentially comprising at least one fermenter, sensors associated with this fermenter to allow physico-chemical measurements and at least one computer processing these measurements using the using a fermentation model, this installation being characterized in that the calculator audit, which, thanks to the fermentation model, transforms the physicochemical measurements into a variable characteristic of the biological state, is added another calculator ensuring the control at least one of the fermenters and in that said model is adjusted to the biomass present in the fermenter and to the substrate to be treated by a reduced-scale experimentation device essentially comprising a fermenter containing a sample of material taken from the fermenter mentioned in first, sensors associated with said fermenter and connected to at least one computer supplied ant the values of the parameters used to calibrate the aforementioned fermentation model.
Les fonctionnalités des calculateurs précités sont réunies dans un seul et même calculateur.The functionalities of the abovementioned computers are combined in a single computer.
Ce dispositif d'expérimentation peut avantageusement être situé en un autre endroit que le site d'implantation du fermenteur.This experimentation device can advantageously be located in another place than the implantation site of the fermenter.
On précisera encore que les capteurs du dispositif d'expérimentation sont aptes à mesurer en continu en pH, les quantités de CH-4 et de CO2 produites et la concentration en acides gras volatils dans le fermenteur, tandis que les paramètres fournis par le calculateur précité sont :It will also be specified that the sensors of the experimentation device are capable of continuously measuring in pH, the quantities of CH-4 and of CO2 produced and the concentration of volatile fatty acids in the fermenter, while the parameters provided by the abovementioned calculator are :
- le taux de croissance spécifique méthanogène maximum,- the maximum specific methanogenic growth rate,
- la constante d'inhibition des bactéries méthanogènes, - la constante de saturation des bactéries méthanogènes, et- the inhibition constant of methanogenic bacteria, - the saturation constant of methanogenic bacteria, and
- les rendements en CH4/biomasse, en Cθ2/biomasse et en substrat/biomasse.- CH4 / biomass, Cθ2 / biomass and substrate / biomass yields.
Mais d'autres caractéristiques et avantages de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère aux dessins annexés, donnés uniquement à titre d'exemple, et dans lesquels :However, other characteristics and advantages of the invention will appear better in the detailed description which follows and refers to the appended drawings, given solely by way of example, and in which:
La figure 1 est un schéma bloc d'une installation conforme aux principes de l'invention.Figure 1 is a block diagram of an installation according to the principles of the invention.
La figure 2 est une surface illustrant la relation entre l'activité μ méthanogène — - — le pH et la concentration en acétate. μ maxFigure 2 is a surface illustrating the relationship between μ methanogenic activity - - - pH and acetate concentration. μ max
La figure 3 est une courbe représentant la production cumulée de méthane en fonction du temps.Figure 3 is a curve representing the cumulative production of methane as a function of time.
En se reportant à la figure 1, on voit une installation de contrôle de fermentation méthanique de matières organiques, selon cette invention, et qui comprend essentiellement un fermenteur FI auquel sont associés des capteurs 10, 1 1 pour permettre des mesures physico¬ chimiques, à savoir notamment une mesure du pH et une mesure de la teneur en acides gras volatils.Referring to FIG. 1, we can see an installation for controlling the methane fermentation of organic materials, according to this invention, and which essentially comprises a fermenter FI with which sensors 10, 1 1 are associated to allow physico-chemical measurements, to know in particular a measurement of the pH and a measurement of the content of volatile fatty acids.
Les capteurs 10, 1 1 sont reliés à un calculateur C 1 traitant ces mesures à l'aide d'un modèle de fermentation.The sensors 10, 1 1 are connected to a computer C 1 processing these measurements using a fermentation model.
Le calculateur Cl, qui traite les mesures précitées et qui fournit une variable caractéristique de l'état biologique du fermenteur FI, est relié à un autre calculateur C2 qui traite cette variable pour calculer une commande à appliquer au fermenteur FI. On a montré en F2 un petit fermenteur de laboratoire qui peut être rempli avec de la matière organique du fermenteur FI , comme matérialisé par le trait pointillé entre FI et F2. A ce fermenteur F2 sont associés des capteurs 12, 13, 14 et 15 eux-mêmes connectés à un ou plusieurs calculateurs C3 traitant les informations provenant des capteurs et fournissant au calculateur Cl les valeurs ajustées des paramètres caractéristiques du modèle de fermentation incorporé audit calculateur Cl .The computer C1, which processes the aforementioned measurements and which supplies a variable characteristic of the biological state of the fermenter FI, is connected to another computer C2 which processes this variable to calculate a command to be applied to the fermenter FI. We have shown in F2 a small laboratory fermenter which can be filled with organic matter from the fermenter FI, as shown by the dotted line between FI and F2. With this fermenter F2 are associated sensors 12, 13, 14 and 15 themselves connected to one or more computers C3 processing the information coming from the sensors and supplying to the computer C1 the adjusted values of the characteristic parameters of the fermentation model incorporated in said computer Cl .
L'ensemble F2-C3 constitue un dispositif d'expérimentation à échelle réduite qui, comme on l'expliquera plus loin en détail, permet de suivre automatiquement l'évoluation dans le temps du pH et de la concentration en acides gras volatils ainsi que les quantités de méthane et de CO2 produites.The F2-C3 assembly constitutes a small-scale experimentation device which, as will be explained below in detail, makes it possible to automatically monitor the evolution over time of the pH and of the concentration of volatile fatty acids as well as the quantities of methane and CO2 produced.
Le petit fermenteur F2 est équipé des moyens nécessaires pour réaliser l'expérimentation à échelle réduite précitée. Ces moyens (non représentés) sont, notamment, un moyen d'introduction d'un substrat direct de la méthanogénèse, tel que l'acide acétique, des moyens classiques d'agitation, de chauffage, etc..The small fermenter F2 is equipped with the means necessary to carry out the aforementioned reduced-scale experiment. These means (not shown) are, in particular, a means for introducing a direct substrate for methanogenesis, such as acetic acid, conventional means for stirring, heating, etc.
L'installation qui vient d'être décrite permet avantageusement de suivre le déroulement de la fermentation méthanique sans la nécessité de suivre le débit et la qualité du biogaz produit par le fermenteur F 1 , et cela en n'effectuant sur ce fermenteur que des mesures en nombre limité, à savoir essentiellement une mesure de pH et une mesure de la teneur en acides gras volatils. En outre, grâce au dispositif d'expérimentation F2-C3, on pourra ajuster facilement les paramètres du modèle de fermentation aux conditions locales (substrat, bactéries, conditions opératoires) régissant la fermentation dans le fermenteur FI . Il faut également dire que l'information sortant du calculateur Cl est une information qui traduit l'état global de la fermentation et qui permet donc, via le calculateur C2, d'obtenir un contrôle de la fermentation dans le fermenteur FI. Ce contrôle ne pourrait être aussi efficace s'il était obtenu directement à partir des mesures physico¬ chimiques issues des capteurs 10, 11. Ayant décrit l'installation de la figure 1 , on expliquera maintenant son fonctionnement en rappelant tout d'abord quelques principes de la fermentation méthanique.The installation which has just been described advantageously makes it possible to follow the progress of the methane fermentation without the need to monitor the flow rate and the quality of the biogas produced by the fermenter F 1, and this by performing only measurements on this fermenter in limited number, namely essentially a measurement of pH and a measurement of the content of volatile fatty acids. In addition, thanks to the F2-C3 experimentation device, the parameters of the fermentation model can easily be adjusted to local conditions (substrate, bacteria, operating conditions) governing the fermentation in the fermenter FI. It should also be said that the information leaving the computer C1 is information which translates the overall state of the fermentation and which therefore makes it possible, via the computer C2, to obtain a control of the fermentation in the fermenter FI. This control could not be as effective if it were obtained directly from the physico-chemical measurements from the sensors 10, 11. Having described the installation of Figure 1, we will now explain its operation by first recalling some principles of methane fermentation.
La fermentation méthanique comprend 4 étapes :Methane fermentation includes 4 stages:
- l'hydrolyse du substrat, l'acidogénèse, l'acétogénèse et la méthanogénèse.- substrate hydrolysis, acidogenesis, acetogenesis and methanogenesis.
L'étape d'hydrolyse permet de transformer si nécessaire, les molécules complexes en molécules plus simples.The hydrolysis step makes it possible to transform, if necessary, the complex molecules into simpler molecules.
L'acidogénèse transforme ces dernières en acides gras, alcools, dioxyde de carbone et hydrogène.Acidogenesis transforms these into fatty acids, alcohols, carbon dioxide and hydrogen.
L'acétogénèse réalise la transformation des produits de l'acidogénèse en précurseurs immédiats de méthane tels que l'acide acétique.Acetogenesis transforms the products of acidogenesis into immediate methane precursors such as acetic acid.
La méthanogénèse réalise principalement la synthèse de méthane à partir d'acide acétique selon la formule simplifiée :Methanogenesis mainly performs the synthesis of methane from acetic acid according to the simplified formula:
CH3COOH > CH + CHCH3COOH> CH + CH
Selon l'invention, le modèle de fermentation incorporé au calculateur Cl et permettant de fournir une variable caractéristique de l'état biologique, tient compte du couplage de la croissance bactérienne avec la production de biogaz, de l'inhibition de la croissance des bactéries méthanogènes par un excès d'acide acétique non ionisé, et des équilibres acido-basiques des phases liquides et gazeuses.According to the invention, the fermentation model incorporated into the computer Cl and making it possible to provide a variable characteristic of the biological state, takes account of the coupling of bacterial growth with the production of biogas, of the inhibition of the growth of methanogenic bacteria by an excess of non-ionized acetic acid, and acid-base equilibria of the liquid and gaseous phases.
Il existe une relation étroite entre l'activité méthanogène instantanée μ, l'activité méthanogène maximum μmax? Ie pH et la concentration en acétate.There is a close relationship between instant methanogenic activity μ, maximum methanogenic activity μmax ? I e pH and acetate concentration.
Cette relation est μ =This relationship is μ =
où μ est le taux spécifique de croissance des bactéries méthanogènes consommant l'acide acétique, where μ is the specific growth rate of methanogenic bacteria consuming acetic acid,
μmax est le taux spécifique de croissance maximum de ces mêmes bactéries,μ max is the specific maximum growth rate of these same bacteria,
Kj est la constante d'inhibition,Kj is the inhibition constant,
Ks est la constante de saturation,K s is the saturation constant,
[HS] est la concentration (g/1) en acide acétique non ionisé,[HS] is the concentration (g / 1) of non-ionized acetic acid,
[S] est la concentration (g/1) en acide acétique total,[S] is the concentration (g / 1) of total acetic acid,
[H+] est la concentration en protons[H + ] is the proton concentration
[S-] est la concentration (g/1) en acide acétique ionisé.[S-] is the concentration (g / 1) of ionized acetic acid.
Par conséquent, les équations ci-dessus permettrent, en connaissant les valeurs mesurées en ligne ou hors ligne du pH et de la concentration en acides gras volatils, tel que acétate, d'obtenir la valeur de l'activité méthanogène.Consequently, the above equations will make it possible, by knowing the values measured online or offline of the pH and of the concentration of volatile fatty acids, such as acetate, to obtain the value of the methanogenic activity.
Ainsi, pour des conditions de fermentation données, le modèle de μ fermentation permet de calculer la valeur — - — en fonction du pH etThus, for given fermentation conditions, the μ fermentation model makes it possible to calculate the value - - - as a function of the pH and
H'ma-x de la teneur en acides gras volatils ou acétate. La figure 2 illustre la relation entre ces trois paramètres pour un substrat donné. Par conséquent, connaissant la valeur du pH et la teneur en acides gras volatils au moyen des capteurs 10 et 1 1, le calculateur C l détermine leH'ma-x of the content of volatile fatty acids or acetate. Figure 2 illustrates the relationship between these three parameters for a given substrate. Therefore, knowing the pH value and the fatty acid content volatile by means of sensors 10 and 1 1, the computer C l determines the
rapport μ μ ratio
Ensuite l'information est transmise au calculateur C2 qui contient des consignes de conduite du fermenteur FI, de sorte que le calculateur C2 pourra agir sur divers organes du fermenteur FI, tels qu'une vanne d'alimentation par exemple.Then the information is transmitted to the computer C2 which contains operating instructions for the fermenter FI, so that the computer C2 can act on various organs of the fermenter FI, such as a supply valve for example.
Lorsque l'ajustement du modèle de fermentation est nécessaire, en raison par exemple du changement du substrat, du changement des conditions opératoires du fermenteur, ou encore à l'occasion du démarrage d'une nouvelle installation, on utilisera le dispositif 7d'expérimentation à échelle réduite F2-C3 selon la procédure suivante.When the adjustment of the fermentation model is necessary, for example due to the change of the substrate, the change in the operating conditions of the fermenter, or even when starting a new installation, the experimental device 7 will be used. reduced scale F2-C3 according to the following procedure.
Cette procédure d'ajustement des paramètres du modèle nécessite au plus quatre essais en réalisant une gamme de concentration en acide acétique et de pH allant des conditions peu inhibitrices vers des conditions fortement inhibitrices des bactéries méthanogènes.This procedure for adjusting the parameters of the model requires at most four tests by performing a range of acetic acid concentration and pH ranging from conditions that are not very inhibiting to conditions that are strongly inhibiting methanogenic bacteria.
A titre d'exemple, ces quatre essais sont réalisés en faisant varier la valeur initiale du pH de 6, 5 à 7 et la concentration initiale en acide acétique par exemple de 1 g/1 à 15 g/1. Les variations du pH initial sont obtenues par l'ajout dans le fermenteur d'acide chlorhydrique à 10 % tandis que les variations de la concentration initiale en acétate sont obtenues par l'ajout d'une solution d'acide acétique ou d'acétate de calcium.By way of example, these four tests are carried out by varying the initial pH value from 6.5 to 7 and the initial concentration of acetic acid, for example from 1 g / 1 to 15 g / 1. The variations in the initial pH are obtained by adding 10% hydrochloric acid to the fermenter while the variations in the initial acetate concentration are obtained by adding a solution of acetic acid or acetate of calcium.
Bien entendu, ces ajouts sont effectués dans le petit fermenteur F2 rempli au préalable avec de la matière prélevée dans le fermenteur FI .Of course, these additions are made in the small fermenter F2 filled beforehand with material taken from the fermenter FI.
Le tableau ci-dessous résume par exemple les quatre essais réalisés pour un substrat donné, pour la validation expérimentale du modèle : The table below summarizes for example the four tests carried out for a given substrate, for the experimental validation of the model:
Pour chacune de ces expériences en Batch, on dispose alors de courbes représentant, en fonction du temps, la production cumulée de méthane et de dioxyde de carbone dans le petit fermenteur F2, ainsi que les variations de pH et de teneur en acétate.For each of these batch experiments, we then have curves representing, as a function of time, the cumulative production of methane and carbon dioxide in the small fermenter F2, as well as the variations in pH and in acetate content.
La figure 3 représente à titre d'exemple une des courbes enregistrées lors de ces expériences.Figure 3 shows by way of example one of the curves recorded during these experiments.
Les points représentent les valeurs mesurées. Sur la base des équations suivantes, décrivant la fermentation dans les conditions expérimentales, une méthode d'ajustement est utilisée, qui permet d'obtenir les valeurs des paramètres caractéristiques de ce modèle de la fermentation en minimisant l'écart entre les valeurs mesurées et les valeurs calculées par le modèle. Le trait plein de la figure 3 représente l'évolution simulée pour l'expérience après cet ajustement du modèle.The dots represent the measured values. On the basis of the following equations, describing fermentation under experimental conditions, an adjustment method is used, which makes it possible to obtain the values of the parameters characteristic of this fermentation model by minimizing the difference between the measured values and the values calculated by the model. The solid line in Figure 3 represents the simulated evolution for the experiment after this adjustment of the model.
++
(1) H .S~ - Ka.HS = 0(1) H .S ~ - K a .HS = 0
(2)HS + S~ - S = 0(2) HS + S ~ - S = 0
(3) H + B - Ka.CO2d = 0(3) H + B - K a .CO 2d = 0
(4)B + CO2d - IC = 0 (5)B + S~ - Z = 0(4) B + CO 2 d - IC = 0 (5) B + S ~ - Z = 0
(6)— = μ.X dt (6) - = μ.X dt
(9)^ = R2.R3.μ.X(9) ^ = R 2 .R 3 .μ.X
Avec les équations intermédiaires suivantes :With the following intermediate equations:
PC02 = ^ -, 02cum = ∞2g - C02ini;P C 02 = ^ -, 0 2c um = ∞ 2g - C0 2i ni;
PC02 P C02
C02g = (N2ini + CH4),IC = ICP - C02cum pt-PC02C0 2g = (N 2in i + CH 4 ), IC = ICP - C0 2c um p t-PC02
avecwith
H+ : la concentration en ions H+,H + : the concentration of H + ions,
S : la quantité de substrat (acétate),S: the amount of substrate (acetate),
HS : la quantité d'acétate non ionisé,HS: the amount of non-ionized acetate,
S" : la quantité d'acétate ionisé, B : la quantité de bicarbonates,S ": the amount of ionized acetate, B: the amount of bicarbonates,
Ka : la constante d'acidité de l'acide acétique,K a : the acid constant of acetic acid,
Kb : la constante de dissociation des bicarbonates,Kb: the dissociation constant of bicarbonates,
Cθ2d : la quantité de dioxyde de carbone dissous, Cθ2d: has the amount of dissolved carbon dioxide,
IC : la quantité de carbone inorganique, Z : la quantité de cations,IC: the quantity of inorganic carbon, Z: the quantity of cations,
X : la quantité de biomasse, u : le taux de croissances spécifique de la biomasse, R3 : le rendement substrat/biomasse,X: the quantity of biomass, u: the specific growth rate of the biomass, R3: the substrate / biomass yield,
CH-4cum : la quantité de méthane produit cumulé,CH-4 cum : the quantity of methane product cumulated,
Ri : le rendement méthane/biomasse,Ri: methane / biomass yield,
ICP : la quantité de carbone inorganique dégagé, R-2 : le rendement en dioxyde de carbone/biomasse,ICP: the quantity of inorganic carbon released, R-2: the yield of carbon dioxide / biomass,
?CP2 : la pression partielle en dioxyde de carbone dans le volume gazeux,? CP2: l a partial pressure of carbon dioxide in the gas volume,
Pt : la pression totale du volume gazeux,Pt: the total pressure of the gas volume,
Cθ2cum : la quantité de dioxyde de carbone cumulé, um : le taux de croissance spécifique maximum, Cθ2cum: l a cumulative amount of carbon dioxide, u m: maximum specific growth rate,
Ks : la constante de saturationK s : the saturation constant
Kj : la constante d'inhibitionKj: the inhibition constant
V : le volume du fermenteur de dispositif expérimental,V: the volume of the experimental device fermenter,
KH : la constante d'Henry pour le dioxyde de carbone, Cθ2g : la quantité de dioxyde de carbone gazeux,KH: Henry's constant for carbon dioxide, Cθ2g: the amount of gaseous carbon dioxide,
Cθ2ini • la quantité de dioxyde de carbone initial dans la phase gazeuse,Cθ2ini • the amount of initial carbon dioxide in the gas phase,
N2ini - la quantité d'azote initial,N2ini - the amount of initial nitrogen,
IC : la quantité de carbone inorganique.IC: the amount of inorganic carbon.
Les quatres premières équations algébriques traduisent les équilibres acido-basiques des deux couples suivants de constantes d'équilibres respectives Ka et Kb :The first four algebraic equations translate the acid-base equilibria of the following two pairs of respective equilibrium constants K a and Kb:
- acide acétique/acétate ;- acetic acid / acetate;
- dioxyde de carbone dissous produit/bicarbonate.- dissolved carbon dioxide produced / bicarbonate.
La cinquième équation algébrique représente l'électroneutralité du milieu et introduit une variable supplémentaire Z, qui est l'ensemble des cations présents dans le fermenteur.The fifth algebraic equation represents the electroneutrality of the medium and introduces an additional variable Z, which is the set of cations present in the fermenter.
Les variables d'état du modèle sont les suivantes : H+, HS,S-, B, C02d, X,S,CH4cum> ICP et Z. La valeur du rendement R-2 du dioxyde de carbone sur la biomasse est fixé à 1. Les valeurs initiales du pH, des quantités en substrat S, en méthane et en dioxyde de carbone sont mesurées.The state variables of the model are as follows: H + , HS, S-, B, C0 2 d, X, S, CH4 cum > ICP and Z. The value of the R-2 yield of carbon dioxide on the biomass is fixed at 1. The initial values of the pH, of the quantities of substrate S, of methane and of carbon dioxide are measured.
Un calcul à partir des équations algébriques permet alors d'obtenir les valeurs initiales des quantités en acide acétique HS, en acétate S", en bicarbonate B, en dioxyde de carbone dissous Cθ2d> en carbone inorganique IC, ainsi que l'ensemble des cations dissous dans le fermenteur.A calculation from algebraic equations then makes it possible to obtain the initial values of the quantities of acetic acid HS, of acetate S ", of bicarbonate B, of dissolved carbon dioxide Cθ2d > of inorganic carbon IC, as well as all the cations dissolved in the fermenter.
Les constantes d'acidité de l'acide acétique Ka, du CO2 dissous KD, et la constante de Henry KT-J sont ajustées à partir des données expérimentales.The acid constants of acetic acid K a , dissolved CO2 K D , and the Henry's constant KT-J are adjusted from the experimental data.
Dans l'exemple présenté ici, les valeurs de ces constantes sont les suivantes :In the example presented here, the values of these constants are as follows:
Ka = l,7.10-5M Kb = l,7.10-7M KH = 0,065 M/atmKa = l, 7.10-5M Kb = l, 7.10-7M KH = 0.065 M / atm
Les paramètres biologiques du modèle sont le taux de croissance maximal μmax, la constante de saturation Kg, la constante d'inhibition Ki, le rendement en méthane par rapport à la biomasse Rj, et le rendement en substrat par rapport à la biomasse R3.The biological parameters of the model are the maximum growth rate μ max , the saturation constant Kg, the inhibition constant Ki, the methane yield compared to the biomass Rj, and the substrate yield compared to the biomass R3.
Ils sont identifiés à partir des données expérimentales. L'estimation des paramètres nécessite l'intégration du modèle et la connaisance des valeurs initiales des variables d'état. La biomasse initiale non connue et non mesurable est donc considérée comme un paramètre que l'on identifie également et que l'on exprime en unité arbitraire (UA).They are identified from experimental data. The estimation of the parameters requires the integration of the model and the knowledge of the initial values of the state variables. The unknown and non-measurable initial biomass is therefore considered to be a parameter that is also identified and expressed in arbitrary units (AU).
Toujours dans l'exemple présenté ici pour un substrat donné et en relation avec la figure 2, on donne ci-après les valeurs des paramètres caractéristiques de ce modèle de fermentation qui ont permis l'établissement de la surface de la figure 2 : umax = 0,017 1/h KS = 2,18.10-5M KI = 8,22.10-4M R] = 1M/M R3 = 350 mM/UAStill in the example presented here for a given substrate and in relation to FIG. 2, the values of the parameters characteristic of this fermentation model which gave the establishment of the surface of FIG. 2 are given below: u max = 0.017 1 / h K S = 2.18.10-5M KI = 8.22.10-4M R] = 1M / M R3 = 350 mM / UA
Bien entendu l'invention n'est nullement limitée au mode de réalisation décrit et illustré qui n'a été donné qu'à titre d'exemple. Of course, the invention is in no way limited to the embodiment described and illustrated, which has been given only by way of example.

Claims

Revendications claims
1. Procédé de contrôle de la fermentation méthanique de matières organiques dans au moins un fermenteur, et du type consistant à effectuer sur le fermenteur des mesures physico-chimiques, à traiter ces mesures dans au moins un calculateur permettant à l'aide d'un modèle de fermentation d'obtenir une variable caractéristique de l'état biologique du fermenteur, et à traiter cette variable pour en déduire une commande du fermenteur, caractérisé en ce que les mesures physico-chimiques précitées sont limitées à deux mesures, telles que par exemple, pH et teneur en acides gras volatils, la variable carctéristique de l'état biologique précitée est l'activité biologique méthanogène et le modèle de fermentation précité est ajusté en fonction de la biomasse présente dans le fermenteur et des matières organiques à traiterr par celui-ci.1. Method for controlling the methane fermentation of organic matter in at least one fermenter, and of the type consisting in carrying out physicochemical measurements on the fermenter, in processing these measurements in at least one calculator allowing using a fermentation model to obtain a variable characteristic of the biological state of the fermenter, and to process this variable to deduce an order from the fermenter, characterized in that the above-mentioned physicochemical measurements are limited to two measurements, such as for example , pH and volatile fatty acid content, the characteristic variable of the abovementioned biological state is the methanogenic biological activity and the abovementioned fermentation model is adjusted as a function of the biomass present in the fermenter and of the organic matter to be treated with it. this.
2. Procédé selon la revendication 1, caractérisé en ce que l'activité biologique méthanogène est exprimée par le calculateur sous la forme d'un taux de croissance spécifique (μ) des bactéries méthanogènes de la biomasse du fermenteur.2. Method according to claim 1, characterized in that the methanogenic biological activity is expressed by the calculator in the form of a specific growth rate (μ) of the methanogenic bacteria of the fermenter biomass.
3. Procédé selon la revendication 2, caractérisé en ce que le modèle de fermentation précité est ajusté à partir d'une expérimentation à échelle réduite qui est effectuée sur un échantillon de matière prélevé du fermenteur, et qui consiste à suivre automatiquement l'évolution dans le temps du pH de la concentration en acides gras volatils ainsi que les quantités en CH4 et CO2 produites.3. Method according to claim 2, characterized in that the aforementioned fermentation model is adjusted from an experiment on a reduced scale which is carried out on a sample of material taken from the fermenter, and which consists in automatically monitoring the evolution in the pH time of the volatile fatty acid concentration as well as the quantities of CH4 and CO2 produced.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le modèle de fermentation précité intègre la combinaison des phénomènes biologiques y compris l'effet inhibiteur des acides gras volatils non ionisés et des équilibres physico-chimiques dans le fermenteur avec le pH comme variable d'état. 4. Method according to one of claims 1 to 3, characterized in that the aforementioned fermentation model incorporates the combination of biological phenomena including the inhibitory effect of non-ionized volatile fatty acids and physicochemical equilibria in the fermenter with pH as a state variable.
5. Installation pour la mise en oeuvre du procédé selon l'une des revendications 1 à 4, et du type comprenant au moins un fermenteur (FI), des capteurs (10, 1 1) associés au fermenteur pour permettre des mesures physico-chimiques et au moins un calculateur (Cl) traitant ces mesures à l'aide d'un modèle de fermentation, caractérisée en ce qu'audit calculateur (Cl), assurant grâce au modèle de fermentation, la transformation des mesures physico-chimiques en une variable caractéristique de l'état biologique, est adjoint un calculateur (C2) assurant la commande du fermenteur (FI) à partir de cette variable, et en ce que ledit modèle est ajusté en fonction de la biomasse présente dans le fermenteur (FI) et au substrat à traiter par un dispositif d'expérimentation à échelle réduite comprenant essentiellement un fermenteur (F2) contenant un échantillon de matière prélevé du fermenteur cité en premier lieu (FI), des capteurs (12 à 15) associés à ce fermenteur (F2) et reliés à au moins un calculateur (C3) fournissant les valeurs des paramètres permettant de calibrer le modèle de fermentation précité.5. Installation for implementing the method according to one of claims 1 to 4, and of the type comprising at least one fermenter (FI), sensors (10, 1 1) associated with the fermenter to allow physico-chemical measurements and at least one computer (Cl) processing these measurements using a fermentation model, characterized in that said computer (Cl), using the fermentation model, ensures the transformation of the physico-chemical measurements into a variable characteristic of the biological state, is added a calculator (C2) ensuring the control of the fermenter (FI) from this variable, and in that said model is adjusted according to the biomass present in the fermenter (FI) and substrate to be treated by a reduced-scale experimentation device essentially comprising a fermenter (F2) containing a sample of material taken from the first mentioned fermenter (FI), sensors (12 to 15) associated with this fermenter (F2) and connected to at least one computer (C3) providing the values of the parameters making it possible to calibrate the aforementioned fermentation model.
6. Installation selon la revendication 5, caractérisée en ce que les fonctionalités des calculateurs précités (Cl et C2) sont réunies dans un seul et même calculateur.6. Installation according to claim 5, characterized in that the functionalities of the aforementioned computers (Cl and C2) are combined in one and the same computer.
7. Installation selon l'une des revendications 5 et 6, caractérisée en ce que les capteurs précités (12 à 15) sont aptes à mesurer en continu le pH, les quantités du CH4 et de CO2 produites et la concentration en acides gras volatils dans le fermenteur (F2), tandis que les paramètres fournis par le calculateur précité (C3) sont :7. Installation according to one of claims 5 and 6, characterized in that the aforementioned sensors (12 to 15) are capable of continuously measuring the pH, the quantities of CH4 and CO2 produced and the concentration of volatile fatty acids in the fermenter (F2), while the parameters supplied by the abovementioned computer (C3) are:
- le taux de croissance spécifique méthanogène maximum (umax)- the maximum methanogenic specific growth rate (u max )
- la constante d'inhibition des bactéries méthanogènes (K- the inhibition constant of methanogenic bacteria (K
- la constante de saturation des bactéries méthanogènes (Ks), et- the saturation constant of methanogenic bacteria (Ks), and
- les rendements en CH4/biomasse (Rn, en Cθ2/biomasse (R2) et en substrat/biomasse (R3). - CH4 / biomass (Rn, Cθ2 / biomass (R2) and substrate / biomass (R3) yields.
EP93905392A 1992-02-12 1993-02-12 Process and installation for controlling the methane fermentation of organic materials Ceased EP0584327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9201577A FR2687166B1 (en) 1992-02-12 1992-02-12 METHOD FOR CONTROLLING THE METHANIC FERMENTATION OF ORGANIC MATERIALS AND INSTALLATION COMPRISING THE APPLICATION OF THIS METHOD.
FR9201577 1992-02-12

Publications (1)

Publication Number Publication Date
EP0584327A1 true EP0584327A1 (en) 1994-03-02

Family

ID=9426574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905392A Ceased EP0584327A1 (en) 1992-02-12 1993-02-12 Process and installation for controlling the methane fermentation of organic materials

Country Status (5)

Country Link
US (1) US5470745A (en)
EP (1) EP0584327A1 (en)
JP (1) JPH06509718A (en)
FR (1) FR2687166B1 (en)
WO (1) WO1993016169A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688476A5 (en) * 1993-04-21 1997-10-15 Walter Schmid Method for controlling a Vergaerungsanlage.
US5811255A (en) * 1995-09-20 1998-09-22 Yellowstone Environmental Science Apparatus and method for anaerobic respirometry
GB2313116A (en) * 1996-05-13 1997-11-19 Biomass Recycling Ltd Treatment of wastes
US6296766B1 (en) * 1999-11-12 2001-10-02 Leon Breckenridge Anaerobic digester system
DE10134658C2 (en) * 2001-07-20 2003-08-21 Schmack Biogas Ag Method for the determination of volatile fatty acids (VFA) in anaerobic fermentations
DE102004037798C5 (en) * 2004-08-03 2009-06-18 Hochschule für Angewandte Wissenschaften Hamburg Process for the fermentation of biomass
DE102004047560B3 (en) * 2004-09-30 2006-02-16 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Biogas measuring device and method for measuring biogas volume
DE102004061455A1 (en) * 2004-12-17 2006-07-06 Endress + Hauser Gmbh Method for controlling a fermentation of a substrate and corresponding device
EP2050812A1 (en) * 2007-10-18 2009-04-22 Kadri Bayval Biogas plant
FR2925040B1 (en) * 2007-12-14 2009-11-27 Inst Nat Rech Inf Automat BIOREACTOR AND METHOD FOR THE PRODUCTION OF BIOGAS
DE102012111673A1 (en) * 2012-11-30 2014-06-05 Universität Rostock Control device, useful in plant that is useful for producing biogas from substrates e.g. corn starch using microorganisms, where plant is adapted to generate signal based on parameters and kinetics of substrate supplied to biogas reactor
CN106770509A (en) * 2015-11-23 2017-05-31 上海国佳生化工程技术研究中心有限公司 The assay method of microorganism oxygen consumption rate in a kind of dynamic process
CN107272551B (en) * 2017-06-12 2020-06-16 中国华电科工集团有限公司 Anaerobic reaction control method and control system
FR3086667B1 (en) 2018-10-01 2020-12-11 Institut National De Recherche En Sciences Et Tech Pour Lenvironnement Et Lagriculture METHOD OF EARLY DETECTION OF A MALFUNCTIONING IN A DIGESTING DEVICE
FR3134823A1 (en) * 2022-04-21 2023-10-27 Suez Method for calculating an operating parameter of a digester in the presence of at least one inhibitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926738A (en) * 1972-05-10 1975-12-16 Wilson John D Method and apparatus for control of biochemical processes
FR2455629A1 (en) * 1979-05-03 1980-11-28 Chaillet Pierre Continuous prodn. of fuel gas by anaerobic fermentation - in vessel with automatic feed and discharge, controlled temp. and pH
FR2505359B1 (en) * 1981-05-08 1985-07-05 Air Liquide METHOD AND PLANT FOR MANUFACTURING MICROORGANISMS
US4780415A (en) * 1981-07-29 1988-10-25 Gilbert Ducellier Method of degrading organic products, by-products and scraps in an anaerobic medium
DE3401889A1 (en) * 1984-01-20 1985-07-25 Gebrüder Bühler AG, Uzwil Process and apparatus for converting refuse materials into compost

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9316169A1 *

Also Published As

Publication number Publication date
FR2687166A1 (en) 1993-08-13
JPH06509718A (en) 1994-11-02
WO1993016169A1 (en) 1993-08-19
US5470745A (en) 1995-11-28
FR2687166B1 (en) 1995-06-16

Similar Documents

Publication Publication Date Title
EP0584327A1 (en) Process and installation for controlling the methane fermentation of organic materials
Lu et al. Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor
Li et al. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor
BE1008008A3 (en) Method and apparatus for adjusting the concentration of carbon source in aerobic culture microorganism.
Rosales-Colunga et al. Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network
Seifert et al. Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation
Bastidas-Oyanedel et al. Gas controlled hydrogen fermentation
EP3201374B1 (en) Method and device for controlling the activity of a bioelectrochemical system comprising both a bioanode and a biocathode
JP6955531B2 (en) Bioreactor process control
FR2601690A1 (en) PROCESS FOR PRODUCING HIGH-YIELD METHANE BY CULTURE OF METHANOBACTERIUM THERMOAUTOTROPHICUM OR ANY METHANOGENIC BACTERIA HAVING THE SAME GROWTH PHYSIOLOGICAL PROPERTIES
EP3419413B1 (en) Method for the culture of photosynthetic organisms using a co2 source
Pouresmaeil et al. Operating control for enrichment of hydrogen-producing bacteria from anaerobic sludge and kinetic analysis for vinasse inhibition
CA2531129C (en) Uncoupling agents
Miehle et al. Biological biogas upgrading in a membrane biofilm reactor with and without organic carbon source
EP4153763A1 (en) Method for methanation of hydrogen h2 and carbon dioxide co2 or hydrogen h2 and carbon monoxide co for the production of methane ch4
CA3135864A1 (en) Process and device for the production of methane
WO2020070111A1 (en) Method for early detection of malfunction in a digester
FR2927634A1 (en) F OCEDE USED TO INCREASE BIOMASS AND METABOLIC ACTIVITY OF MICROORGANISMS BY COMBINED CONTROL OF OXYDO-REDUCTION POTENTIAL AND DISSOLVED OXYGEN DURING THE FERMENTATION PROCESS
WO2009101297A2 (en) Bioreactor and process for producing biogas
EP4384596A1 (en) Method and device for predicting an indicator for monitoring the state of a digester
Liu et al. Analysis of nitrite oxidation process and nitrification performance by nitrogen and oxygen isotope fractionation effect
US20220177931A1 (en) Process and composition for controlling ethanol production
Maskow et al. photocalorespirometry (photo-CR): A Novel Method for Access to photosynthetic energy Conversion Efficiency
WO2019058073A1 (en) Method for controlling a dark fermentation reactor
FR2611742A1 (en) Process for producing cultures enriched with microorganisms and/or with metabolites resulting from these cultures, apparatus for implementing this process and application of the latter, especially to the inoculation and re-inoculation of nitrifiers and water treatment tanks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940411

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L. & C. STEINMUELLER GMBH

17Q First examination report despatched

Effective date: 19970430

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19990530