EP0580730B1 - Electrode for an electrolytic cell, use thereof and method using same - Google Patents

Electrode for an electrolytic cell, use thereof and method using same Download PDF

Info

Publication number
EP0580730B1
EP0580730B1 EP92910109A EP92910109A EP0580730B1 EP 0580730 B1 EP0580730 B1 EP 0580730B1 EP 92910109 A EP92910109 A EP 92910109A EP 92910109 A EP92910109 A EP 92910109A EP 0580730 B1 EP0580730 B1 EP 0580730B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
membrane
electrode
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92910109A
Other languages
German (de)
French (fr)
Other versions
EP0580730A1 (en
EP0580730B2 (en
Inventor
Hans Josef May
Roland Schnettler
Norbert PRÜM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sikel NV
Original Assignee
Sikel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25662564&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0580730(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/BE1991/000033 external-priority patent/WO1992021792A1/en
Priority claimed from DE19914122543 external-priority patent/DE4122543A1/en
Application filed by Sikel NV filed Critical Sikel NV
Publication of EP0580730A1 publication Critical patent/EP0580730A1/en
Publication of EP0580730B1 publication Critical patent/EP0580730B1/en
Application granted granted Critical
Publication of EP0580730B2 publication Critical patent/EP0580730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/065Diaphragms

Definitions

  • the present invention relates to an electrode, preferably an insoluble electrode for an electrolytic cell.
  • Insoluble electrodes are commonly used in methods of electrochemically coating strips of metal, preferably strips of galvanized or galvanized steel, using metals or metal alloys, in accordance with which a electrolyte charged with coating metal salts between the cathode metal strip to be coated and the insoluble anode.
  • the implementation of this process generates gases at the anode, for example oxygen or chlorine, which undergo partially undesirable bonds with the coating metals, or which, because of their aggressiveness or their toxicity, have harmful consequences during the implementation of the coating process or for the environment.
  • gases at the anode for example oxygen or chlorine
  • These gases which arise at the anode mix with the electrolyte and can therefore cause unwanted reactions and enter the environment, since when electroplating metal strips, the electrolyte circuit on the tape can not be separated from the atmosphere.
  • a process for coating galvanized steel strips using iron compounds or alloys thereof is known.
  • a sulfate-based electrolyte charged with coating metal salts is conducted in a closed circuit between the steel strip to be coated circulating endlessly and the insoluble anodes.
  • iron precipitates in the form of iron compounds at the cathode metal strip.
  • Bivalent oxygen is released at the anode, oxygen which comes into contact with metal salts, more particularly due to the recycling of the electrolyte. This oxygen oxidizes part of the bivalent iron to trivalent iron, so that large quantities of iron oxide arise, which contaminate the electrolytes and which must be separated from the circuit by implementing expensive filtration processes.
  • the applicants have developed a particular electrode which is particularly useful in methods of electrochemically coating metal strips, but which is also suitable in other processes, such as methods for electrochemically removing a coating from a strip. such as a steel strip.
  • the electrode according to the invention is placed in an envelope defining a chamber and a wall of which is formed of a membrane allowing the passage of ions through it, said envelope having a first opening for supplying the chamber with a electrolyte and a second opening to evacuate from the electrolyte chamber.
  • the envelope is provided with strips, fins or baffles intended to ensure a speed of the electrolyte in the vicinity of the electrode of at least 0.01 m / s, and preferably greater than 0.1 m / s, in particular at 0.5 m / s.
  • the lamellels, baffles or fins direct the flow of electrolyte into the chamber or part of it.
  • the baffles or fins extend from the vicinity of the first opening of the envelope to the vicinity of the second opening of the envelope, so as to advantageously divide the chamber into several separate compartments extending between the electrode and a wall of the chamber or envelope, in particular the membrane.
  • said baffles or fins create, in the vicinity of the electrode, an at least partially ascending current of the electrolyte.
  • the baffles or fins extend in a substantially vertical direction from the vicinity of the lower part of the envelope to the vicinity of the upper part of the envelope so as to define channels bringing the electrolyte into said upper part of the envelope, this part having an opening for sucking out of the gas chamber and an opening for the discharge of the electrolyte.
  • the baffles or fins extend at least from one edge of the electrode to the opposite edge of the latter.
  • the membrane is preferably an anionic or anion exchange membrane or a cationic or cation exchange membrane. It is advantageously provided on the outside of the envelope with a layer or a protective veil, for example made of synthetic material (polymer, polyes ter, .%) advantageously reinforced with fibers (glass).
  • a porous support extends in the vicinity of the membrane and serves as a support for at least part of it.
  • a support is, for example, a perforated element, a porous veil, a mesh advantageously made of Zr, Ti or stainless steel.
  • the support has on the face opposite that adjacent to the membrane a layer acting as an electrode, while according to another embodiment the membrane is supported on a support playing the role of electrode, said support being provided with an insulating layer on its face adjacent to the membrane.
  • the membrane of an electrode according to the invention advantageously has a thickness between 50 and 150 u.
  • it preferably has a multilayer structure, at least one layer being obtained by grafting an amino monomer or a precusor of an amino compound onto a polymer support and by crosslinking.
  • the present invention also relates to the use of an electrode according to the invention in an electrolytic cell.
  • an electrochemical coating process for galvanized steel strips using metals or metal alloys.
  • an electrolyte charged with coating metal salts is recycled in known manner between the metal strip to be coated (cathode) and the insoluble anode.
  • an electrode according to the invention is used as the insoluble anode.
  • the membrane is arranged between the anode and the metal strip to be coated so as to form a separation between a cathode space adjacent to the strip and the anode chamber defined by the envelope of the anode.
  • a first primary electrolyte circuit is created in the chamber and a second secondary electrolyte circuit in the cathode space, the membrane preventing the transfer of gases generated at the anode in the second electrolyte circuit and the transfer of coating metal salts from the cathode space to the first electrolyte circuit.
  • the gases remain in the electrolyte circuit maintained separately in the anode space and can be evacuated regularly.
  • the electrolyte in the anode circuit is not charged with the coating metals.
  • the gas which still forms can be removed from this circuit in a relatively simple manner. The two circuits are clearly separated from each other, so that mixtures cannot occur.
  • Claims 19 to 22 have proposed methods according to the invention for coating metal strips, preferably steel strips galvanized with iron, iron compounds or an iron-containing alloy. .
  • metal strips preferably steel strips galvanized with iron, iron compounds or an iron-containing alloy.
  • the use is made, as diaphragms, of cation exchange membranes, or of anion exchange membranes known as such.
  • bipolar membranes By a corresponding modification or adaptation of the electrolytes, it is also possible to use what are called bipolar membranes.
  • anion exchange membrane of a suitable nature between the anode and the metal strip to be coated
  • a sulfuric electrolyte enriched with iron and zinc sulfate
  • the electrolyte devoid of metal and consisting of water and sulfuric acid in the anode chamber is enriched here with sulfuric acid.
  • the oxygen which forms at the insoluble anode can be evacuated from the anode chamber. The transfer of oxygen into the cathode space is prevented by the corresponding anion exchange membrane.
  • the charge transport takes place by the transfer of hydrogen ions from the anode chamber into cathodic space.
  • the oxygen which also forms here at the anode is evacuated from the sulfuric electrolyte devoid of iron from the anode circuit. The transfer of oxygen into the cathode space is also prevented by this cation exchange membrane.
  • a chlorinated electrolyte enriched with iron or zinc chloride
  • the penetration of chlorine ions into the anode chamber is allowed as charge carriers.
  • the transfer of metal salts into the anode space is however prevented.
  • the electrolyte, which consists of water and hydrochloric acid, in the anode chamber is enriched with chlorine ions released in the form of gas at the anode and advantageously removed in a controlled manner with the electrolyte circuit of the anode chamber. . Transfer of chlorine to the cathode space is prevented by the appropriate exchange membrane.
  • cation exchange membranes of suitable nature.
  • the transfer of acids and salts from the cathode space to the anode space is again prevented.
  • the charge transport takes place by the transfer of hydrogen ions from the anode space or chamber into the cathode space.
  • the gases separated at the anode are evacuated. Transfer of the separated gases into the cathode space is prevented by the cation exchange membrane.
  • the sulfuric acid which is enriched in excess when a sulfuric electrolyte is used in the cathode circuit and when an anion exchange membrane is used in the anode circuit, is used in the dissolution station and is thus returned to the cathode circuit, where the rate of dissolution of iron and other coating metals, for example zinc, is considerably accelerated.
  • the chlorine gas that forms at the anode when using a chlorinated electrolyte in the cathode circuit and an anion exchange membrane is evacuated by suction from the anode circuit and is burned in hydrochloric acid by l Hydrogen gas formed in the dissolution station and serves to accelerate the dissolution of metals and is therefore returned to the cathode circuit via the dissolution station.
  • the present invention also relates to a method for removing a layer of metals or of a metal present on a metal strip such as a steel strip.
  • This layer of metals or of metal is for example an electrolytically deposited layer such as a protective layer of Zn or of a Zn alloy.
  • the layer of Zn or Zn alloy deposited as a protective layer on a face or strip has a thickness of between 0.1 and 2 microns (preferably less than 1 micron).
  • Such a layer is preferably obtained by subjecting the strip to an electrolytic treatment in a bath containing from 15 to 100 g / I, advantageously from 30 to 80 g / I of Zn.
  • the current density in the cells is for example between 20 and 200 A / dm 2 but is preferably between 40 and 150 A / dm 2 .
  • the strip and possibly the electrolyte of said cells are set in motion in the cells.
  • the relative speed of the strip with respect to the electrolyte is advantageously between 1 and 8 m / s, preferably between 3 and 5 m / s.
  • an electrolyte is recirculated between the strip acting as an anode and a insoluble cathode, an advantageously anionic membrane being arranged between the strip and the cathode, so as to form a separation between a cathode space and an adjacent anode space of the strip.
  • This membrane makes it possible to remedy that metals dissolved in the electrolyte such as for example Zn and / or Ni do not form a deposit (black in the case of Zn and Ni) on the cathode, this deposit not only decreasing the efficiency of the cathode, but above all the life or use thereof.
  • This membrane can be a porous veil (pores of a few microns, 1 to 50 ⁇ ), but is preferably an anionic membrane, that is to say a membrane which does not allow or limit the passage of cations (such as Zn + + , Ni ++, Fe ++ ) through it.
  • cations such as Zn + + , Ni ++, Fe ++
  • the speed of the electrolyte in the chamber is for example greater than 0.1 m / s, but is preferably less than 1.5 m / s to ensure that the hydrogen bubbles do not come together to form large bubbles.
  • the electrolyte circulating in the chamber adjacent to the cathode preferably has a composition different from the primary electrolyte, that is to say the electrolyte in contact with the strip.
  • the secondary electrolyte is advantageously an electrolyte not containing Zn and Ni but containing 50 to 100 g / I of Na 2 S0 4 and the pH of which is preferably adjusted to a value of 1.5 to 2.
  • the upper part of the chamber is also preferably subjected to a gas suction.
  • a vacuum is created in the upper part of the chamber such that the pressure in the chamber is less than 0.75 x atmospheric pressure.
  • the primary electrolyte used in the deplating cell may for example be an electrolyte containing less than 50 g / I of free acid, advantageously less than 5 g / I, preferably about 1 g / I of free acid (per example of SO 4 - free).
  • the pH of the electrolyte is advantageously 1.5 to 2.
  • the current density used in the deplating cell (cell for removing a metallized layer) in which the cathode is placed in a chamber is advantageously less than 60 A / dm 2 , but is preferably between 15 and 30 A / dm 2 in the case of an acid electrolyte.
  • the temperature of the primary and secondary electrolyte is advantageously between 20 and 60 ° C, preferably between 40 and 60 ° C.
  • FIG. 1 shows in perspective an electrode according to the invention which is advantageously used in a deplating cell but which can also be used for the deposition of Zn, Zn-Ni, Zn-Fe, or another Zn alloy.
  • This electrode comprises a support 75 carrying a plate 76 intended to form the anode or the cathode.
  • the support 75 forms an envelope having a window in which a membrane 77 is placed.
  • the membrane 77 forms a wall of the envelope which defines a chamber 78, 79. This membrane allows the passage of ions such as anions or cations.
  • the envelope has a first opening 100 for supplying the chambers 78,79 with electrolyte and a second opening 101 for removing chambers 78,79 from the electrolyte.
  • the envelope is provided with a guide wall or fin 102 extending between said first and second openings, so as to divide the 'envelope in two compartments 78, 79 adjacent, but separate from each other.
  • the fin 102 extends between the electrode 76 and the wall of the envelope provided with the membrane.
  • FIG. 1 shows in section another embodiment of an electrode according to the invention.
  • the electrode 80 made of titanium but provided with an active layer is secured to a support 81 by means of arms 82.
  • the support 81 forms with a membrane 83 an envelope surrounding the electrode 80.
  • This membrane 83 is fixed on a grid or lattice 84 made of titanium and is provided on its face opposite to that adjacent to the electrode with a porous film 85 protecting the membrane.
  • This film is resistant to acids and is reinforced with fibers.
  • This film is for example a polyester film.
  • the membrane is anionic.
  • a membrane is for example of multilayer structure, each of the layers being made up of a membrane obtained by the method described in FR-8900115 (application number).
  • a membrane of this type is prepared by grafting an amino compound onto a polymeric support (film of ethylene-co-polytetrafluoroethylene) and by crosslinking thereof.
  • this opening 103 allows communication of the chamber 78 with a conduit 104 on which is mounted a suction system (vacuum pump, fan, etc.) not shown.
  • a suction system vacuum pump, fan, etc.
  • the envelope is connected to an electrolyte circulation device in the envelope and to a gas elimination system, in particularly a system creating a vacuum in the upper part of the chamber, this vacuum being advantageously such that the pressure in the upper part of the chamber is less than 0.75 x atmospheric pressure.
  • the velocity of the electrolyte in the chamber was greater than 0.1 m / s, but is however preferably less than 1.5 m / s. Such a speed ensures that the gas bubbles (hydrogen in this case) do not meet to form large bubbles disturbing the correct functioning of the electrode.
  • Figures 6 and 7 show an electrode similar to that shown in Figure 2. It is used as a cathode to electrolytically deposit Zn and Fe on the steel strip.
  • the membrane 83 is a cationic membrane so that the SO 4 anions formed in the vicinity of the strip 3 remain in the primary electrolyte, while the iron and the zinc are deposited on the strip.
  • oxygen is released (oxygen from the decomposition of water) and is evacuated through line 104.
  • the membrane 83 is an anionic membrane allowing the passage of the SO 4 anions - formed in the vicinity of the strip 3 towards the cathode 80.
  • the oxygen released at the cathode is evacuated through the conduit 104.
  • the envelope surrounding the electrode 80 is always formed by a support 81 and a membrane 83.
  • the electrode consists of a mesh or perforated plate of titanium or zirconium provided on the face facing the chamber 78 defined by the envelope of an active layer 87.
  • the membrane 83 is carried by the mesh and is coated with a porous protective layer 85.
  • the electrode shown in Figure 4 is similar to that shown in Figure 5 except that a porous insulating web 88 is placed between the mesh and the membrane.
  • FIG. 5 shows in section another embodiment of an electrode according to the invention.
  • This electrode 80 is adjacent to the membrane 83 which closes the window of the envelope.
  • This envelope defines an interior chamber 78 and has an opening or passage 100 for bringing electrolyte into the chamber 78, an opening or passage 101 for discharging electrolyte from the chamber 78 and an opening 103 for discharging formed gases. in the chamber, in particular in the vicinity of the electrode 80. These openings are located at a level higher than the electrode 80 and the membrane 83.
  • a fin 105 extends between two opposite walls of the envelope (front wall 106 provided with the membrane 80 and rear wall 107) so as to define a corridor 108 for bringing the electrolyte entering the chamber 78 through the passage 100 to the near the bottom 781 of the room.
  • This corridor 108 is extended by a distribution chamber 109 adjacent to the bottom 781.
  • This distribution chamber 109 has a wall 110 having a series of orifices 111 for distributing the electrolyte in a series of channels 112 defined between vertical fins 113.
  • These fins 113 extend from the vicinity of the bottom 781 of the chamber or more exactly from the wall 110 to the vicinity of the upper part or more exactly to a higher level B but adjacent to the upper level A of the membrane 83 and of the electrode 80.
  • the fins 113 which therefore extend between at least two opposite edges 120-121 of the electrode ensure an upward movement of the electrolyte along the electrode 80, such a movement (from the edge lower 120 towards the upper edge 121) favoring the evacuation of gas particles out of the electrolyte towards the upper part of the chamber advantageously subjected to a vacuum (suction gas through the passage or opening 103).
  • the fins in the direction of their width extend from the electrode 80 to the rear wall 107 of the envelope so as to define separate channels 112 extending from the distribution chamber or distribution of the electrolyte 109 to the top of the envelope.
  • Figure 6 is a partially broken away front view of an embodiment of an electrode according to the invention.
  • This electrode comprises a support 81 having an electrolyte channel 130 towards the lower part 131 of the electrode (arrow E) and an electrolyte discharge channel 132 (arrow S) in the upper part 133 of the electrode.
  • the ends 135 of these channels 130, 132 form ears serving as means for fixing and placing the electrode in an electrolytic cell.
  • the support 81 is made of a material insoluble in the electrolyte or is covered with a protective layer insoluble in the electrolyte.
  • This support 81 is for example made of titanium.
  • a first frame having two windows 137, 138 is applied against the support 81.
  • This frame 136 has grooves in which are housed seals made of synthetic material.
  • This frame 136 is made for example of an insulating synthetic material and resistant to the electrolyte.
  • the frame has along its lower 139 and upper 140 edges a series of channels 141, 142 extending between the face of the frame applied against the support 81 and the face opposite to said face applied against the support 81, so that that said channels 141, 142 communicate respectively with the supply conduit 130 and with the discharge conduit 132 via orifices 153 which have said conduits 130, 132.
  • the windows 137, 138 are separated from each other by a cross member 144 having on the face opposite to that facing the support 81 a bowl 145.
  • Channels or passages 146 are dug in said cross member 144 so as to be extend between an opening 147 adjacent to an edge of the cross member 144 and an opening 148 adjacent to the opposite edge of said cross member 144, said openings 147, 148 being located on the face of the cross member opposite to that facing the support 81.
  • Each plate 149 also has two holes 155 intended to allow passage to a cylindrical element 156 made of titanium or another electrically conductive material but resistant to the electrolyte.
  • This cylindrical element is provided with a head 157, a wall of which is intended to bear against the plate 136 with the interposition of circular seals 158 housed in grooves in the element 156 or more exactly the head 157 and the plate 149 and of a seal 159 forming a sleeve partially covering the cylindrical element 156 and the face of the head 157 facing the plate 149.
  • the cylindrical element 156 has, near its end opposite to that carrying the head 157, a tapped hole 160 intended to work with the threaded rod 161 of a bolt 162.
  • the support 81 has an orifice 163 intended to deliver passage to the rod 161.
  • One end of the orifice 163 opens into a recess 164 intended to receive the head 165 of the bolt 162, while the other end of the orifice opens into a recess 166 which has the support 81, said support hollow used for the correct placement of the cylindrical element relative to the support 81.
  • the cylindrical element 156 is pressed against the support 81 so as to seal between the support 81, the frame 136, the plate 149 and the head 157 of the element 156.
  • the plate 149 carries a layer 167 of synthetic material insulating from electricity and whose thickness is such that the face 168 of the free end of the head 157 and the face 169 of the layer 167 opposite to that resting on the plate 149 extend substantially in the same plane.
  • the latter corresponds to the plane along which the titanium electrode 170 extends. Thanks to the insulating layer 167 and the insulating sleeve 159, it is possible to insulate the plate 149 with respect to the current supplied by the bolt 162 and the cylindrical element 156 to the electrode 170.
  • This electrode 170 consists of a series of vertical titanium blades 171 connected to each other by rods or other load-bearing elements (plate) 173 conductors of electricity. These strips are advantageously parallel to each other. However, these slats could have been slightly inclined with respect to each other. In this case, the longitudinal edges (172) of the strips should advantageously not touch each other.
  • These strips 171 and carrying elements 173 are advantageously provided with an electrically conductive layer.
  • the strips advantageously have a height h of 5 to 10 mm and are advantageously separated from each other by a distance of between 5 and 10 mm.
  • the lamellae therefore form between them a series of vertical channels 11 intended to direct the electrolyte in the vicinity of the electrode and in particular to ensure a minimum ascending speed of the electrolyte relative to the electrode (see FIG. 11).
  • the strips 171 or preferably the supporting elements 173 are welded to the head 157 to ensure electrical contact between the electrode and the conductive bolt 162. It goes without saying that other methods of fixing the strips relative to the head 157 allowing electrical contact are possible.
  • the lamellae or fins 171 of an electrode extend in the vertical direction from the level N of the channels 154 adjacent to the lower edge 152 of the plate 149 to the level M of the channels 154 adjacent to the upper edge 153 of the plate 149.
  • the length I of the strips corresponds substantially to the width L of the insulating layer 167.
  • a porous insulating protective sheet 88 which is covered with a membrane 83.
  • This membrane 83 is, for example, an anionic membrane or cationic when the electrode is used to deposit a metal or a metal alloy on a strip, but is preferably an anionic membrane when the electrode is used to remove a deposit of a metal or metal alloy from a strip metals.
  • This veil 88 and this membrane 83 are stretched between the protuberances 151 so as to form a chamber 78 in which the electrode extends.
  • a secondary electrolyte e2 can pass through said chamber 78, this electrolyte e2 advantageously being different from the primary electrolyte e1 adjacent to the strip 3 to be coated or treated to remove a layer of metal or metal alloy therefrom.
  • the membrane 83 and the web are pressed between, on the one hand, a frame 175 of L-shaped cross section and, on the other hand, the protuberance 151 and a seal 176 mounted in a groove which has the protrusion 151.
  • U-shaped clamping profiles 177 are used to hold the frame 175 against the protrusion 151.
  • a wing 178 of the profile bears on the face of the protrusion 151 facing the support 81, while the other wing 179 of the profile bears against the frame 175, so that the latter 175, the web 88 and the membrane 83 are enclosed between the protuberance 151 and the wing 179.
  • profiles 177 are advantageously used per plate 149, so as to enclose and fix the web 88 and the membrane 83 substantially all along the protuberance 151 of the plate 149.
  • the profiles 177 have ends in tab so that the four profiles of a plate substantially form a continuous frame extending along the protuberance 151 of the plate 149.
  • the bowl 145 of the cross member 144 of the frame 136 allows, for the protuberances 151 adjacent said cross member, the fitting of the clamping profiles 177.
  • the wing 178 extends between the face of the protuberance facing the support 81 and the bottom of the bowl.
  • a seal 180 in synthetic material is inserted between the clamping profiles 177, so as to prevent the primary electrolyte e1 from entering the cup 145, but above all so as to form a bead 181 extending beyond the vertical plane in which extend the membranes 83 and the vertical plane in which extend the wings 179 of the profiles 177.
  • Such a bead makes it possible to reduce, or even completely avoid any risk of contact of the strip to be treated with a membrane. This increases the service life of a membrane.
  • the membrane attachment system shown (profiles 177) allows rapid installation or replacement of the membrane and also allows, if necessary, easy maintenance of the electrode.
  • the circuit of the secondary electrolyte e2 in the electrode shown in FIG. 6 will be described below:
  • the electrolyte e2 enters through the opening 100 and is brought by the conduit 130 in the vicinity of the bottom of the electrode (arrow E).
  • the electrolyte e2 then passes via the channels 141 and 154 into the chamber 78 in which it flows vertically, from bottom to top, between the lamellae 171 of the electrode.
  • the electrolyte leaves this chamber 78 through the channels 154 and 141 adjacent to the upper edge 153 of the plate 149 to be brought, via the channel 146 drilled in the cross member 144 and the channels 154 and 141 adjacent to the lower edge of the plate 149 closing the window 137, in the chamber 79.
  • the electrolyte then passes through the passages formed between the lamellae 171 of the electrode to finally exit from the chamber 79 by the channels 154 and 142 adjacent to the upper edge 153 of the plate 149. This electrolyte is finally discharged from the electrode through line 132.
  • FIG. 12 schematically shows an installation using electrodes according to the invention.
  • the electrolysis cells 1 for depositing a layer of Zn-Ni are for example of the type described in DE-A-3510592, but comprising anodes according to the invention.
  • These cells 1 are connected to a reservoir 54 by means of pumps, a supply pipe 58 and a discharge pipe 59 so as to ensure a substantially constant concentration of Ni and Zn in the electrolyte.
  • concentration of Ni and Zn in the electrolyte is for example that given in BE-A-881635 and BE-A-882525.
  • the electrolyte can also contain additives such as polymers, ZrS0 4 , ...
  • the reservoir 54 is connected to a device for enriching the electrolyte with Zn and / or with Ni, so as to maintain the Zn and Ni concentration of the electrolyte at a substantially constant value.
  • the means 5 for providing a first layer of Zn on the faces 2, 4 of the steel strip 3 preferably comprise electrolytic cells 11 into which the steel strip 3 is introduced. These cells are also advantageously of the type described in DE-A-3510592, but comprising anodes according to the invention.
  • the steel strip moves in the installation by resting on rollers 13, 14 and on idler rollers 15.
  • the cells 11 contain an electrolyte (a solution of ZnS0 4 ) and are connected to a reservoir 16 by means of pumps 17, 18, a supply line 19 and a discharge line 20 to ensure a concentration of Zn more or less constant of the electrolyte.
  • This reservoir is connected to a Zn enrichment reactor (not shown) of the electrolyte.
  • the installation 21 for removing the Ni possibly deposited on the layer of Zn and for at least partially eliminating said layer of Zn consists, in the embodiment shown, in a displacing cell 50 advantageously comprising a cathode according to the invention.
  • the strip 3 is subjected to rinsing by means of the rinsing device 51, to brushing in a brushing installation 52 to ensure that all the Ni deposited on the first layer of Zn on face 4 has been eliminated and advantageously on polishing in unit 91.
  • the installation also advantageously comprises a series of reservoirs 54, 55, 56, 57.
  • the first reservoir 54 contains the electrolyte intended to be brought to the cells 1 by conduits 58 provided with pumps, while the second reservoir 55 is intended to collect the electrolyte leaving the electrolytic cells 1 by conduits 59.
  • the third reservoir 56 contains the electrolyte intended to be brought to the "deplating" cell 50 by the conduit 60, while the fourth reservoir 57 is intended collecting the electrolyte leaving the deplating cell 50 through the conduit 61.
  • On the conduit 63 is mounted a filter 72 to recover Ni in the form of powder which has been removed from the steel strip. This Ni powder must be removed from the electrolyte since it is in a poorly soluble form.
  • Part of the electrolyte in the second reservoir 55 and the electrolyte in the fourth reservoir 57 are sent via conduits 62, 63 to an installation 64 for regenerating or enriching the electrolyte, the enriched electrolyte then being sent by a conduit 65 towards the reservoir 54 intended for supplying the cells 1.
  • Another part of the electrolyte from the second reservoir 55 is sent through a conduit 66 to the reservoir 56 intended to supply the "deplating" cell 50.
  • the installation further comprises a storage unit and / or preparation 67 of secondary electrolyte; this electrolyte poor in Zn and Ni being sent into the envelope in which the cathode 53 is placed.
  • This unit 67 comprises a storage tank 68 connected by a conduit 69 intended to bring electrolyte into the envelope 53 and by a conduit 70 intended for the evacuation of electrolyte out of the envelope and to return it to the tank 68. Water and sulfuric acid are brought to this unit to compensate for the losses in H 2 0 and H 2 SO 4 (SO 4 -) in the electrode chambers.
  • Electrolyte poor in Zn and Ni could possibly be sent to the reservoir 56 by a conduit.
  • the steel strip was provided with a first layer of Zn with a thickness of 1 micron.
  • the strip was immersed in an electrolytic cell 11, the electrolyte of which contained 60 g / l of Zn.
  • the current density between the cathode (the steel strip) and the anode 26 was 100 A / dm 2.
  • the relative speed of the strip with respect to the electrolyte was 1.5 m / s.
  • the strip was brought into electrolytic cells 1 to deposit on the face 2 of the strip a layer of Zn-Ni.
  • a thin layer of Zn-Ni has been deposited in the cells 11 on both sides of the steel strip 3.
  • the thickness of said layer was 0.5 u (grammage: ⁇ 3.5 g / m 2 ), while the Ni content of said layer was of the order of 10%.
  • the electrolyte used was the electrolyte used in cells 1.
  • the electrolyte which was used in cells 1 contained 25 g / I Zn ++ , 50 g / I Ni ++ and 75 g / I Na 2 SO 4 .
  • the pH of this electrolyte was 1.65 to 57.5 ° C.
  • the anode-steel strip distance was approximately 15 mm.
  • the primary electrolyte used in the deplating cell had in the tests which were carried out the same composition as the electrolyte of cells 1. However, one could have used an electrolyte containing less Zn ++ and Ni +.
  • the secondary electrolyte sent into the envelope contained 75 g / I Na 2 SO 4 (pH about 1.7).
  • the cathode-strip distance in the deplating cell was 16 mm.
  • the speed of the secondary electrolyte in the envelope was 0.04 m / s, while the speed of the primary electrolyte was 1.5 m / s.
  • Tests were carried out with the "deplating" cell to remove a layer of Zn or Zn-Ni deposited electrolytically.
  • the envelope of the cathode presented an anionic membrane of 150 ⁇ , of thickness sold by MORGANE (FRANCE), while the current density in the "deplating" cell varied between 0 and 50 A / dm 2 .
  • the passage time of the strip opposite the cathodes was 4 seconds. It goes without saying that by using a longer passage time, it is possible using a density of 20-25 A / dm 2 to obtain a Ni + Zn / Fe ratio close to 0 or equal to zero.
  • the installation shown which allows partial or total elimination of Ni deposited on a layer of Zn is an installation which makes it possible to reduce electrolyte losses as much as possible thanks to a recirculation system. This also makes it possible to reduce the total consumption of Zn and Ni of the installation and to reduce the operating and investment costs of waste purification installations.
  • the rinsing device can be provided with a unit (not shown) for recovering electrolyte, Zn and Ni.
  • a thin layer (0.5 ⁇ ) of Zn-Ni is advantageously deposited in the cells 11.
  • the same electrolyte is advantageously used. than that used in cells 1.
  • the same electrolyte can be used in cells 1, 11 and "deplating" cells (cells to remove Ni and / or Zn and / or a Zn alloy) .
  • a membrane electrode to reduce the number of electrodes of different types used in the installation, both in the "deplating" cells and in the cells used to deposit a layer of Zn or of a Zn alloy, a membrane electrode.
  • the current density is advantageously less than 60 A / dm 2 .
  • this density can be greater than 60 A / dm 2 , for example 100 A / dm 2 .
  • FIGS. 13 and 14 show in section and on a larger scale respectively a steel strip which was obtained in an installation of the type shown in FIG. 12 and a steel strip of which one face has been subjected to over-stripping. or polishing.
  • the steel strip 200 according to the invention is provided with a layer of Ni-Zn on one side.
  • the concentration of remaining Zn is less than 50 ug / m 2 (in particular 10 ⁇ g / m 2 ). This Zn remaining on this face is distributed in a regular and homogeneous manner.
  • Such a distribution combined with the presence of a very small amount of Zn and Ni makes it possible to obtain good phosphating.
  • a strip according to the invention is therefore a strip having a face covered with a layer of Zn-Ni and the other side of which is provided with Zn and / or Ni distributed in a regular and / or homogeneous manner, the grammage in Zn and / or Ni of said other face being greater than 0.1 ⁇ g / m 2 but less than 25, preferably 10 ug / m 2 .
  • a grammage of 0.1 ⁇ g / m 2 is a grammage demonstrating the absence of over-stripping and therefore of the attack on one face of the steel strip.
  • a strip which it is possible to obtain by a process according to the invention has a face not covered with Zn and Ni, the roughness of which is substantially equal to that which the steel strip had before its treatment (deposit of a layer of Zn-Ni).
  • the face 205 not covered with the Zn-Ni layer underwent an attack modifying the roughness of the steel strip.
  • an over-stripping will cause a decrease in the thickness of the layer of Zn-Ni 204, while during polishing the claws will be formed in the steel strip.
  • the steel strip according to the invention can then be subjected to a phosphating and be covered with one or more layers of paint on the face 105 not covered with the layer of Zn-Ni. It was noted that it was possible to obtain better adhesion of the paint layers or at least an adhesion equivalent to that of a steel strip not provided with a layer of Zn-Ni.
  • an electrode with both an anionic membrane and a cationic membrane can be used.
  • an electrode with an anionic membrane is preferably used, it may be advantageous to use the same electrodes with an anionic membrane both for the electrolytic deposition as for the electrolytic removal of a metal layer, so that an electrode can be used once for electrolytic deposition and once for electrolytic removal from a layer.
  • FIG. 15 shows, schematically, an installation comprising, on the one hand, a cell 1 for depositing on the face 2 of a galvanized strip 3 a Zn-Ni layer, and on the other hand, a cell 50 for remove from the face 4 the galvanized layer of the strip 3.
  • electrodes according to the invention are used as electrodes provided with anionic membranes.
  • This electrolyte is sent through line 502 into the tank 503.
  • From the electrolyte leaving this tank 503 is sent through line 504 and the pump 505 into the anode chamber 401 of cell 1.
  • the electrolyte is enriched in H 2 SO 4 .
  • This enriched electrolyte is brought via line 506 into a tank 507.
  • the tanks 503 and 507 are advantageously associated with a unit 530 to compensate for the water and / or SO 4 losses from the secondary electrolyte circuit in the electrodes.
  • a unit comprises a tank 531 for mixing electrolyte coming through the pipe 532 from the tank 507 and water and / or H 2 SO 4 coming from a pipe 510.
  • the reservoir 514 receives via the conduits 515 and 516 of the electrolyte from the reservoirs 511 and 512 and possibly via the conduit 517 of the electrolyte coming from the tank 507. This conduit 517 optionally makes it possible to purge the secondary circuit.
  • the electrolyte is enriched in the reservoir 514 by adding Zn-Ni metal powders and optionally H 2 S0 4 acid.
  • the enriched electrolyte is sent to cell 1 through line 518 and pump 519.
  • the reservoir 513 which supplies the cell 50 with poor Zn-Ni electrolyte is supplied with electrolyte coming from the reservoir 512 and advantageously from the reservoir 507 (conduit 520, pump 522 and conduit 521, pump 523).
  • FIGS. 16 to 18 show, schematically, embodiments of installation similar to that shown in FIG. 12.
  • electrodes provided with an anionic membrane are used as an anode in cells 1 for the electrolytic deposition of Zn or Zn-Ni on the face 2 of strip 3 and as cathode in the cells 50 to remove a layer of Fe-Zn, Zn or Zn-Ni optionally coated with Ni or Ni-Zn, layer present on the face 4 of the strip 3.
  • the secondary electrolyte sent into the electrodes comes from the tank 68 of an electrolyte preparation unit, which is supplied with water to obtain a correct dosage of the secondary electrolyte.
  • Secondary electrolyte can be sent via line 71 to reservoirs 55 and 56 intended to collect primary electrolyte coming from cells 1 and 50 respectively.
  • the installations shown in FIGS. 17 and 18 relate to installations for the deposition of a first layer of Zn, ZnNi or other alloys of Fe and of a second layer of Fe, Zn-Fe or iron alloy.
  • FIG. 17 The installation of FIG. 17 comprises cells 600 and 601 with anodes having an anionic membrane according to the invention. These anodes are intended for depositing on the face 2 of the strip 3 a layer of metal. It goes without saying that the cells could have included anodes arranged on the two sides of the strip so as to provide the two faces of the strip with a layer of metal.
  • This unit 67 comprises a tank 68 connected by conduits 69 and 70 to the anodes for supplying secondary electrolyte and for bringing the secondary electrolyte to tank 68 after passing through the anodes.
  • This unit 67 includes a water supply 615 to compensate for the water losses from the electrolyte or the increase in its H 2 SO 4 content .
  • the surplus of H 2 SO 4 in the electrolyte due to the passage of the latter through the anodes is advantageously sent via line 616 into reservoirs 604 and 610 to receive the depleted primary electrolytes leaving cells 600 and 601.
  • conduits 630 and 631 allow the electrolyte to be sent directly from the tanks 604, 610 to tanks 602 and 618.
  • FIG. 18 represents an installation similar to that represented in FIG. 16 except that the cells 600, 601 included anodes provided with a cationic membrane and that, consequently, the secondary electrolyte after passage through the chambers of the anodes are not sent to tanks 604 and 610.
  • the reservoirs for supplying the cells with electrolyte rich for example in Zn, Ni, the reservoirs for receiving the depleted electrolyte leaving the cells and the electrolyte enrichment units are advantageously of the type described in application EP-A-0388386 .
  • the chamber of an electrode of a first cell (1,600) and the chamber of an electrode of a second cell (50, 601) are mounted in the same circuit.
  • the electrolyte circuit is such that electrolyte leaving the chamber of an electrode of a first cell (1) is sent, possibly after treatment ( addition of water, H 2 S0 4 , ...) into the chamber of an electrode of a second cell (50) and that electrolyte leaving the chamber of an electrode of a second cell is sent in the chamber of an electrode of the first cell, possibly after treatment (addition of water, ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Secondary Cells (AREA)

Abstract

PCT No. PCT/BE92/00022 Sec. 371 Date Feb. 23, 1994 Sec. 102(e) Date Feb. 23, 1994 PCT Filed May 27, 1992 PCT Pub. No. WO92/21794 PCT Pub. Date Dec. 10, 1992The present invention relates to an electrode preferably an insoluble electrode for an electrolytic cell. The electrode is located within an enclosure defining a chamber, a wall of said enclosure being formed by a membrane allowing ions to pass therethrough. The enclosure has an opening for feeding electrolyte, an opening for evacuating electrolyte and means conducting the upward current of electrolyte with a velocity in the vicinity of the electrode of at least 0.01 m/s. The invention relates also to plants and processes using such electrode for the plating or deplating of metal strips.

Description

La présente invention a pour objet une électrode, de préférence une électrode insoluble pour cellule électrolytique.The present invention relates to an electrode, preferably an insoluble electrode for an electrolytic cell.

Des électrodes insolubles sont utilisées de façon courante dans des procédés de revêtement par voies électrochimiques de bandes de métaux, de préférence de bandes d'acier zinguées ou galvanisées, à l'aide de métaux ou d'alliages de métaux, conformément auxquels on recycle un électrolyte chargé de sels des métaux de revêtement entre la bande de métal cathodique à revêtir et l'anode insoluble.Insoluble electrodes are commonly used in methods of electrochemically coating strips of metal, preferably strips of galvanized or galvanized steel, using metals or metal alloys, in accordance with which a electrolyte charged with coating metal salts between the cathode metal strip to be coated and the insoluble anode.

En fonction de l'électrolyte mis en oeuvre, par exemple des électrolytes à base de sulfate ou de chlorure, la mise en oeuvre de ce procédé engendre des gaz à l'anode, par exemple de l'oxygène ou du chlore, qui subissent partiellement des liaisons indésirables avec les métaux de revêtement, ou qui, en raison de leur agressivité ou de leur toxicité, ont des conséquences nuisibles lors de la mise en oeuvre du procédé de revêtement ou pour l'environnement. Ces gaz qui prennent naissance à l'anode se mélangent à l'électrolyte et peuvent par conséquent provoquer des réactions non souhaitées et parvenir dans l'environnement, étant donné que lors du revêtement électrolytique de bandes de métaux, le circuit d'électrolyte sur la bande ne peut être séparé de l'atmosphère.Depending on the electrolyte used, for example electrolytes based on sulphate or chloride, the implementation of this process generates gases at the anode, for example oxygen or chlorine, which undergo partially undesirable bonds with the coating metals, or which, because of their aggressiveness or their toxicity, have harmful consequences during the implementation of the coating process or for the environment. These gases which arise at the anode mix with the electrolyte and can therefore cause unwanted reactions and enter the environment, since when electroplating metal strips, the electrolyte circuit on the tape can not be separated from the atmosphere.

On connaît un procédé de revêtement de bandes d'acier galvanisées à l'aide de composés du fer ou d'alliages de celui-ci. Pour ce faire, on conduit en circuit fermé un électrolyte à base de sulfate chargé de sels de métal de revêtement entre la bande d'acier à revêtir circulant sans fin et les anodes insolubles. En raison des processus électrochimiques connus, du fer précipite sous la forme de composés de fer à la bande de métal cathodique. De l'oxygène bivalent est libéré à l'anode, oxygène qui entre en contact avec les sels de métaux, plus particulièrement en raison du recyclage de l'électrolyte. Cet oxygène oxyde une partie du fer bivalent en fer trivalent, en sorte que d'importantes quantités d'oxyde de fer prennent naissance, qui souillent les électrolytes et qui doivent être séparées du circuit par mise en oeuvre de procédés de filtration coûteux.A process is known for coating galvanized steel strips using iron compounds or alloys thereof. To do this, a sulfate-based electrolyte charged with coating metal salts is conducted in a closed circuit between the steel strip to be coated circulating endlessly and the insoluble anodes. Due to known electrochemical processes, iron precipitates in the form of iron compounds at the cathode metal strip. Bivalent oxygen is released at the anode, oxygen which comes into contact with metal salts, more particularly due to the recycling of the electrolyte. This oxygen oxidizes part of the bivalent iron to trivalent iron, so that large quantities of iron oxide arise, which contaminate the electrolytes and which must be separated from the circuit by implementing expensive filtration processes.

D'autre part, la formation de Fe3+ réduit l'efficacité cathodique du courant et déteriore l'adhésion de la couche déposée.On the other hand, the formation of Fe 3+ reduces the cathodic efficiency of the current and deteriorates the adhesion of the deposited layer.

Enfin, l'utilisation de sels du métal de revêtement, ou l'emploi de fer dans des installations de dissolution correspondantes et le remplacement d'autres substances utilisées conjointement entraînées, élèvent très sensiblement le coût d'un tel procédé de revêtement.Finally, the use of salts of the coating metal, or the use of iron in corresponding dissolution plants and the replacement of other substances used jointly entrained, very significantly increase the cost of such a coating process.

Pour résoudre ces problèmes, les demandeurs ont développé une électrode particulière qui est particulièrement utile dans des procédés de revêtement électrochimique de bandes de métaux, mais qui convient également dans d'autres procédés, tels que des procédés pour éliminer électrochimiquement un revêtement d'une bande telle qu'une bande d'acier.To solve these problems, the applicants have developed a particular electrode which is particularly useful in methods of electrochemically coating metal strips, but which is also suitable in other processes, such as methods for electrochemically removing a coating from a strip. such as a steel strip.

L'électrode selon l'invention est placée dans une enveloppe définissant une chambre et dont une paroi est formée d'une membrane permettant le passage d'ions à travers celle-ci, ladite enveloppe présentant une première ouverture pour alimenter la chambre d'un électrolyte et une deuxième ouvertu pour évacuer de la chambre de l'électrolyte.The electrode according to the invention is placed in an envelope defining a chamber and a wall of which is formed of a membrane allowing the passage of ions through it, said envelope having a first opening for supplying the chamber with a electrolyte and a second opening to evacuate from the electrolyte chamber.

L'enveloppe est munie de lamelles, ailettes ou chicanes destinés à assurer une vitesse de l'électrolyte au voisinage de l'électrode d'au moins 0,01 m/s, et de préférence supérieure à 0,1 m/s, en particulier à 0,5 m/s.The envelope is provided with strips, fins or baffles intended to ensure a speed of the electrolyte in the vicinity of the electrode of at least 0.01 m / s, and preferably greater than 0.1 m / s, in particular at 0.5 m / s.

Les lamellel, chicanes ou ailettes dirigent le flot d'électrolyte dans la chambre ou une partie de celle-ci.The lamellels, baffles or fins direct the flow of electrolyte into the chamber or part of it.

Dans une forme de réalisation, les chicanes ou ailettes s'étendent depuis le voisinage de la première ouverture de l'enveloppe jusqu'au voisinage de la deuxième ouverture de l'enveloppe, de manière à diviser de façon avantageuse la chambre en plusieurs compartiments distincts s'étendant entre l'électrode et une paroi de la chambre ou enveloppe, en particulier la membrane.In one embodiment, the baffles or fins extend from the vicinity of the first opening of the envelope to the vicinity of the second opening of the envelope, so as to advantageously divide the chamber into several separate compartments extending between the electrode and a wall of the chamber or envelope, in particular the membrane.

Dans une autre forme de réalisation, lesdites chicanes ou ailettes créent au voisinage de l'électrode un courant au moins partiellement ascendant de l'électrolyte. Selon une particularité de cette forme de réalisation, les chicanes ou ailettes s'étendent dans une direction sensiblement verticale depuis le voisinage de la partie inférieure de l'enveloppe jusqu'au voisinage de la partie supérieure de l'enveloppe de manière à définir des canaux amenant l'électrolyte dans ladite partie supérieure de l'enveloppe, cette partie présentant une ouverture pour aspirer hors de la chambre des gaz et une ouverture pour l'évacuation de l'électrolyte.In another embodiment, said baffles or fins create, in the vicinity of the electrode, an at least partially ascending current of the electrolyte. According to a feature of this embodiment, the baffles or fins extend in a substantially vertical direction from the vicinity of the lower part of the envelope to the vicinity of the upper part of the envelope so as to define channels bringing the electrolyte into said upper part of the envelope, this part having an opening for sucking out of the gas chamber and an opening for the discharge of the electrolyte.

De façon avantageuse, les chicanes ou ailettes s'étendent au moins depuis un bord de l'électrode jusqu'au bord opposé de celle-ci.Advantageously, the baffles or fins extend at least from one edge of the electrode to the opposite edge of the latter.

La membrane est de préférence une membrane anionique ou échangeuse d'anions ou une membrane cationique ou échangeuse de cation. Elle est avantageusement munie du côté extérieur de l'enveloppe d'une couche ou d'un voile de protection, par exemple réalisé en matière synthétique (polymère, polyester,....) avantageusement armée de fibres (verre).The membrane is preferably an anionic or anion exchange membrane or a cationic or cation exchange membrane. It is advantageously provided on the outside of the envelope with a layer or a protective veil, for example made of synthetic material (polymer, polyes ter, ....) advantageously reinforced with fibers (glass).

De préférence, un support poreux s'étend au voisinage de la membrane et sert d'appui à au moins une partie de celle-ci. Un tel support est par exemple, un élément perforé, un voile poreux, un treillis avantageusement réalisé en Zr, Ti ou en acier inoxydable.Preferably, a porous support extends in the vicinity of the membrane and serves as a support for at least part of it. Such a support is, for example, a perforated element, a porous veil, a mesh advantageously made of Zr, Ti or stainless steel.

Dans une forme de réalisation, le support présente sur la face opposée à celle adjacente à la membrane une couche jouant le rôle d'électrode, tandis que selon une autre forme de réalisation la membrane prend appui sur un support jouant le rôle d'électrode, ledit support étant muni d'une couche isolante sur sa face adjacente à la membrane.In one embodiment, the support has on the face opposite that adjacent to the membrane a layer acting as an electrode, while according to another embodiment the membrane is supported on a support playing the role of electrode, said support being provided with an insulating layer on its face adjacent to the membrane.

La membrane d'une électrode selon l'invention a avantageusement une épaisseur comprise entre 50 et 150 u. Dans le cas d'une membrane anionique, elle a, de préférence, une structure multicouche, au moins une couche étant obtenue par greffage d'un monomère aminé ou d'un précuseur d'un composé aminé sur un support polymère et par réticulation.The membrane of an electrode according to the invention advantageously has a thickness between 50 and 150 u. In the case of an anionic membrane, it preferably has a multilayer structure, at least one layer being obtained by grafting an amino monomer or a precusor of an amino compound onto a polymer support and by crosslinking.

La présente invention a également pour objet l'utilisation d'une électrode suivant l'invention dans une cellule électrolytique.The present invention also relates to the use of an electrode according to the invention in an electrolytic cell.

Elle a enfin encore pour objet un procédé de revêtement électrochimique de bandes d'acier galvanisées au moyen de métaux ou d'alliage de métaux. Dans ce procédé, on recycle de manière connue un électrolyte chargé de sels des métaux de revêtement entre la bande de métal à revêtir (cathode) et l'anode insoluble. Selon le procédé suivant l'invention on utilise en tant qu'anode insoluble une électrode suivant l'invention. La membrane est agencée entre l'anode et la bande de métal à revêtir de manière à former une séparation entre un espace cathodique adjacent de la bande et la chambre anodique définie par l'enveloppe de l'anode. Dans le procédé suivant l'invention, on crée un premier circuit d'électrolyte primaire dans la chambre et un deuxième circuit d'électrolyte secondaire dans l'espace cathodique, la membrane empé- chant le transfert de gaz engendrés à l'anode dans le deuxième circuit d'électrolyte et le transfert de sels des métaux de revêtement de l'espace cathodique vers le premier circuit d'électrolyte. Dans ce cas, les gaz demeurent dans le circuit d'électrolyte maintenu séparément dans l'espace anodique et peuvent être évacués régulièrement. L'électrolyte du circuit anodique n'est pas chargé des métaux de revêtement. Le gaz qui se forme toujours peut être évacué de ce circuit de manière relativement simple. Les deux circuits sont manifestement séparés l'un de l'autre, si bien que des mélanges ne peuvent se produire.Finally, it also relates to an electrochemical coating process for galvanized steel strips using metals or metal alloys. In this process, an electrolyte charged with coating metal salts is recycled in known manner between the metal strip to be coated (cathode) and the insoluble anode. According to the process according to the invention, an electrode according to the invention is used as the insoluble anode. The membrane is arranged between the anode and the metal strip to be coated so as to form a separation between a cathode space adjacent to the strip and the anode chamber defined by the envelope of the anode. In the process according to the invention, a first primary electrolyte circuit is created in the chamber and a second secondary electrolyte circuit in the cathode space, the membrane preventing the transfer of gases generated at the anode in the second electrolyte circuit and the transfer of coating metal salts from the cathode space to the first electrolyte circuit. In this case, the gases remain in the electrolyte circuit maintained separately in the anode space and can be evacuated regularly. The electrolyte in the anode circuit is not charged with the coating metals. The gas which still forms can be removed from this circuit in a relatively simple manner. The two circuits are clearly separated from each other, so that mixtures cannot occur.

Par les revendications 19 à 22, on a proposé des procédés conformes à l'invention de revêtement de bandes de métaux, de préférence des bandes d'acier galvanisées à l'aide de fer, de composés du fer ou d'alliage contenant du fer. Selon la nature de l'électrolyte utilisé dans l'espace ou l'enceinte cathodique, on propose l'emploi, à titre de diaphragmes, de membranes échangeuses de cations, ou de membranes échangeuses d'anions connues en tant que telles. Par une modification ou une adaptation correspondante des électrolytes on peut aussi mettre en oeuvre ce que l'on appelle des membranes bipolaires.Claims 19 to 22 have proposed methods according to the invention for coating metal strips, preferably steel strips galvanized with iron, iron compounds or an iron-containing alloy. . Depending on the nature of the electrolyte used in the space or the cathode enclosure, the use is made, as diaphragms, of cation exchange membranes, or of anion exchange membranes known as such. By a corresponding modification or adaptation of the electrolytes, it is also possible to use what are called bipolar membranes.

Si l'on dispose une membrane échangeuse d'anions de nature convenable entre l'anode et la bande de métal à revêtir, on parvient, lors de l'utilisation d'un électrolyte sulfurique, enrichi en sulfate de fer et de zinc, dans l'espace cathodique, à assurer le seul transfert d'ions S04-- dans la chambre anodique en tant que transport de charge et à empêcher le transfert des sels de métaux de revêtement. L'électrolyte dépourvu de métal et se composant d'eau et d'acide sulfurique dans la chambre anodique s'enrichit ici en acide sulfurique. L'oxygène qui se forme à l'anode insoluble peut être évacué hors de la chambre anodique. Le transfert d'oxygène dans l'espace cathodique est empêché par la membrane échangeuse d'anions correspondante.If there is an anion exchange membrane of a suitable nature between the anode and the metal strip to be coated, it is possible, when using a sulfuric electrolyte, enriched with iron and zinc sulfate, in cathodic space, to ensure the only transfer of ions S0 4 - in the anode chamber as a charge transport and to prevent the transfer of coating metal salts. The electrolyte devoid of metal and consisting of water and sulfuric acid in the anode chamber is enriched here with sulfuric acid. The oxygen which forms at the insoluble anode can be evacuated from the anode chamber. The transfer of oxygen into the cathode space is prevented by the corresponding anion exchange membrane.

Lors de l'utilisation d'une membrane échangeuse de cations selon la revendication 21 et de l'emploi d'un électrolyte sulfurique dans l'espace cathodique, le transport de charge s effectue par le transfert d'ions hydrogène de la chambre anodique dans l'espace cathodique. L'oxygène qui se forme ici aussi à l'anode est évacué de l'électrolyte sulfurique dépourvu de fer du circuit anodique. Le transfert d'oxygène dans l'espace cathodique est également empêché par cette membrane échangeuse de cations.When using a cation exchange membrane according to claim 21 and when using a sulfuric electrolyte in the cathode space, the charge transport takes place by the transfer of hydrogen ions from the anode chamber into cathodic space. The oxygen which also forms here at the anode is evacuated from the sulfuric electrolyte devoid of iron from the anode circuit. The transfer of oxygen into the cathode space is also prevented by this cation exchange membrane.

Lors de l'emploi d'un électrolyte chloruré, enrichi en chlorure de fer ou de zinc, dans l'espace cathodique, il est également possible, conformément à la présente invention, d'employer des membranes échangeuses d'anions appropriées. Lors de la mise en oeuvre de ce procédé, on permet la pénétration d'ions chlore dans la chambre anodique à titre de porteurs de charge. Le transfert de sels de métaux dans l'espace anodique est cependant empêché. L'électrolyte, qui se compose d'eau et d'acide chlorhydrique, dans la chambre anodique est enrichi en ions chlore libérés sous forme de gaz à l'anode et évacué avantageusement de manière réglée avec le circuit d'électrolyte de la chambre anodique. Un transfert du chlore dans l'espace cathodique est empêché par la membrane échangeuse appropriée.When using a chlorinated electrolyte, enriched with iron or zinc chloride, in the cathode space, it is also possible, in accordance with the present invention, to use appropriate anion exchange membranes. During the implementation of this process, the penetration of chlorine ions into the anode chamber is allowed as charge carriers. The transfer of metal salts into the anode space is however prevented. The electrolyte, which consists of water and hydrochloric acid, in the anode chamber is enriched with chlorine ions released in the form of gas at the anode and advantageously removed in a controlled manner with the electrolyte circuit of the anode chamber. . Transfer of chlorine to the cathode space is prevented by the appropriate exchange membrane.

Lors de l'utilisation d'un électrolyte chloruré dans l'espace cathodique, il est encore également possible d'utiliser des membranes échangeuses de cations de nature convenable. Dans ce cas également, on empêche de nouveau le transfert d'acides et de sels de l'espace cathodique dans l'espace anodique. Le transport de charge s'effectue par le transfert d'ions hydrogène de l'espace ou chambre anodique dans l'espace cathodique. Les gaz séparés à l'anode sont évacués. Un transfert des gaz séparés dans l'espace cathodique est empêché par la membrane échangeuse de cations.When using a chlorinated electrolyte in the cathode space, it is also also possible to use cation exchange membranes of suitable nature. In this case also, the transfer of acids and salts from the cathode space to the anode space is again prevented. The charge transport takes place by the transfer of hydrogen ions from the anode space or chamber into the cathode space. The gases separated at the anode are evacuated. Transfer of the separated gases into the cathode space is prevented by the cation exchange membrane.

Grâce à ce procédé conforme à la présente invention de revêtement par du fer de bandes de métaux, on empêche totalement la formation de fer trivalent et d'oxyde de fer, qui, lors de la mise en oeuvre du procédé connu, forment des boues de fer dans l'électrolyte, ces boues résultant d'une oxydation due à l'oxygène libéré à l'anode.Thanks to this process in accordance with the present invention of coating with metal bands, the formation of trivalent iron and iron oxide is completely prevented, which, when the known process is carried out, form sludges of iron in the electrolyte, this sludge resulting from oxidation due to the oxygen released at the anode.

Etant donné que l'on ne peut pas totalement empêcher l'action de l'oxygène atmosphérique dans le circuit cathodique, lors du revêtement par du fer opéré conformément à la présente invention, il se forme également encore une certaine quantité de fer trivalent dans le circuit cathodique. Ce fer trivalent souille le circuit cathodique , de sorte que cet électrolyte doit également encore être filtré. Conformément à la présente invention, on propose par conséquent d'alimenter le circuit d'électrolyte cathodique, en vue du remplacement du fer prélevé au cours du revêtement, en une proportion correspondante de fer alimentaire, par exemple dans une station de dissolution intermédiaire. La proportion nécessaire de fer élémentaire ajouté suffit, en raison de l'excès, à réduire le fer trivalent en fer bivalent, si bien qu'il ne se forme plus de boue d'oxyde de fer dans le circuit de l'électrolyte cathodique.Since it is not possible to completely prevent the action of atmospheric oxygen in the cathode circuit, when coating with iron operated in accordance with the present invention, a certain amount of trivalent iron is also formed in the cathodic circuit. This trivalent iron contaminates the cathode circuit, so that this electrolyte must also still be filtered. In accordance with the present invention, it is therefore proposed to supply the cathode electrolyte circuit, with a view to replacing the iron removed during the coating, with a corresponding proportion of edible iron, for example in an intermediate dissolution station. Due to the excess, the necessary proportion of added elemental iron is sufficient to reduce the trivalent iron to divalent iron, so that no more iron oxide mud is formed in the circuit of the cathode electrolyte.

L'acide sulfurique qui s'enrichit en excès lors de l'utilisation d'un électrolyte sulfurique dans le circuit cathodique et lors de l'emploi d'une membrane échangeuse d'anions dans le circuit anodique, est utilisé dans la station de dissolution et est ainsi renvoyé dans le circuit cathodique, où la vitesse de dissolution du fer et des autres métaux de revêtement, par exemple le zinc, est considérablement accélérée.The sulfuric acid which is enriched in excess when a sulfuric electrolyte is used in the cathode circuit and when an anion exchange membrane is used in the anode circuit, is used in the dissolution station and is thus returned to the cathode circuit, where the rate of dissolution of iron and other coating metals, for example zinc, is considerably accelerated.

Le chlore gazeux qui se forme à l'anode lors de l'emploi d'un électrolyte chloruré dans le circuit cathodique et d'une membrane d'échange d'anions est évacué par succion du circuit anodique et est brûlé en acide chlorhydrique par l'hydrogène gazeux formé dans la station de dissolution et sert à l'accélération de la dissolution des métaux et est de ce fait renvoyé dans le circuit cathodique par l'intermédiaire de la station de dissolution.The chlorine gas that forms at the anode when using a chlorinated electrolyte in the cathode circuit and an anion exchange membrane is evacuated by suction from the anode circuit and is burned in hydrochloric acid by l Hydrogen gas formed in the dissolution station and serves to accelerate the dissolution of metals and is therefore returned to the cathode circuit via the dissolution station.

La présente invention a encore pour objet un procédé pour éliminer une couche de métaux ou d'un métal présente sur une bande de métal telle qu'une bande d'acier. Cette couche de métaux ou de métal est par exemple une couche déposée électrolytiquement telle qu'une couche de protection en Zn ou en alliage en Zn. A titre d'exemple particulier, la couche de Zn ou d'alliage de Zn déposée en tant que couche de protection d'une face ou bande a une épaisseur comprise entre 0,1 et 2 microns (de préférence inférieure à 1 micron). Une telle couche est de préférence obtenue en soumettant la bande à un traitement électrolytique dans un bain contenant de 15 à 100 g/I, avantageusement de 30 à 80 g/I de Zn. La densité de courant dans les cellules est par exemple comprise entre 20 et 200 A/dm2 mais est de préférence, comprise entre 40 et 150 A/dm2. Pour ce dépôt, on peut avantageusement utiliser l'électrode suivant l'invention.The present invention also relates to a method for removing a layer of metals or of a metal present on a metal strip such as a steel strip. This layer of metals or of metal is for example an electrolytically deposited layer such as a protective layer of Zn or of a Zn alloy. As a particular example, the layer of Zn or Zn alloy deposited as a protective layer on a face or strip has a thickness of between 0.1 and 2 microns (preferably less than 1 micron). Such a layer is preferably obtained by subjecting the strip to an electrolytic treatment in a bath containing from 15 to 100 g / I, advantageously from 30 to 80 g / I of Zn. The current density in the cells is for example between 20 and 200 A / dm 2 but is preferably between 40 and 150 A / dm 2 . For this deposition, it is advantageous to use the electrode according to the invention.

Lors de ce dépôt, la bande et éventuellement l'électrolyte desdites cellules sont mis en mouvement dans les cellules. La vitesse relative de la bande par rapport à l'électrolyte est avantageusement comprise entre 1 et 8 m/s, de préférence entre 3 et 5 m/s.During this deposition, the strip and possibly the electrolyte of said cells are set in motion in the cells. The relative speed of the strip with respect to the electrolyte is advantageously between 1 and 8 m / s, preferably between 3 and 5 m / s.

Dans le procédé suivant l'invention pour éliminer d'une bande une couche d'un métal ou d'alliage de métaux, on recycle entre la bande jouant le rôle d'anode et une cathode insoluble un électrolyte, une membrane avantageusement anionique étant agencée entre la bande et la cathode, de manière à former une séparation entre un espace cathodique et un espace anodique adjacent de la bande.In the process according to the invention for removing a layer of a metal or metal alloy from a strip, an electrolyte is recirculated between the strip acting as an anode and a insoluble cathode, an advantageously anionic membrane being arranged between the strip and the cathode, so as to form a separation between a cathode space and an adjacent anode space of the strip.

Cette membrane permet de remédier que des métaux remis en solution dans l'électrolyte tels que par exemple du Zn et/ou du Ni ne forment un dépôt (noir dans le cas du Zn et du Ni) sur la cathode, ce dépôt diminuant non seulement l'efficacité de la cathode, mais surtout la durée de vie ou d'utilisation de celle-ci.This membrane makes it possible to remedy that metals dissolved in the electrolyte such as for example Zn and / or Ni do not form a deposit (black in the case of Zn and Ni) on the cathode, this deposit not only decreasing the efficiency of the cathode, but above all the life or use thereof.

Cette membrane peut être un voile poreux (pores de quelques microns, 1 à 50 u), mais est de préférence une membrane anionique, c'est-à-dire une membrane ne permettant pas ou limitant le passage de cations (tels que Zn++, Ni++, Fe++) à travers celle-ci.This membrane can be a porous veil (pores of a few microns, 1 to 50 μ), but is preferably an anionic membrane, that is to say a membrane which does not allow or limit the passage of cations (such as Zn + + , Ni ++, Fe ++ ) through it.

Dans le cas où un électrolyte acide est utilisé, on a remarqué qu'à la surface de la cathode un dégagement d'hydrogène existait. Pour éviter que des bulles d'hydrogènes ne se réunissent pour former des grosses bulles, on a remarqué qu'il était utile d'utiliser la membrane en tant que paroi d'une chambre adjacente à la cathode et de maintenir dans ladite chambre un courant ou flot d'électrolyte dit secondaire.In the case where an acid electrolyte is used, it has been noticed that on the surface of the cathode an evolution of hydrogen existed. To prevent hydrogen bubbles from coming together to form large bubbles, it was noted that it was useful to use the membrane as the wall of a chamber adjacent to the cathode and to maintain a current in said chamber. or so-called secondary electrolyte flow.

La vitesse de l'électrolyte dans la chambre est par exemple supérieure à 0,1 m/s, mais est de préférence inférieure à 1,5 m/s pour assurer que les bulles d'hydrogène ne se réunissent pour former de grosses bulles.The speed of the electrolyte in the chamber is for example greater than 0.1 m / s, but is preferably less than 1.5 m / s to ensure that the hydrogen bubbles do not come together to form large bubbles.

L'électrolyte circulant dans la chambre adjacente à la cathode, appelé ci-après électrolyte secondaire, a de préférence une composition différente de l'électrolyte primaire, c'est-à-dire de l'électrolyte en contact avec la bande. L'électrolyte secondaire est avantageusement un électrolyte ne contenant pas de Zn et de Ni mais contenant de 50 à 100 g/I de Na2S04 et dont le pH est de préférence ajusté à une valeur de 1,5 à 2.The electrolyte circulating in the chamber adjacent to the cathode, hereinafter called secondary electrolyte, preferably has a composition different from the primary electrolyte, that is to say the electrolyte in contact with the strip. The secondary electrolyte is advantageously an electrolyte not containing Zn and Ni but containing 50 to 100 g / I of Na 2 S0 4 and the pH of which is preferably adjusted to a value of 1.5 to 2.

On soumet également, de préférence, la partie supérieure de la chambre à une aspiration de gaz. Par exemple, on crée dans la partie supérieure de la chambre un vide tel que la pression dans la chambre est inférieure à 0,75 x la pression atmosphérique.The upper part of the chamber is also preferably subjected to a gas suction. For example, a vacuum is created in the upper part of the chamber such that the pressure in the chamber is less than 0.75 x atmospheric pressure.

L'électrolyte primaire utilisé dans la cellule de déplatage peut par exemple être un électrolyte contenant moins de 50 g/I d'acide libre, avantageusement moins de 5 g/I, de préférence, environ 1 g/I d'acide libre (par exemple de SO4- libre). Le pH de l'électrolyte est avantageusement de 1,5 à 2.The primary electrolyte used in the deplating cell may for example be an electrolyte containing less than 50 g / I of free acid, advantageously less than 5 g / I, preferably about 1 g / I of free acid (per example of SO 4 - free). The pH of the electrolyte is advantageously 1.5 to 2.

La densité de courant utilisé dans la cellule de "deplating" (cellule pour ôter une couche métallisée) dans laquelle la cathode est placée dans une chambre est avantageusement inférieure à 60 A/dm2, mais est de préférence comprise entre 15 et 30 A/dm2 dans le cas d'un électrolyte acide.The current density used in the deplating cell (cell for removing a metallized layer) in which the cathode is placed in a chamber is advantageously less than 60 A / dm 2 , but is preferably between 15 and 30 A / dm 2 in the case of an acid electrolyte.

La température de l'électrolyte primaire et secondaire est avantageusement comprise entre 20 et 60 ° C, de préférence entre 40 et 60 ° C.The temperature of the primary and secondary electrolyte is advantageously between 20 and 60 ° C, preferably between 40 and 60 ° C.

D'autres particularités et détails de l'invention ressortiront de la description détaillée suivante dans laquelle il est fait référence aux dessins ci-annexés.Other features and details of the invention will emerge from the following detailed description in which reference is made to the accompanying drawings.

Dans ces dessins :

  • - les figures 1 à 5 montrent diverses formes de réalisation d'électrodes suivant l'invention,
  • - les figures 6 et 7 montrent des électrodes similaires à celle représentée à la figure 2, mais utilisées dans une cellule d'électro-déposition,
  • - la figure 8 est une vue en élévation avec arrachement partiel d'une forme de réalisation préférée d'une électrode suivant l'invention,
  • - les figures 9 et 10 sont des vues en coupe selon les lignes IX-IX et X-X de l'électrode représentée à la figure 8,
  • - la figure 11 montre en perspective et à plus grande échelle une partie des lamelles de l'électrode représentée à la figure 8,
  • - la figure 12 est une vue schématique d'une installation utilisant des électrodes suivant l'invention,
  • - les figures 13 et 14 montrent en coupe et à plus grande échelle une bande d'acier qui a été obtenue en utilisant des électrodes suivant l'invention, et
  • - les figures 15 à 18 montrent des formes de réalisation particulières d'installation utilisant des électrodes suivant l'invention.
In these drawings:
  • FIGS. 1 to 5 show various embodiments of electrodes according to the invention,
  • FIGS. 6 and 7 show electrodes similar to that shown in FIG. 2, but used in an electro-deposition cell,
  • FIG. 8 is an elevational view with partial cutaway of a preferred embodiment of an electrode according to the invention,
  • FIGS. 9 and 10 are sectional views along lines IX-IX and XX of the electrode shown in FIG. 8,
  • FIG. 11 shows in perspective and on a larger scale a part of the strips of the electrode shown in FIG. 8,
  • FIG. 12 is a schematic view of an installation using electrodes according to the invention,
  • FIGS. 13 and 14 show in section and on a larger scale a steel strip which has been obtained by using electrodes according to the invention, and
  • - Figures 15 to 18 show particular embodiments of installation using electrodes according to the invention.

La figure 1 montre en perspective une électrode suivant l'invention qui est avantageusement utilisée dans une cellule de "deplating" mais qui peut également être utilisée pour le dépôt de Zn, Zn-Ni, Zn-Fe, ou un autre alliage de Zn.FIG. 1 shows in perspective an electrode according to the invention which is advantageously used in a deplating cell but which can also be used for the deposition of Zn, Zn-Ni, Zn-Fe, or another Zn alloy.

Cette électrode comprend un support 75 portant une plaque 76 destinée à former l'anode ou la cathode. Le support 75 forme une enveloppe présentant une fenêtre dans laquelle est placée une membrane 77.This electrode comprises a support 75 carrying a plate 76 intended to form the anode or the cathode. The support 75 forms an envelope having a window in which a membrane 77 is placed.

La membrane 77 forme une paroi de l'enveloppe qui définit une chambre 78,79. Cette membrane permet le passage d'ions tels que des anions ou des cations.The membrane 77 forms a wall of the envelope which defines a chamber 78, 79. This membrane allows the passage of ions such as anions or cations.

L'enveloppe présente une première ouverture 100 pour alimenter les chambres 78,79 en électrolyte et une deuxième ouverture 101 pour évacuer des chambres 78,79 de l'électrolyte.The envelope has a first opening 100 for supplying the chambers 78,79 with electrolyte and a second opening 101 for removing chambers 78,79 from the electrolyte.

Pour assurer une vitesse minimale de l'électrolyte au voisinage de l'électrode 76 pour évacuer des gaz (tels qu' oxygène lorsque l'électrode travaille en tant qu'anode dans un procédé selon la revendication 19 ou hydrogène lorsque l'électrode travaille en tant que cathode dans un procédé de déplatage "deplating cell") formé au voisinage de l'électrode, l'enveloppe est munie d'une paroi de guidage ou ailette 102 s'étendant entre lesdites première et deuxième ouvertures, de manière à diviser l'enveloppe en deux compartiments 78, 79 adjacents, mais séparés l'un de l'autre. L'ailette 102 s'étend entre l'électrode 76 et la paroi de l'enveloppe munie de la membrane.To ensure a minimum velocity of the electrolyte in the vicinity of the electrode 76 for discharging gases (such as oxygen when the electrode works as an anode in a process according to claim 19 or hydrogen when the electrode works in as a cathode in a deplating cell process) formed in the vicinity of the electrode, the envelope is provided with a guide wall or fin 102 extending between said first and second openings, so as to divide the 'envelope in two compartments 78, 79 adjacent, but separate from each other. The fin 102 extends between the electrode 76 and the wall of the envelope provided with the membrane.

Grâce à cette ailette 102, il a été possible d'assurer dans les compartiments 78,79 au voisinage de tous points de l'électrode ou plaque 76, une vitesse de l'électrolyte d'au moins 0,04 m/s. Dans le cas représenté à la figure 1, l'électrolyte était amené dans les compartiments 78, 79 avec une vitesse de l'ordre de 0,5 m/s. La distance électrode 76-membrane 77 était de 0,5 cm.With this fin 102, it was possible to ensure in the compartments 78,79 in the vicinity of all points of the electrode or plate 76, an electrolyte speed of at least 0.04 m / s. In the case shown in FIG. 1, the electrolyte was brought into the compartments 78, 79 with a speed of the order of 0.5 m / s. The electrode 76-membrane 77 distance was 0.5 cm.

La figure 2 montre en coupe une autre forme de réalisation d'une électrode suivant l'invention.Figure 2 shows in section another embodiment of an electrode according to the invention.

L'électrode 80 réalisée en titane mais munie d'une couche active est solidaire d'un support 81 au moyen de bras 82.The electrode 80 made of titanium but provided with an active layer is secured to a support 81 by means of arms 82.

Le support 81 forme avec une membrane 83 une enveloppe entourant l'électrode 80. Cette membrane 83 est fixée sur une grille ou treillis 84 réalisé en titane et est munie sur sa face opposée à celle adjacente à l'électrode d'un film poreux 85 protégeant la membrane. Ce film est résistant aux acides et est armé de fibres. Ce film est par exemple un film polyester.The support 81 forms with a membrane 83 an envelope surrounding the electrode 80. This membrane 83 is fixed on a grid or lattice 84 made of titanium and is provided on its face opposite to that adjacent to the electrode with a porous film 85 protecting the membrane. This film is resistant to acids and is reinforced with fibers. This film is for example a polyester film.

Lorsqu'une telle électrode est utilisée dans une cellule de "deplating", la membrane est anionique. Une telle membrane est par exemple à structure multicouche, chacune des couches étant constituée d'une membrane obtenue par le procédé décrit dans FR-8900115 (nr. de demande). Une membrane de ce type est préparée par greffage d'un composé aminé sur un support polymère (film d'éthylène-co-polytétrafluo- roéthylène) et par réticulation de celui-ci.When such an electrode is used in a deplating cell, the membrane is anionic. Such a membrane is for example of multilayer structure, each of the layers being made up of a membrane obtained by the method described in FR-8900115 (application number). A membrane of this type is prepared by grafting an amino compound onto a polymeric support (film of ethylene-co-polytetrafluoroethylene) and by crosslinking thereof.

Lors d'une opération d'élimination de Ni non désiré déposé sur la première couche de Zn, des ions Zn++ et Ni++ partent de la face de la bande tournée vers la cathode. Ces cations ne savent pas traverser la membrane anionique de sorte qu'on évite d'obtenir un dépôt rapide de Zn, Ni sur la cathode. Ceci permet d'accroître le temps de vie ou d'utilisation de l'électrode.During an operation to remove unwanted Ni deposited on the first layer of Zn, Zn ++ and Ni ++ ions leave from the face of the strip facing the cathode. These cations do not know how to cross the anionic membrane so that one avoids obtaining a rapid deposition of Zn, Ni on the cathode. This increases the lifetime or use of the electrode.

Dans l'enveloppe formée par le support et la membrane, de l'hydrogène se dégage au voisinage de la cathode, tandis que des anions SO4- traversent la membrane pour sortir de l'enveloppe.In the envelope formed by the support and the membrane, hydrogen is released in the vicinity of the cathode, while SO 4 anions - pass through the membrane to exit the envelope.

Pour évacuer le gaz formé dans l'enveloppe (de l'hydrogène dans de l'électrode de la cellule de "deplating" telle que décrite ci-avant), présente une ouverture 103. De façon avantageuse, cette ouverture 103 permet une communication de la chambre 78 avec un conduit 104 sur lequel est monté un système d'aspiration (pompe à vide, ventilateur, etc.) non représenté.To evacuate the gas formed in the envelope (hydrogen in the electrode of the "deplating" cell as described above), has an opening 103. Advantageously, this opening 103 allows communication of the chamber 78 with a conduit 104 on which is mounted a suction system (vacuum pump, fan, etc.) not shown.

Pour éviter la formation de grosses bulles de gaz (hydrogène) qui altèrent un fonctionnement correct de l'électrode , l'enveloppe est reliée à un dispositif de circulation d'électrolyte dans l'enveloppe et à un système d'élimination des gaz, en particulier un système créant un vide dans la partie supérieure de la chambre, ce vide étant avantageusement tel que la pression dans la partie supérieure de la chambre est inférieure à 0,75 x la pression atmosphérique.To avoid the formation of large gas bubbles (hydrogen) which impair correct functioning of the electrode, the envelope is connected to an electrolyte circulation device in the envelope and to a gas elimination system, in particularly a system creating a vacuum in the upper part of the chamber, this vacuum being advantageously such that the pressure in the upper part of the chamber is less than 0.75 x atmospheric pressure.

La vitesse de l'électrolyte dans la chambre était supérieure à 0,1 m/s, mais est toutefois de préférence inférieure à 1,5 m/s. Une telle vitesse permet d'assurer que les bulles de gaz (hydrogène dans le cas présent) ne se réunissent pour former de grosses bulles perturbant un fonctionnement correct de l'électrode.The velocity of the electrolyte in the chamber was greater than 0.1 m / s, but is however preferably less than 1.5 m / s. Such a speed ensures that the gas bubbles (hydrogen in this case) do not meet to form large bubbles disturbing the correct functioning of the electrode.

Les figures 6 et 7 représentent une électrode similaire à celle représentée à la figure 2. Elle est utilisée en tant que cathode pour déposer électrolytiquement du Zn et du Fe sur la bande d'acier.Figures 6 and 7 show an electrode similar to that shown in Figure 2. It is used as a cathode to electrolytically deposit Zn and Fe on the steel strip.

Dans le cas de la figure 6, la membrane 83 est une membrane cationique de sorte que les anions S04 formés au voisinage de la bande 3 restent dans l'électrolyte primaire, tandis que le fer et le zinc se déposent sur la bande. A la cathode 80, de l'oxygène est libéré (oxygène provenant de la décomposition de l'eau) et est évacué par le conduit 104.In the case of FIG. 6, the membrane 83 is a cationic membrane so that the SO 4 anions formed in the vicinity of the strip 3 remain in the primary electrolyte, while the iron and the zinc are deposited on the strip. At cathode 80, oxygen is released (oxygen from the decomposition of water) and is evacuated through line 104.

Dans le cas de la figure 7, la membrane 83 est une membrane anionique permettant le passage des anions SO4- formés au voisinage de la bande 3 vers la cathode 80. L'oxygène libéré à la cathode est évacué par le conduit 104.In the case of FIG. 7, the membrane 83 is an anionic membrane allowing the passage of the SO 4 anions - formed in the vicinity of the strip 3 towards the cathode 80. The oxygen released at the cathode is evacuated through the conduit 104.

Dans la figure 3, l'enveloppe entourant l'électrode 80 est toujours formée par un support 81 et une membrane 83. L'électrode est constituée d'un treillis ou plaque perforée en titane ou zirconium muni sur la face tournée vers la chambre 78 définie par l'enveloppe d'une couche active 87.In FIG. 3, the envelope surrounding the electrode 80 is always formed by a support 81 and a membrane 83. The electrode consists of a mesh or perforated plate of titanium or zirconium provided on the face facing the chamber 78 defined by the envelope of an active layer 87.

La membrane 83 est portée par le treillis et est revêtue d'une couche poreuse de protection 85.The membrane 83 is carried by the mesh and is coated with a porous protective layer 85.

L'électrode représentée à la figure 4 est similaire à celle représentée à la figure 5 si ce n'est qu'un voile poreux isolant 88 est placé entre les treillis et la membrane.The electrode shown in Figure 4 is similar to that shown in Figure 5 except that a porous insulating web 88 is placed between the mesh and the membrane.

La figure 5 représente en coupe une autre forme de réalisation d'une électrode suivant l'invention.Figure 5 shows in section another embodiment of an electrode according to the invention.

Cette électrode 80 est adjacente de la membrane 83 qui obture la fenêtre de l'enveloppe. Cette enveloppe définit une chambre intérieure 78 et présente une ouverture ou passage 100 pour amener dans la chambre 78 de l'électrolyte, une ouverture ou passage 101 pour évacuer de l'électrolyte hors de la chambre 78 et une ouverture 103 pour évacuer des gaz formés dans la chambre, en particulier au voisinage de l'électrode 80. Ces ouvertures sont situées à un niveau supérieur à l'électrode 80 et à la membrane 83.This electrode 80 is adjacent to the membrane 83 which closes the window of the envelope. This envelope defines an interior chamber 78 and has an opening or passage 100 for bringing electrolyte into the chamber 78, an opening or passage 101 for discharging electrolyte from the chamber 78 and an opening 103 for discharging formed gases. in the chamber, in particular in the vicinity of the electrode 80. These openings are located at a level higher than the electrode 80 and the membrane 83.

Une ailette 105 s'étend entre deux parois opposées de l'enveloppe (paroi avant 106 munie de la membrane 80 et paroi arrière 107) de manière à définir un couloir 108 pour amener l'électrolyte entrant dans la chambre 78 par le passage 100 au voisinage du fond 781 de la chambre. Ce couloir 108 se prolonge par une chambre de distribution 109 adjacente du fond 781. Cette chambre de distribution 109 présente une paroi 110 présentant une série d'orifices 111 pour distribuer l'électrolyte dans une série de canaux 112 définis entre des ailettes verticales 113. Ces ailettes 113 s'étendent depuis le voisinage du fond 781 de la chambre ou plus exactement depuis la paroi 110 jusqu'au voisinage de la partie supérieure ou plus exactement jusqu'à un niveau B supérieur mais adjacent du niveau supérieur A de la membrane 83 et de l'électrode 80. Les ailettes 113 qui s étendent donc entre au moins deux bords 120-121 opposés de l'électrode assurent un mouvement ascendant de l'électrolyte le long de l'électrode 80, un tel mouvement (depuis le bord inférieur 120 vers le bord supérieur 121) favorisant l'évacuation de particules de gaz hors de l'électrolyte vers la partie supérieure de la chambre avantageusement soumise à une dépression (aspiration de gaz par le passage ou ouverture 103).A fin 105 extends between two opposite walls of the envelope (front wall 106 provided with the membrane 80 and rear wall 107) so as to define a corridor 108 for bringing the electrolyte entering the chamber 78 through the passage 100 to the near the bottom 781 of the room. This corridor 108 is extended by a distribution chamber 109 adjacent to the bottom 781. This distribution chamber 109 has a wall 110 having a series of orifices 111 for distributing the electrolyte in a series of channels 112 defined between vertical fins 113. These fins 113 extend from the vicinity of the bottom 781 of the chamber or more exactly from the wall 110 to the vicinity of the upper part or more exactly to a higher level B but adjacent to the upper level A of the membrane 83 and of the electrode 80. The fins 113 which therefore extend between at least two opposite edges 120-121 of the electrode ensure an upward movement of the electrolyte along the electrode 80, such a movement (from the edge lower 120 towards the upper edge 121) favoring the evacuation of gas particles out of the electrolyte towards the upper part of the chamber advantageously subjected to a vacuum (suction gas through the passage or opening 103).

Les ailettes dans le sens de leur largeur s'étendent depuis l'électrode 80 jusqu'à la paroi arrière 107 de l'enveloppe de manière à définir des canaux 112 distincts s'étendant depuis la chambre de distribution ou répartition de l'électrolyte 109 jusqu'à la partie supérieure de l'enveloppe.The fins in the direction of their width extend from the electrode 80 to the rear wall 107 of the envelope so as to define separate channels 112 extending from the distribution chamber or distribution of the electrolyte 109 to the top of the envelope.

La figure 6 est une vue avant partiellement arrachée d'une forme de réalisation d'une électrode suivant l'invention.Figure 6 is a partially broken away front view of an embodiment of an electrode according to the invention.

Cette électrode comprend un support 81 présentant un canal d'électrolyte 130 vers la partie inférieure 131 de l'électrode (flèche E) et un canal d'évacuation d'électrolyte 132 (flèche S) dans la partie supérieure 133 de l'électrode. Les extrémités 135 de ces canaux 130, 132 forment des oreilles servant de moyens de fixation et de placement de l'électrode dans une cellule électrolytique. Le support 81 est réalisé en une matière insoluble dans l'électrolyte ou est recouvert d'une couche de protection insoluble dans l'électrolyte.This electrode comprises a support 81 having an electrolyte channel 130 towards the lower part 131 of the electrode (arrow E) and an electrolyte discharge channel 132 (arrow S) in the upper part 133 of the electrode. The ends 135 of these channels 130, 132 form ears serving as means for fixing and placing the electrode in an electrolytic cell. The support 81 is made of a material insoluble in the electrolyte or is covered with a protective layer insoluble in the electrolyte.

Ce support 81 est par exemple réalisé en titane.This support 81 is for example made of titanium.

Un premier cadre présentant deux fenêtres 137, 138 est appliqué contre le support 81. Ce cadre 136 présente des gorges dans lesquelles sont logés des joints en matière synthétique. Ce cadre 136 est réalisé par exemple en une matière synthétique isolante et résistant à l'électrolyte.A first frame having two windows 137, 138 is applied against the support 81. This frame 136 has grooves in which are housed seals made of synthetic material. This frame 136 is made for example of an insulating synthetic material and resistant to the electrolyte.

Le cadre présente le long de ses bords inférieur 139 et supérieur 140 une série de canaux 141, 142 s'étendant entre la face du cadre appliquée contre le support 81 et la face opposée à ladite face appliquée contre le support 81, de manière à ce que lesdits canaux 141, 142 communiquent respectivement avec le conduit d'amenée 130 et avec le conduit d'évacuation 132 via des orifices 153 que présentent lesdits conduits 130, 132.The frame has along its lower 139 and upper 140 edges a series of channels 141, 142 extending between the face of the frame applied against the support 81 and the face opposite to said face applied against the support 81, so that that said channels 141, 142 communicate respectively with the supply conduit 130 and with the discharge conduit 132 via orifices 153 which have said conduits 130, 132.

Les fenêtres 137, 138 sont séparées l'une de l'autre par une traverse 144 présentant sur la face opposée à celle tournée vers le support 81 une cuvette 145. Des canaux ou passages 146 sont creusés dans ladite traverse 144 de manière à s'étendre entre une ouverture 147 adjacente d'un bord de la traverse 144 et une ouverture 148 adjacente du bord opposé de ladite traverse 144, lesdites ouvertures 147, 148 étant situées sur la face de la traverse opposée à celle tournée vers le support 81.The windows 137, 138 are separated from each other by a cross member 144 having on the face opposite to that facing the support 81 a bowl 145. Channels or passages 146 are dug in said cross member 144 so as to be extend between an opening 147 adjacent to an edge of the cross member 144 and an opening 148 adjacent to the opposite edge of said cross member 144, said openings 147, 148 being located on the face of the cross member opposite to that facing the support 81.

Contre ce cadre 136 sont appliquées deux plaques en titane 149 avec interposition de joints d'étanchéité 150 logés dans des gorges que présentent lesdites plaques. Ces plaques sont munies le long de ses bords d'une protubérance 151 formant de la sorte un bassin. Ces plaques 149 sont perforées le long de la protubérance au voisinage des bords inférieur et supérieur 152, 153 de manière à former des canaux 154 situés dans le prolongement des canaux 141 et des ouvertures 147, 148 du cadre 136.Against this frame 136 are applied two titanium plates 149 with interposition of seals 150 housed in grooves that have said plates. These plates are provided along its edges with a protuberance 151 thereby forming a basin. These plates 149 are perforated along the protuberance in the vicinity of the upper and lower edges 152, 153 so as to form channels 154 situated in the extension of the channels 141 and the openings 147, 148 of the frame 136.

Chaque plaque 149 présente également deux trous 155 destinés à livrer passage à un élément cylindrique 156 en titane ou en une autre matière conductrice de l'électricité mais résistant à l'électrolyte. Cet élément cylindrique est muni d'une tête 157 dont une paroi est destinée à prendre appui contre la plaque 136 avec interposition de joints circulaires 158 logés dans des gorges de l'élément 156 ou plus exactement de la tête 157 et de la plaque 149 et d'un joint 159 formant un manchon recouvrant partiellement l'élément cylindrique 156 et la face de la tête 157 tournée vers la plaque 149.Each plate 149 also has two holes 155 intended to allow passage to a cylindrical element 156 made of titanium or another electrically conductive material but resistant to the electrolyte. This cylindrical element is provided with a head 157, a wall of which is intended to bear against the plate 136 with the interposition of circular seals 158 housed in grooves in the element 156 or more exactly the head 157 and the plate 149 and of a seal 159 forming a sleeve partially covering the cylindrical element 156 and the face of the head 157 facing the plate 149.

L'élément cylindrique 156 présente au voisinage de son extrémité opposée à celle portant la tête 157 un trou taraudé 160 destiné à travailler avec la tige filetée 161 d'un boulon 162. Pour chaque boulon, le support 81 présente un orifice 163 destiné à livrer passage à la tige 161. Une extrémité de l'orifice 163 débouche dans un évidement 164 destiné à recevoir la tête 165 du boulon 162, tandis que l'autre extrémité de l'orifice débouche dans un creux 166 que présente le support 81, ledit creux servant au placement correct de l'élément cylindrique par rapport au support 81.The cylindrical element 156 has, near its end opposite to that carrying the head 157, a tapped hole 160 intended to work with the threaded rod 161 of a bolt 162. For each bolt, the support 81 has an orifice 163 intended to deliver passage to the rod 161. One end of the orifice 163 opens into a recess 164 intended to receive the head 165 of the bolt 162, while the other end of the orifice opens into a recess 166 which has the support 81, said support hollow used for the correct placement of the cylindrical element relative to the support 81.

Lors du serrage du boulon 162, l'élément cylindrique 156 est appuyé contre le support 81 de manière à assurer l'étanchéité entre le support 81, le cadre 136, la plaque 149 et la tête 157 de l'élément 156.When the bolt 162 is tightened, the cylindrical element 156 is pressed against the support 81 so as to seal between the support 81, the frame 136, the plate 149 and the head 157 of the element 156.

La plaque 149 porte une couche 167 en matière synthétique isolante de l'électricité et dont l'épaisseur est telle que la face 168 de l'extrémité libre de la tête 157 et la face 169 de la couche 167 opposée à celle prenant appui sur la plaque 149 s'étendent sensiblement dans un même plan. Ce dernier correspond au plan le long duquel s'étend l'électrode en titane 170. Grâce à la couche isolante 167 et au manchon isolant 159, il est possible d'assurer l'isolation de la plaque 149 par rapport au courant amené par le boulon 162 et l'élément cylindrique 156 à l'électrode 170.The plate 149 carries a layer 167 of synthetic material insulating from electricity and whose thickness is such that the face 168 of the free end of the head 157 and the face 169 of the layer 167 opposite to that resting on the plate 149 extend substantially in the same plane. The latter corresponds to the plane along which the titanium electrode 170 extends. Thanks to the insulating layer 167 and the insulating sleeve 159, it is possible to insulate the plate 149 with respect to the current supplied by the bolt 162 and the cylindrical element 156 to the electrode 170.

Cette électrode 170 est constituée d'une série de lamelles 171 verticales en titane reliées entre elles par des tiges ou autres éléments porteurs (plaque) 173 conducteurs de l'électricité. Ces lamelles sont avantageusement parallèles les unes des autres. Toutefois, ces lamelles auraient pu être légèrement inclinées les unes par rapport à d'autres. Dans ce cas, les bords longitudinaux (172) des lamelles ne doivent avantageusement pas se toucher.This electrode 170 consists of a series of vertical titanium blades 171 connected to each other by rods or other load-bearing elements (plate) 173 conductors of electricity. These strips are advantageously parallel to each other. However, these slats could have been slightly inclined with respect to each other. In this case, the longitudinal edges (172) of the strips should advantageously not touch each other.

Ces lamelles 171 et éléments porteurs 173 sont avantageusement munis d'une couche conductrice de l'électricité.These strips 171 and carrying elements 173 are advantageously provided with an electrically conductive layer.

Les lamelles ont avantageusement une hauteur h de 5 à 10 mm et sont avantageusement séparées l'une de l'autre d'une distance comprise entre 5 et 10 mm.The strips advantageously have a height h of 5 to 10 mm and are advantageously separated from each other by a distance of between 5 and 10 mm.

Les lamelles forment donc entre elles une série de canaux verticaux 11 destinés à diriger l'électrolyte au voisinage de l'électrode et en particulier à assurer une vitesse minimale ascendante de l'électrolyte par rapport à l'électrode (voir figure 11).The lamellae therefore form between them a series of vertical channels 11 intended to direct the electrolyte in the vicinity of the electrode and in particular to ensure a minimum ascending speed of the electrolyte relative to the electrode (see FIG. 11).

Les lamelles 171 ou de préférence les éléments porteurs 173 sont soudés sur la tête 157 pour assurer un contact électrique entre l'électrode et le boulon conducteur 162. Il va de soi que d'autres modes de fixation des lamelles par rapport à la tête 157 permettant un contact électrique sont possibles.The strips 171 or preferably the supporting elements 173 are welded to the head 157 to ensure electrical contact between the electrode and the conductive bolt 162. It goes without saying that other methods of fixing the strips relative to the head 157 allowing electrical contact are possible.

Les lamelles ou ailettes 171 d'une électrode s'étendent dans la direction verticale depuis le niveau N des canaux 154 adjacent du bord inférieur 152 de la plaque 149 jusqu'au niveau M des canaux 154 adjacent du bord supérieur 153 de la plaque 149. La longueur I des lamelles correspond sensiblement à la largeur L de la couche isolante 167.The lamellae or fins 171 of an electrode extend in the vertical direction from the level N of the channels 154 adjacent to the lower edge 152 of the plate 149 to the level M of the channels 154 adjacent to the upper edge 153 of the plate 149. The length I of the strips corresponds substantially to the width L of the insulating layer 167.

Au dessus des bords longitudinaux 172 des lamelles, bords opposés aux bords longitudinaux tournés vers la tête 157 s'étend un voile poreux isolant de protection 88 qui est recouvert d'une membrane 83. Cette membrane 83 est, par exemple, une membrane anionique ou cationique lorsque l'électrode est utilisée pour déposer sur une bande un métal ou un alliage de métaux, mais est de préférence une membrane anionique lorsque l'électrode est utilisée pour éliminer d'une bande un dépôt d'un métal ou d'alliage de métaux.Above the longitudinal edges 172 of the lamellae, edges opposite to the longitudinal edges turned towards the head 157 extends a porous insulating protective sheet 88 which is covered with a membrane 83. This membrane 83 is, for example, an anionic membrane or cationic when the electrode is used to deposit a metal or a metal alloy on a strip, but is preferably an anionic membrane when the electrode is used to remove a deposit of a metal or metal alloy from a strip metals.

Ce voile 88 et cette membrane 83 sont tendus entre les protubérances 151 de manière à former une chambre 78 dans laquelle s'étend l'électrode. Un électrolyte secondaire e2 peut traverser ladite chambre 78, cet électrolyte e2 étant avantageusement différent de l'électrolyte primaire e1 adjacent de la bande 3 à revêtir ou à traiter pour en éliminer une couche de métal ou d'alliage de métaux.This veil 88 and this membrane 83 are stretched between the protuberances 151 so as to form a chamber 78 in which the electrode extends. A secondary electrolyte e2 can pass through said chamber 78, this electrolyte e2 advantageously being different from the primary electrolyte e1 adjacent to the strip 3 to be coated or treated to remove a layer of metal or metal alloy therefrom.

Les bords libres du voile 88 et de la membrane 83 sont appliqués contre une face 174 de la protubérance 151, face formant avantageusement la face latérale extérieure de la protubérance 151 de la plaque 149.The free edges of the web 88 and of the membrane 83 are applied against a face 174 of the protuberance 151, this face advantageously forming the external lateral face of the protuberance 151 of the plate 149.

Le long de leurs bords, la membrane 83 et le voile sont pressés entre, d'une part, un cadre 175 de section transversale en L et, d'autre part, la protubérance 151 et un joint 176 monté dans une gorge que présente la protubérance 151. Pour maintenir le cadre 175 contre la protubérance 151, des profilés de serrage en U 177 sont utilisés.Along their edges, the membrane 83 and the web are pressed between, on the one hand, a frame 175 of L-shaped cross section and, on the other hand, the protuberance 151 and a seal 176 mounted in a groove which has the protrusion 151. To hold the frame 175 against the protrusion 151, U-shaped clamping profiles 177 are used.

Une aile 178 du profilé prend appui sur la face de la protubérance 151 tournée vers le support 81, tandis que l'autre aile 179 du profilé prend appui contre le cadre 175, de sorte que ce dernier 175, le voile 88 et la membrane 83 sont enserrés entre la protubérance 151 et l'aile 179.A wing 178 of the profile bears on the face of the protrusion 151 facing the support 81, while the other wing 179 of the profile bears against the frame 175, so that the latter 175, the web 88 and the membrane 83 are enclosed between the protuberance 151 and the wing 179.

Quatre profilés 177 sont avantageusement utilisés par plaque 149, de manière à enserrer et fixer le voile 88 et la membrane 83 sensiblement tout le long de la protubérance 151 de la plaque 149. Dans une forme particulière de réalisation, les profilés 177 présentent des extrémités en onglet de manière à ce que les quatre profilés d'une plaque forment sensiblement un cadre continu s'étendant le long de la protubérance 151 de la plaque 149. La cuvette 145 de la traverse 144 du cadre 136 permet, pour les protubérances 151 adjacentes de ladite traverse, la pose des profilés de serrage 177. Pour ces protubérances, l'aile 178 s'étend entre la face de la protubérance tournée vers le support 81 et le fond de la cuvette. Un joint 180 en matière synthétique est inséré entre les profilés de serrage 177, de manière à empêcher de l'électrolyte primaire e1 de rentrer dans la cuvette 145, mais surtout de manière à former un bourrelet 181 s'étendant au-delà du plan vertical dans lequel s'étendent les membranes 83 et du plan vertical dans lequel s'étendent les ailes 179 des profilés 177. Un tel bourrelet permet de réduire, voire d'éviter complètement tout risque de contact de la bande à traiter avec une membrane. Ceci permet d'accroître la durée de vie d'une membrane.Four profiles 177 are advantageously used per plate 149, so as to enclose and fix the web 88 and the membrane 83 substantially all along the protuberance 151 of the plate 149. In a particular embodiment, the profiles 177 have ends in tab so that the four profiles of a plate substantially form a continuous frame extending along the protuberance 151 of the plate 149. The bowl 145 of the cross member 144 of the frame 136 allows, for the protuberances 151 adjacent said cross member, the fitting of the clamping profiles 177. For these protuberances, the wing 178 extends between the face of the protuberance facing the support 81 and the bottom of the bowl. A seal 180 in synthetic material is inserted between the clamping profiles 177, so as to prevent the primary electrolyte e1 from entering the cup 145, but above all so as to form a bead 181 extending beyond the vertical plane in which extend the membranes 83 and the vertical plane in which extend the wings 179 of the profiles 177. Such a bead makes it possible to reduce, or even completely avoid any risk of contact of the strip to be treated with a membrane. This increases the service life of a membrane.

Le système de fixation de la membrane représenté (profilés 177) permet une pose ou un remplacement rapide de la membrane et permet également, si nécessaire, une maintenance aisée de l'électrode.The membrane attachment system shown (profiles 177) allows rapid installation or replacement of the membrane and also allows, if necessary, easy maintenance of the electrode.

Il va de soi que d'autres systèmes de fixation de la membrane auraient pu être utilisés.It goes without saying that other membrane attachment systems could have been used.

Le circuit de l'électrolyte secondaire e2 dans l'électrode représentée à la figure 6 sera décrit ci-après : L'électrolyte e2 entre par l'ouverture 100 et est amené par le conduit 130 au voisinage du fond de l'électrode (flèche E). L'électrolyte e2 passe ensuite via les canaux 141 et 154 dans la chambre 78 dans laquelle il s'écoule verticalement, de bas vers le haut, entre les lamelles 171 de l'électrode.The circuit of the secondary electrolyte e2 in the electrode shown in FIG. 6 will be described below: The electrolyte e2 enters through the opening 100 and is brought by the conduit 130 in the vicinity of the bottom of the electrode (arrow E). The electrolyte e2 then passes via the channels 141 and 154 into the chamber 78 in which it flows vertically, from bottom to top, between the lamellae 171 of the electrode.

L'électrolyte sort de cette chambre 78 par les canaux 154 et 141 adjacents du bord supérieur 153 de la plaque 149 pour être amené, via le canal 146 percé dans la traverse 144 et les canaux 154 et 141 adjacents du bord inférieur de la plaque 149 obturant la fenêtre 137, dans la chambre 79. L'électrolyte passe ensuite dans les passages formées entre les lamelles 171 de l'électrode pour enfin ressortir de la chambre 79 par les canaux 154 et 142 adjacents du bord supérieur 153 de la plaque 149. Cet électrolyte est enfin évacué de l'électrode par le conduit 132.The electrolyte leaves this chamber 78 through the channels 154 and 141 adjacent to the upper edge 153 of the plate 149 to be brought, via the channel 146 drilled in the cross member 144 and the channels 154 and 141 adjacent to the lower edge of the plate 149 closing the window 137, in the chamber 79. The electrolyte then passes through the passages formed between the lamellae 171 of the electrode to finally exit from the chamber 79 by the channels 154 and 142 adjacent to the upper edge 153 of the plate 149. This electrolyte is finally discharged from the electrode through line 132.

La figure 12 montre schématiquement une installation utilisant des électrodes suivant l'invention.FIG. 12 schematically shows an installation using electrodes according to the invention.

Cette installation comprend :

  • - une série de cellules d'électrolyse 1 pour déposer une couche de Ni-Zn sur la face 2 d'une bande d'acier 3, ces cellules comprennent des anodes suivant l'invention ;
  • - des moyens 5 pour munir les faces 2, 4 de la bande d'acier d'une première couche de Zn avant d'introduire ou plonger la bande d'acier dans les cellules 1, de manière à pouvoir retirer chimiquement ou électrochimiquement le Ni déposé sur la première couche de Zn de la face 4, et
  • - une installation 21 pour éliminer du nickel déposé sur la première couche de Zn de la face 4, ainsi que pour éliminer au moins partiellement ladite première couche.
This installation includes:
  • - A series of electrolysis cells 1 for depositing a layer of Ni-Zn on the face 2 of a steel strip 3, these cells include anodes according to the invention;
  • - Means 5 for providing the faces 2, 4 of the steel strip with a first layer of Zn before introducing or immersing the steel strip in the cells 1, so as to be able to chemically or electrochemically remove the Ni deposited on the first layer of Zn on face 4, and
  • an installation 21 for eliminating nickel deposited on the first layer of Zn on face 4, as well as for at least partially eliminating said first layer.

Les cellules d'électrolyse 1 pour le dépôt d'une couche de Zn-Ni sont par exemple du type décrit dans DE-A-3510592, mais comprenant des anodes suivant l'invention.The electrolysis cells 1 for depositing a layer of Zn-Ni are for example of the type described in DE-A-3510592, but comprising anodes according to the invention.

Ces cellules 1 sont reliées à un réservoir 54 au moyen de pompes, d'un conduit d'alimentation 58 et d'un conduit d'évacuation 59 de manière à assurer une concentration en Ni et Zn dans l'électrolyte sensiblement constante. La concentration en Ni et Zn de l'électrolyte est par exemple celle donnée dans BE-A-881635 et BE-A-882525. L'électrolyte peut également contenir des additifs tels que polymères, ZrS04,...These cells 1 are connected to a reservoir 54 by means of pumps, a supply pipe 58 and a discharge pipe 59 so as to ensure a substantially constant concentration of Ni and Zn in the electrolyte. The concentration of Ni and Zn in the electrolyte is for example that given in BE-A-881635 and BE-A-882525. The electrolyte can also contain additives such as polymers, ZrS0 4 , ...

Le réservoir 54 est relié à un dispositif d'enrichissement en Zn et/ou en Ni de l'électrolyte, de manière à maintenir la concentration en Zn et Ni de l'électrolyte à une valeur sensiblement constante.The reservoir 54 is connected to a device for enriching the electrolyte with Zn and / or with Ni, so as to maintain the Zn and Ni concentration of the electrolyte at a substantially constant value.

Les moyens 5 pour munir d'une première couche de Zn les faces 2, 4 de la bande d'acier 3 comprennent, de préférence, des cellules électrolytiques 11 dans lesquelles la bande d'acier 3 est introduite. Ces cellules sont également avantageusement du type décrit dans DE-A-3510592, mais comprenant des anodes suivant l'invention.The means 5 for providing a first layer of Zn on the faces 2, 4 of the steel strip 3 preferably comprise electrolytic cells 11 into which the steel strip 3 is introduced. These cells are also advantageously of the type described in DE-A-3510592, but comprising anodes according to the invention.

La bande d'acier se déplace dans l'installation en prenant appui sur des rouleaux 13, 14 et sur des rouleaux de renvoi 15.The steel strip moves in the installation by resting on rollers 13, 14 and on idler rollers 15.

Les cellules 11 contiennent un électrolyte (une solution de ZnS04) et sont reliées à un réservoir 16 au moyen de pompes 17, 18, d'un conduit d'alimentation 19 et d'un conduit d'évacuation 20 pour assurer une concentration en Zn plus ou moins constante de l'électrolyte. Ce réservoir est relié à un réacteur d'enrichissement (non représenté) en Zn de l'électrolyte.The cells 11 contain an electrolyte (a solution of ZnS0 4 ) and are connected to a reservoir 16 by means of pumps 17, 18, a supply line 19 and a discharge line 20 to ensure a concentration of Zn more or less constant of the electrolyte. This reservoir is connected to a Zn enrichment reactor (not shown) of the electrolyte.

L'installation 21 pour retirer le Ni éventuellement déposé sur la couche de Zn et pour éliminer au moins partiellement ladite couche de Zn consiste, dans la forme de réalisation représentée, en une cellule de déplating 50 comprenant avantageusement une cathode suivant l'invention.The installation 21 for removing the Ni possibly deposited on the layer of Zn and for at least partially eliminating said layer of Zn consists, in the embodiment shown, in a displacing cell 50 advantageously comprising a cathode according to the invention.

Après cette opération de déplatage (élimination d'une couche de métal), la bande 3 est soumise à un rinçage grâce au dispositif de rinçage 51, à un brossage dans une installation de brossage 52 pour assurer que tout le Ni déposé sur la première couche de Zn de la face 4 ait été éliminée et avantageusement à un polissage dans l'unité 91.After this flattening operation (elimination of a metal layer), the strip 3 is subjected to rinsing by means of the rinsing device 51, to brushing in a brushing installation 52 to ensure that all the Ni deposited on the first layer of Zn on face 4 has been eliminated and advantageously on polishing in unit 91.

L'installation comprend en outre de façon avantageuse une série de réservoirs 54, 55, 56, 57. Le premier réservoir 54 contient l'électrolyte destiné à être amené aux cellules 1 par des conduits 58 munis de pompes , tandis que le deuxième réservoir 55 est destiné à récolter l'électrolyte sortant des cellules électrolytiques 1 par des conduits 59. Le troisième réservoir 56 contient l'électrolyte destiné à être amené à la cellule de "deplating" 50 par le conduit 60, tandis que le quatrième réservoir 57 est destiné à récolter l'électrolyte sortant de la cellule de "deplating" 50 par le conduit 61. Sur le conduit 63 est monté un filtre 72 pour récupérer du Ni sous forme de poudre qui a été éliminé de la bande d'acier. Cette poudre de Ni doit être retirée de l'électrolyte puisqu'elle se trouve sous une forme difficilement soluble.The installation also advantageously comprises a series of reservoirs 54, 55, 56, 57. The first reservoir 54 contains the electrolyte intended to be brought to the cells 1 by conduits 58 provided with pumps, while the second reservoir 55 is intended to collect the electrolyte leaving the electrolytic cells 1 by conduits 59. The third reservoir 56 contains the electrolyte intended to be brought to the "deplating" cell 50 by the conduit 60, while the fourth reservoir 57 is intended collecting the electrolyte leaving the deplating cell 50 through the conduit 61. On the conduit 63 is mounted a filter 72 to recover Ni in the form of powder which has been removed from the steel strip. This Ni powder must be removed from the electrolyte since it is in a poorly soluble form.

Une partie de l'électrolyte du deuxième réservoir 55 et l'électrolyte du quatrième réservoir 57 sont envoyés par des conduits 62, 63 vers une installation 64 de régénération ou d'enrichissement de l'électrolyte, l'électrolyte enrichi étant ensuite envoyé par un conduit 65 vers le réservoir 54 destiné à l'alimentation des cellules 1.Part of the electrolyte in the second reservoir 55 and the electrolyte in the fourth reservoir 57 are sent via conduits 62, 63 to an installation 64 for regenerating or enriching the electrolyte, the enriched electrolyte then being sent by a conduit 65 towards the reservoir 54 intended for supplying the cells 1.

Une autre partie de l'électrolyte du deuxième réservoir 55 est envoyée par un conduit 66 vers le réservoir 56 destiné à alimenter la cellule de "deplating" 50.Another part of the electrolyte from the second reservoir 55 is sent through a conduit 66 to the reservoir 56 intended to supply the "deplating" cell 50.

L'installation comprend, en outre, une unité de stockage et/ou de préparation 67 d'électrolyte secondaires ; cet électrolyte pauvre en Zn et Ni étant envoyé dans l'enveloppe dans laquelle est placée la cathode 53. Cette unité 67 comprend une cuve de stockage 68 reliée par un conduit 69 destiné à amener de l'électrolyte dans l'enveloppe 53 et par un conduit 70 destiné à l'évacuation d'électrolyte hors de l'enveloppe et pour le renvoyer dans la cuve 68. De l'eau et de l'acide sulfurique sont amenés à cette unité pour compenser les pertes en H20 et H2SO4 (SO4-) dans les chambres des électrodes.The installation further comprises a storage unit and / or preparation 67 of secondary electrolyte; this electrolyte poor in Zn and Ni being sent into the envelope in which the cathode 53 is placed. This unit 67 comprises a storage tank 68 connected by a conduit 69 intended to bring electrolyte into the envelope 53 and by a conduit 70 intended for the evacuation of electrolyte out of the envelope and to return it to the tank 68. Water and sulfuric acid are brought to this unit to compensate for the losses in H 2 0 and H 2 SO 4 (SO 4 -) in the electrode chambers.

De l'électrolyte pauvre en Zn et Ni pourrait éventuellement être envoyé dans le réservoir 56 par un conduit.Electrolyte poor in Zn and Ni could possibly be sent to the reservoir 56 by a conduit.

Dans cette installation, la bande d'acier a été munie d'une première couche de Zn d'une épaisseur de 1 micron. Pour obtenir une telle couche sur les faces 2,4 de la bande, on a plongé la bande dans une cellule électrolytique 11 dont l'électrolyte contenait 60 g/I de Zn. La densité de courant entre la cathode (la bande d'acier) et l'anode 26 était de 100 A/dm2. La vitesse relative de la bande par rapport à l'électrolyte était de 1,5 m/s.In this installation, the steel strip was provided with a first layer of Zn with a thickness of 1 micron. To obtain such a layer on the faces 2,4 of the strip, the strip was immersed in an electrolytic cell 11, the electrolyte of which contained 60 g / l of Zn. The current density between the cathode (the steel strip) and the anode 26 was 100 A / dm 2. The relative speed of the strip with respect to the electrolyte was 1.5 m / s.

Une fois que la bande était munie de la couche de Zn, la bande a été amenée dans des cellules électrolytiques 1 pour déposer sur la face 2 de la bande une couche de Zn-Ni.Once the strip was provided with the layer of Zn, the strip was brought into electrolytic cells 1 to deposit on the face 2 of the strip a layer of Zn-Ni.

Dans une forme d'utilisation particulière de l'installation représentée à la figure 12, on a déposé dans les cellules 11 sur les deux faces de la bande d'acier 3 une fine couche de Zn-Ni. L'épaisseur de ladite couche était de 0,5 u (grammage :± 3,5 g/m2), tandis que la teneur en Ni de ladite couche était de l'ordre de 10%. Pour effectuer ce dépôt, l'électrolyte utilisé était l'électrolyte utilisé dans les cellules 1.In a particular form of use of the installation shown in FIG. 12, a thin layer of Zn-Ni has been deposited in the cells 11 on both sides of the steel strip 3. The thickness of said layer was 0.5 u (grammage: ± 3.5 g / m 2 ), while the Ni content of said layer was of the order of 10%. To effect this deposition, the electrolyte used was the electrolyte used in cells 1.

L'électrolyte qui a été utilisé dans les cellules 1 contenait 25 g/I Zn++, 50 g/I Ni++ et 75 g/I Na2SO4. Le pH de cet électrolyte était de 1,65 à 57,5 ° C. La distance anode-bande d'acier était d'environ 15 mm.The electrolyte which was used in cells 1 contained 25 g / I Zn ++ , 50 g / I Ni ++ and 75 g / I Na 2 SO 4 . The pH of this electrolyte was 1.65 to 57.5 ° C. The anode-steel strip distance was approximately 15 mm.

L'électrolyte primaire utilisé dans la cellule de "deplating" avait dans les essais qui ont été effectués la même composition que l'électrolyte des cellules 1. Toutefois on aurait pu utiliser un électrolyte contenant moins de Zn++ et de Ni+.The primary electrolyte used in the deplating cell had in the tests which were carried out the same composition as the electrolyte of cells 1. However, one could have used an electrolyte containing less Zn ++ and Ni +.

L'électrolyte secondaire envoyée dans l'enveloppe contenait 75 g/I Na2SO4 (pH d'environ 1,7).The secondary electrolyte sent into the envelope contained 75 g / I Na 2 SO 4 (pH about 1.7).

La distance cathode-bande dans la cellule de "deplating" était de 16 mm. La vitesse de l'électrolyte secondaire dans l'enveloppe était de 0,04 m/s, tandis que la vitesse de l'électrolyte primaire était de 1,5 m/s.The cathode-strip distance in the deplating cell was 16 mm. The speed of the secondary electrolyte in the envelope was 0.04 m / s, while the speed of the primary electrolyte was 1.5 m / s.

Des tests ont été effectués avec la cellule de "deplating" pour éliminer une couche de Zn ou de Zn-Ni déposée électrolytiquement.Tests were carried out with the "deplating" cell to remove a layer of Zn or Zn-Ni deposited electrolytically.

Dans ces tests, l'enveloppe de la cathode présentait une membrane anionique de 150µ, d'épaisseur vendue par MORGANE (FRANCE), tandis que la densité de courant dans la cellule de "deplating" variait entre 0 et 50 A/dm2.In these tests, the envelope of the cathode presented an anionic membrane of 150 μ, of thickness sold by MORGANE (FRANCE), while the current density in the "deplating" cell varied between 0 and 50 A / dm 2 .

Lorsque la densité de courant était nulle, aucune élimination de Ni n'était observée. Ensuite, la densité de courant a été accrue et on a observé un enlèvement de plus en plus complet de Ni et du Zn, comme montré dans le tableau suivant.

Figure imgb0001
When the current density was zero, no elimination of Ni was observed. Then, the current density was increased and an increasingly complete removal of Ni and Zn was observed, as shown in the following table.
Figure imgb0001

Le temps de passage de la bande en face des cathodes était de 4 secondes. Il va de soi qu'en utilisant un temps de passage plus important, il est possible en utilisant une densité de 20-25 A/dm2 d'obtenir un rapport Ni + Zn/Fe voisin de 0 ou égal à zéro.The passage time of the strip opposite the cathodes was 4 seconds. It goes without saying that by using a longer passage time, it is possible using a density of 20-25 A / dm 2 to obtain a Ni + Zn / Fe ratio close to 0 or equal to zero.

L'installation représentée qui permet d'éliminer partiellement ou totalement du Ni déposé sur une couche de Zn est une installation qui permet de réduire au maximum les pertes en électrolyte grâce à un système de recirculation. Ceci permet également de réduire la consommation totale en Zn et Ni de l'installation et de réduire les frais de fonctionnement et d'investissement d'installations de purification des rejets.The installation shown which allows partial or total elimination of Ni deposited on a layer of Zn is an installation which makes it possible to reduce electrolyte losses as much as possible thanks to a recirculation system. This also makes it possible to reduce the total consumption of Zn and Ni of the installation and to reduce the operating and investment costs of waste purification installations.

Il va de soi que le dispositif de rinçage peut être muni d'une unité (non représentée) de récupération d'électrolyte, de Zn et de Ni.It goes without saying that the rinsing device can be provided with a unit (not shown) for recovering electrolyte, Zn and Ni.

De manière à réduire encore les pertes en électrolyte et de simplifier le fonctionnement de l'installation, on dépose avantageusement une fine couche (0,5µ) de Zn-Ni dans les cellules 11. Pour effectuer un tel dépôt on utilise avantageusement le même électrolyte que celui utilisé dans les cellules 1. Dans ce cas, un même électrolyte peut être utilisé dans les cellules 1, 11 et les cellules de "deplating" (cellules pour éliminer du Ni et/ou du Zn et/ou un alliage de Zn).In order to further reduce the losses of electrolyte and to simplify the operation of the installation, a thin layer (0.5 μ) of Zn-Ni is advantageously deposited in the cells 11. To make such a deposit, the same electrolyte is advantageously used. than that used in cells 1. In this case, the same electrolyte can be used in cells 1, 11 and "deplating" cells (cells to remove Ni and / or Zn and / or a Zn alloy) .

De même, pour réduire le nombre d'électrodes de type différent utilisé dans l'installation, on utilise aussi bien dans les cellules de "deplating", que dans les cellules pour déposer une couche de Zn ou d'un alliage de Zn, une électrode à membrane.Likewise, to reduce the number of electrodes of different types used in the installation, both in the "deplating" cells and in the cells used to deposit a layer of Zn or of a Zn alloy, a membrane electrode.

Dans le cas de cellules de "deplating", la densité de courant est avantageusement inférieure à 60 A/dm2. Toutefois pour les cellules pour déposer une couche de Zn, Zn-Ni ou autre alliage de Zn, cette densité peut être supérieure à 60 A/dm2, par exemple de 100 A/dm2.In the case of deplating cells, the current density is advantageously less than 60 A / dm 2 . However, for cells to deposit a layer of Zn, Zn-Ni or other Zn alloy, this density can be greater than 60 A / dm 2 , for example 100 A / dm 2 .

Enfin, les figures 13 et 14 montrent en coupe et à plus grande échelle respectivement une bande d'acier qui a été obtenue dans une installation du type représenté à la figure 12 et une bande d'acier dont une face a été soumise à un surdécapage ou un polissage.Finally, FIGS. 13 and 14 show in section and on a larger scale respectively a steel strip which was obtained in an installation of the type shown in FIG. 12 and a steel strip of which one face has been subjected to over-stripping. or polishing.

La bande d'acier 200 suivant l'invention est munie d'une couche de Ni-Zn sur une face. Sur l'autre face de la bande, la concentration en Zn restant est inférieure à 50 u.g/m2 (en particulier à 10 µg/m2). Ce Zn restant sur cette face est réparti de façon régulière et homogène.The steel strip 200 according to the invention is provided with a layer of Ni-Zn on one side. On the other side of the strip, the concentration of remaining Zn is less than 50 ug / m 2 (in particular 10 µg / m 2 ). This Zn remaining on this face is distributed in a regular and homogeneous manner.

Une telle répartition combinée à la présence d'une très faible quantité de Zn et Ni (moins de 25 µg/m2 de façon avantageuse et moins de 10 µg/m2 de façon préférée) permet d'obtenir une bonne phosphatation.Such a distribution combined with the presence of a very small amount of Zn and Ni (advantageously less than 25 μg / m 2 and preferably less than 10 μg / m 2 ) makes it possible to obtain good phosphating.

Une bande suivant l'invention est donc une bande présentant une face recouverte d'une couche de Zn-Ni et dont l'autre face est munie de Zn et/ou de Ni répartis de façon régulière et/ou homogène, le grammage en Zn et/ou Ni de ladite autre face étant supérieure à 0,1 µg/m2 mais inférieure à 25, de préférence à 10 u.g/m2. Un grammage de 0,1 µg/m2 est un grammage démontrant l'absence d'un surdécapage et donc de l'attaque d'une face de la bande d'acier.A strip according to the invention is therefore a strip having a face covered with a layer of Zn-Ni and the other side of which is provided with Zn and / or Ni distributed in a regular and / or homogeneous manner, the grammage in Zn and / or Ni of said other face being greater than 0.1 µg / m 2 but less than 25, preferably 10 ug / m 2 . A grammage of 0.1 µg / m 2 is a grammage demonstrating the absence of over-stripping and therefore of the attack on one face of the steel strip.

Une bande qu'il est possible d'obtenir par un procédé suivant l'invention présente une face non recouverte de Zn et Ni, dont la rugosité est sensiblement égale à celle qu'avait la bande d'acier avant son traitement (dépôt d'une couche de Zn-Ni).A strip which it is possible to obtain by a process according to the invention has a face not covered with Zn and Ni, the roughness of which is substantially equal to that which the steel strip had before its treatment (deposit of a layer of Zn-Ni).

Ainsi, il est possible d'obtenir une bande d'acier 200 présentant une face supérieure 201 et une face supérieure 202 de rugosité sensiblement égale, une (201) desdites faces étant recouverte d'une couche de Zn-Ni 203.Thus, it is possible to obtain a steel strip 200 having an upper face 201 and an upper face 202 of substantially equal roughness, one (201) of said faces being covered with a layer of Zn-Ni 203.

Lorsque la bande a été soumise à un surdécapage ou à un polissage la face 205 non recouverte de la couche Zn-Ni a subi une attaque modifiant la rugosité de la bande d'acier. De plus, un surdécapage provoquera une diminution de l'épaisseur de la couche de Zn-Ni 204, tandis que lors d'un polissage des griffes seront formés dans la bande d'acier.When the strip was subjected to an over-stripping or a polishing, the face 205 not covered with the Zn-Ni layer underwent an attack modifying the roughness of the steel strip. In addition, an over-stripping will cause a decrease in the thickness of the layer of Zn-Ni 204, while during polishing the claws will be formed in the steel strip.

La bande d'acier suivant l'invention peut ensuite être soumise à une phosphatation et être recouverte d'une ou de plusieurs couches de peinture sur la face 105 non recouverte de la couche de Zn-Ni. On a remarqué qu'il était possible d'obtenir une meilleure adhérance des couches de peinture ou au moins une adhérance équivalente à celle d'une bande d'acier non munie d'une couche de Zn-Ni.The steel strip according to the invention can then be subjected to a phosphating and be covered with one or more layers of paint on the face 105 not covered with the layer of Zn-Ni. It was noted that it was possible to obtain better adhesion of the paint layers or at least an adhesion equivalent to that of a steel strip not provided with a layer of Zn-Ni.

Pour revêtir électrochimiquement une bande d'une couche d'un métal, on peut utiliser une électrode avec aussi bien une membrane anionique qu'avec une membrane cationique. Toutefois, puisque pour l'élimination d'une couche d'un métal, on utilise de préférence une électrode avec une membrane anionique, il peut être avantageux d'utiliser de mêmes électrodes avec membrane anionique à la fois pour le dépôt électrolytique que pour l'élimination électrolytique d'une couche de métal, de manière à pouvoir utiliser une électrode une fois pour le dépôt électrolytique et une fois pour l'élimination électrolytique d'une couche.To electrochemically coat a strip with a layer of metal, an electrode with both an anionic membrane and a cationic membrane can be used. However, since for the elimination of a layer of a metal, an electrode with an anionic membrane is preferably used, it may be advantageous to use the same electrodes with an anionic membrane both for the electrolytic deposition as for the electrolytic removal of a metal layer, so that an electrode can be used once for electrolytic deposition and once for electrolytic removal from a layer.

La figure 15 montre, de façon, schématique, une installation comprenant, d'une part, une cellule 1 pour déposer sur la face 2 d'une bande galvanisée 3 une couche Zn-Ni, et d'autre part, une cellule 50 pour éliminer de la face 4 la couche galvanisée de la bande 3. Dans cette installation, on utilise en tant qu'électrodes, des électrodes suivant l'invention munies de membranes anioniques.FIG. 15 shows, schematically, an installation comprising, on the one hand, a cell 1 for depositing on the face 2 of a galvanized strip 3 a Zn-Ni layer, and on the other hand, a cell 50 for remove from the face 4 the galvanized layer of the strip 3. In this installation, electrodes according to the invention are used as electrodes provided with anionic membranes.

L'électrolyte qui sort de la chambre de l'électrode 501 de la cellule 50 est appauvri en SO4=. Cet électrolyte est envoyé par le conduit 502 dans la cuve 503. De l'électrolyte sortant de cette cuve 503 est envoyé par le conduit 504 et la pompe 505 dans la chambre des anodes 401 de la cellule 1. Lors de son passage dans la chambre des anodes, l'électrolyte s'enrichit en H2SO4. Cet électrolyte enrichi est amené par le conduit 506 dans une cuve 507.The electrolyte which leaves the chamber of the electrode 501 of the cell 50 is depleted in SO 4 =. This electrolyte is sent through line 502 into the tank 503. From the electrolyte leaving this tank 503 is sent through line 504 and the pump 505 into the anode chamber 401 of cell 1. During its passage through the room anodes, the electrolyte is enriched in H 2 SO 4 . This enriched electrolyte is brought via line 506 into a tank 507.

Les cuves 503 et 507 sont avantageusement associées à une unité 530 pour compenser les pertes en eau et/ou SO4- du circuit secondaire d'électrolyte dans les électrodes. Une telle unité comprend une cuve de mélange 531 d'électrolyte provenant par le conduit 532 de la cuve 507 et d'eau et/ou H2SO4 provenant d'un conduit 510.The tanks 503 and 507 are advantageously associated with a unit 530 to compensate for the water and / or SO 4 losses from the secondary electrolyte circuit in the electrodes. Such a unit comprises a tank 531 for mixing electrolyte coming through the pipe 532 from the tank 507 and water and / or H 2 SO 4 coming from a pipe 510.

Dans ce cas, cas représenté à la figure 14, l'électrolyte de la cuve 531 est amené dans la chambre de la cathode 501 par le conduit 508 sur lequel est montée la pompe 509.In this case, case shown in FIG. 14, the electrolyte from the tank 531 is brought into the chamber of the cathode 501 by the conduit 508 on which the pump 509 is mounted.

L'installation comprend, en outre,

  • - un réservoir 511 pour récolter l'électrolyte sortant de la cellule 50 ;
  • - un réservoir 512 pour récolter l'électrolyte sortant de la cellule 1, électrolyte pauvre en Zn-Ni ;
  • - un réservoir 513 pour alimenter la cellule 50 en un électrolyte pauvre en Zn-Ni, et
  • - un réservoir 514 pour alimenter la cellule 1 en un électrolyte riche en Zn-Ni.
The installation also includes
  • - a reservoir 511 for collecting the electrolyte leaving the cell 50;
  • a reservoir 512 for collecting the electrolyte leaving cell 1, an electrolyte poor in Zn-Ni;
  • a reservoir 513 for supplying the cell 50 with an electrolyte poor in Zn-Ni, and
  • a reservoir 514 for supplying cell 1 with an electrolyte rich in Zn-Ni.

Le réservoir 514 reçoit par les conduits 515 et 516 de l'électrolyte des réservoirs 511 et 512 et éventuellement par le conduit 517 de l'électrolyte provenant de la cuve 507. Ce conduit 517 permet éventuellement de purger le circuit secondaire. L'enrichissement de l'électrolyte dans le réservoir 514 est réalisé par ajout de poudres métalliques Zn-Ni et éventuellement d'acide H2S04.The reservoir 514 receives via the conduits 515 and 516 of the electrolyte from the reservoirs 511 and 512 and possibly via the conduit 517 of the electrolyte coming from the tank 507. This conduit 517 optionally makes it possible to purge the secondary circuit. The electrolyte is enriched in the reservoir 514 by adding Zn-Ni metal powders and optionally H 2 S0 4 acid.

L'électrolyte enrichi est envoyé dans la cellule 1 par le conduit 518 et la pompe 519.The enriched electrolyte is sent to cell 1 through line 518 and pump 519.

Le réservoir 513 qui alimente la cellule 50 en électrolyte pauve en Zn-Ni est alimenté par de l'électrolyte provenant du réservoir 512 et avantageusement du réservoir 507 (conduit 520, pompe 522 et conduit 521, pompe 523).The reservoir 513 which supplies the cell 50 with poor Zn-Ni electrolyte is supplied with electrolyte coming from the reservoir 512 and advantageously from the reservoir 507 (conduit 520, pump 522 and conduit 521, pump 523).

Une telle installation permet de réduire de façon importante les pertes en Zn-Ni et permet une meilleure utilisation des électrolytes.Such an installation makes it possible to significantly reduce the losses of Zn-Ni and allows better use of the electrolytes.

Enfin, les figures 16 à 18 montrent, de façon schématique, des formes de réalisation d'installation similaire à celle représentée à la figure 12.Finally, FIGS. 16 to 18 show, schematically, embodiments of installation similar to that shown in FIG. 12.

Dans la forme représentée à la figure 16, des électrodes munies d'une membrane anionique sont utilisées en tant qu'anode dans les cellules 1 pour le dépôt électrolytique de Zn ou Zn-Ni sur la face 2 de la bande 3 et en tant que cathode dans les cellules 50 pour éliminer une couche de Fe-Zn, Zn ou Zn-Ni éventuellement revêtue de Ni ou Ni-Zn, couche présente sur la face 4 de la bande 3.In the form shown in FIG. 16, electrodes provided with an anionic membrane are used as an anode in cells 1 for the electrolytic deposition of Zn or Zn-Ni on the face 2 of strip 3 and as cathode in the cells 50 to remove a layer of Fe-Zn, Zn or Zn-Ni optionally coated with Ni or Ni-Zn, layer present on the face 4 of the strip 3.

L'électrolyte secondaire envoyé dans les électrodes provient de la cuve 68 d'une unité de préparation d'électrolyte, laquelle est alimentée avec de l'eau pour obtenir un dosage correct de l'électrolyte secondaire.The secondary electrolyte sent into the electrodes comes from the tank 68 of an electrolyte preparation unit, which is supplied with water to obtain a correct dosage of the secondary electrolyte.

De l'électrolyte secondaire peut être envoyé par le conduit 71 vers les réservoirs 55 et 56 destinés à collecter de l'électrolyte primaire provenant respectivement des cellules 1 et 50.Secondary electrolyte can be sent via line 71 to reservoirs 55 and 56 intended to collect primary electrolyte coming from cells 1 and 50 respectively.

Une partie de l'électrolyte provenant de la cuve 57, après filtration (filtre 72) est renvoyée dans la cuve 56 alimentant la cellule 50 (conduit 90).Part of the electrolyte from tank 57, after filtration (filter 72) is returned to tank 56 supplying cell 50 (conduit 90).

Les autres éléments, conduits et pièces de l'installation représentée à la figure 16 sont similaires aux éléments, conduits ou pièces de l'installation représentée à la figure 12. Ces mêmes éléments, conduits et pièces sont désignés par les mêmes numéros de référence.The other elements, conduits and parts of the installation shown in FIG. 16 are similar to the elements, conduits or parts of the installation shown in FIG. 12. These same elements, conduits and parts are designated by the same reference numbers.

Dans cette forme de réalisation, il est possible à la fois d'assurer un équilibre du bilan matière des cellules 1 (dépôt électrolytique) et de la cellule 50 (élimination électrolytique) grâce au transfert d'électrolyte de la cuve 57 vers la cuve 56 par le conduit 90, avantageusement après filtration (filtre 72).In this embodiment, it is possible both to ensure a balance in the material balance of cells 1 (electrolytic deposition) and of cell 50 (electrolytic elimination) thanks to the transfer of electrolyte from tank 57 to tank 56 via line 90, advantageously after filtration (filter 72).

Les installations représentées aux figures 17 et 18 sont relatives à des installations pour le dépôt d'une première couche de Zn, ZnNi ou autres alliages de Fe et d'une deuxième couche de Fe, Zn-Fe ou alliage de fer.The installations shown in FIGS. 17 and 18 relate to installations for the deposition of a first layer of Zn, ZnNi or other alloys of Fe and of a second layer of Fe, Zn-Fe or iron alloy.

Ces installations permettent, entre autres, le dépôt de Zn ou Zn-Ni sur une face 2 de la bande 3 et le dépôt de Fe ou Fe-Zn ou autre alliage de Fe sur la face 4 de la bande 3, cette face 4 étant opposée à la face 2. Le dépôt de Fe ou autre alliage de Fe (Fe-Zn) est destiné à recouvrir le Zn ou Zn-Ni qui se serait déposé sur la face 4. Ce dépôt de Fe ou alliage de Fe permet une phosphatation de la face 4 ainsi qu'une bonne adhérance de couche de peinture.These installations allow, among other things, the deposition of Zn or Zn-Ni on one side 2 of the strip 3 and the deposition of Fe or Fe-Zn or other Fe alloy on the side 4 of the strip 3, this side 4 being opposite to side 2. The deposit of Fe or other Fe alloy (Fe-Zn) is intended to cover the Zn or Zn-Ni which would have deposited on side 4. This deposit of Fe or Fe alloy allows phosphating of face 4 as well as good adhesion of paint layer.

L'installation de la figure 17 comprend des cellules 600 et 601 avec des anodes présentant une membrane anionique selon l'invention. Ces anodes sont destinées pour le dépôt sur la face 2 de la bande 3 d'une couche de métal. Il va de soi que les cellules auraient pu comprendre des anodes disposées des deux côtés de la bande de manière à munir les deux faces de la bande d'une couche de métal.The installation of FIG. 17 comprises cells 600 and 601 with anodes having an anionic membrane according to the invention. These anodes are intended for depositing on the face 2 of the strip 3 a layer of metal. It goes without saying that the cells could have included anodes arranged on the two sides of the strip so as to provide the two faces of the strip with a layer of metal.

L'installation comprend :

  • - un réservoir 602 pour alimenter les cellules 600 par le conduit 603 en électrolyte riche en Zn, Zn-Ni ou autre alliage ;
  • - un réservoir 604 pour collecter l'électrolyte appauvri sortant des cellules 600 par le conduit 605 ;
  • - une unité 606 pour enrichir de l'électrolyte provenant par le conduit 607 du réservoir 604, cet électrolyte enrichi étant envoyé par le conduit 608 vers le réservoir 602 ;
  • - un réservoir 618 pour alimenter la cellule 601 par le conduit 609 en électrolyte riche en Zn Fe, ou autre alliage ;
  • - un réservoir 610 pour recevoir l'électrolyte appauvri sortant de la cellule 601 par le conduit 611 ;
  • - une unité 612 pour enrichir de l'électrolyte provenant par le conduit 613 du réservoir 610, cet électrolyte enrichi étant renvoyé par le conduit 614 dans le réservoir 618, et
  • - une unité de stockage et préparation 67 d'électrolyte destiné à circuler dans les chambres des anodes.
The installation includes:
  • a reservoir 602 for supplying the cells 600 via the conduit 603 with an electrolyte rich in Zn, Zn-Ni or other alloy;
  • - a reservoir 604 for collecting the depleted electrolyte leaving the cells 600 via the conduit 605;
  • a unit 606 for enriching the electrolyte coming through the line 607 from the tank 604, this enriched electrolyte being sent through the line 608 to the tank 602;
  • a reservoir 618 for supplying the cell 601 via the conduit 609 with an electrolyte rich in Zn Fe, or other alloy;
  • - a reservoir 610 for receiving the depleted electrolyte leaving the cell 601 through the conduit 611;
  • a unit 612 for enriching the electrolyte coming through the line 613 from the tank 610, this enriched electrolyte being returned by the line 614 into the tank 618, and
  • - An electrolyte storage and preparation unit 67 intended to circulate in the anode chambers.

Cette unité 67 comprend une cuve 68 reliée par des conduits 69 et 70 aux anodes pour amener de l'électrolyte secondaire et pour ramener l'électrolyte secondaire à la cuve 68 après passage dans les anodes.This unit 67 comprises a tank 68 connected by conduits 69 and 70 to the anodes for supplying secondary electrolyte and for bringing the secondary electrolyte to tank 68 after passing through the anodes.

Cette unité 67 comprend une amenée d'eau 615 pour compenser les pertes en eau de l'électrolyte ou l'accroissement de sa teneur en H2SO4. Le surplus de H2SO4 de l'électrolyte dû au passage de celui-ci dans les anodes est avantageusement envoyé par le conduit 616 dans les réservoirs 604 et 610 pour recevoir les électrolytes primaires appauvris sortant des cellules 600 et 601.This unit 67 includes a water supply 615 to compensate for the water losses from the electrolyte or the increase in its H 2 SO 4 content . The surplus of H 2 SO 4 in the electrolyte due to the passage of the latter through the anodes is advantageously sent via line 616 into reservoirs 604 and 610 to receive the depleted primary electrolytes leaving cells 600 and 601.

De façon avantageuse, seule une partie de l'électrolyte des tanks 604 et 610 est envoyée vers les unités d'enrichissement 606 et 612. Dans ce cas, des conduits 630 et 631 permettent d'envoyer directement de l'électrolyte des cuves 604, 610 vers les réservoirs 602 et 618.Advantageously, only part of the electrolyte from tanks 604 and 610 is sent to the enrichment units 606 and 612. In this case, conduits 630 and 631 allow the electrolyte to be sent directly from the tanks 604, 610 to tanks 602 and 618.

La figure 18 représente une installation similaire à celle représentée à la figure 16 si ce n'est que les cellules 600, 601 comprenaient des anodes munies d'une membrane cationique et que, dès lors, l'électrolyte secondaire après passage dans les chambres des anodes n'est pas envoyé dans les réservoirs 604 et 610.FIG. 18 represents an installation similar to that represented in FIG. 16 except that the cells 600, 601 included anodes provided with a cationic membrane and that, consequently, the secondary electrolyte after passage through the chambers of the anodes are not sent to tanks 604 and 610.

Dans les figures 17 et 18, les mêmes signes de référence représentent des éléments identiques.In FIGS. 17 and 18, the same reference signs represent identical elements.

Les réservoirs pour alimenter les cellules en électrolyte riche par exemple en Zn, Ni, les réservoirs pour recevoir l'électrolyte appauvri sortant des cellules et les unités d'enrichissement de l'électrolyte sont avantageusement du type décrit dans la demande EP-A-0388386.The reservoirs for supplying the cells with electrolyte rich for example in Zn, Ni, the reservoirs for receiving the depleted electrolyte leaving the cells and the electrolyte enrichment units are advantageously of the type described in application EP-A-0388386 .

Comme on peut le remarquer des figures 15 à 18, la chambre d'une électrode d'une première cellule (1,600) et la chambre d'une électrode d'une deuxième cellule (50, 601) sont montés dans un même circuit.As can be seen from FIGS. 15 to 18, the chamber of an electrode of a first cell (1,600) and the chamber of an electrode of a second cell (50, 601) are mounted in the same circuit.

Dans une forme de réalisation, en particulier lorsque les membranes utilisées sont anioniques, le circuit d'électrolyte est tel que de l'électrolyte sortant de la chambre d'une électrode d'une première cellule (1) est envoyé, éventuellement après traitement (addition d'eau, H2S04,...) dans la chambre d'une électrode d'une deuxième cellule (50) et que de l'électrolyte sortant de la chambre d'une électrode d'une deuxième cellule est envoyé dans la chambre d'une électrode de la première cellule, éventuellement après traitement (addition d'eau,...).In one embodiment, in particular when the membranes used are anionic, the electrolyte circuit is such that electrolyte leaving the chamber of an electrode of a first cell (1) is sent, possibly after treatment ( addition of water, H 2 S0 4 , ...) into the chamber of an electrode of a second cell (50) and that electrolyte leaving the chamber of an electrode of a second cell is sent in the chamber of an electrode of the first cell, possibly after treatment (addition of water, ...).

Claims (36)

1. Electrode for electrolytic cell, said electrode being located within an enclosure defining a chamber (78), a wall of said enclosure consists of a membrane (83) allowing the passage of ions therethrough, said enclosure having a first opening (100) for feeding the chamber with an electrolyte and a second opening (101) for removing electrolyte from the chamber so as to create an upward current of electrolyte, characterized in that the enclosure is provided with thin strips, fins or baffles (113, 102, 171) conducting the flow of electrolyte in the chamber (78), so as to ensure a velocity of the electrolyte in the vicinity of the electrode of at least 0.01 m/s, preferably of 0.1 m/s.
2. Electrode according to claim 1, characterized in that the electrode consists of a set of blades or fins (171) defining therebetween channels (112) intended to direct the flow of electrolyte.
3. Electrode according to claim 2, characterized in that the baffles or fins divide the chamber into a number of separate compartments (78, 79) which extend between the electrode and the membrane (77) or one wall of the enclosure.
4. Electrode according to anyone of the claims 1 to 3, characterized in that the enclosure has a third opening (103) so as to remove and/or suck gases outside the chamber.
5. Electrode according to claim 4, characterized in that the baffles or thin strips or fins (102, 112, 171) extend substantially vertically from the vicinity of the lower part (781) of the enclosure as far as to the vicinity of the upper part of the enclosure so as to define channels (113) conducting the electrolyte into said upper part of the enclosure, this part having an opening for sucking gases outside the chamber and an opening for discharging the electrolyte.
6. Electrode according to claim 5, characterized in that the baffles or fins (112, 171) extend at least from one edge of the electrode (80, 170) as far as the opposite edge thereof.
7. Electrode according to anyone of the claims 1 to 6, characterized in that the membrane (77, 83) is an anionic membrane or a cationic membrane.
8. Electrode according to anyone of the claims 1 to 7, characterized in that the membrane (83) is provided of a protecting layer (88) on the outer or inner side of the enclosure.
9. Electrode according to claim 1, characterized in that a porous support (845) extends in the vicinity of the membrane and acts as supporting means for at least one part thereof.
10. Electrode according to claim 9, characterized in that the support (84) is a perforated component, a porous web, a treillis, preferably made of Zr, Ti or stainless steel.
11. Electrode according to claim 9, characterized in that the support has a layer (87) acting as electrode on the face opposite that adjacent to the membrane.
12. Electrode according to claim 9, characterized in that the membrane (83) rests on a support (84) acting as an electrode and in that said support (84) is provided with an insulating layer (88) on its face adjacent to the membrane.
13. Use of an electrode according to anyone of the preceding claims in an electrolytic cell.
14. Process for the electrochemical plating of metal strips, preferably of galvanized steel strips with metals or metal alloys, in which an electrolyte containing salt(s) of plating metal(s) is recycled between the cathodic metal strip to be plated and the insoluble anode, in which an electrode according to anyone of the claims 1 to 12 is used as anode so that the membrane is arranged between the anode and the metal strip to be plated, the said membrane forming separation between the cathodic space of the cell and the anode chamber defined by the enclosure of the anode, and in which a first electrolyte circuit in the chamber and a second circuit of electrolyte in the cathodic space are created, the membrane preventing the passage of gases formed at the anode into the second circuit of electrolyte and the passage of salt(s) of plating metal(s) from the cathodic space into the first circuit of electrolyte.
15. Process for the electrochemical plating of metal strips according to claim 14 with iron, iron compounds or alloys containing iron, characterized in that an anion exchange membrane is arranged between the anode and the metal strip to be plated, membrane allowing, when using a sulfuric electrolyte enriched in iron and zinc sulfate in the cathodic space, the transfer of charge only by the transfer of SO4- ions into the anode chamber and preventing the passage of the metal salt(s), so that the electrolyte devoid of metal(s) and consisting of water and sulfuric acid or the anode chamber is supplementary enriched in sulfuric acid, while the oxygen formed at the insoluble anode is discharged from the anode chamber and the passage of oxygen into the cathodic space is prevented by means of the anion exchange membrane.
16. Process for the electrochemical plating of metal strips according to claim 14 with iron, iron compounds or alloys containing iron, characterized in that an anion exchange membrane is each time arranged between the anode and the metal strip to be plated, membrane which, when using a chloride electrolyte enriched in iron or zinc chloride in the cathodic space, allows the passage of chlorine in the anode chamber but prevents the passage of the metal salt(s), so that the electrolyte which consists of water and chlorhydric acid in the anode chamber is not enriched in metal salt(s), while the chloride transformed into the first electrolyte flow devoid of metal of the anode chamber is removed and the passage of chlorine in the cathodic space is prevented by the anion exchange membrane.
17. Process for the electrochemical plating of metal strips according to claim 14 with iron, iron compounds or alloys containing iron, characterized in that a cation exchange membrane is each time arranged between the anode and the metal strip to be plated, membrane which, when using a sulfuric electrolyte enriched in iron and zinc sulfate in the cathodic space, prevents the transfer of acids from the cathodic space into the anode chamber and allows the transfer of charge by the transfer of hydrogen ions from the anode chamber into the cathodic space, while the oxygen formed at the anode is removed from the sulfuric electrolyte devoid of iron of the anode chamber and the passage of oxygen in the cathodic space is prevented by the cation exchange membrane.
18. Process for the electrolytic plating of metal strips according to claim 14 with iron, iron compounds or alloys containing iron, characterized in that a cation exchange membrane is each time arranged between the anode and the metal strip to be plated, membrane which, when using a chloride electrolyte enriched in iron and zinc chloride, in the cathodic space, prevents the passage of acids and salts from the cathodic space into the anode chamber and allows the transfer of charge by the transfer of hydrogen ions from the anode chamber into the cathodic space, while the gases formed at the anode are removed from the anode chamber with the electrolyte devoid of iron containing chlorhydric acid and the passage of gases formed in the cathodic space is prevented by the cation exchange membrane.
19. Process according to anyone of the claims 15 to 18, characterized in that in order to replace the iron deposited on the metal strip, an amount of elemental iron corresponding to the deposited amount is added to the electrolyte which flows through the cathodic space.
20. Process according to claim 15 or 17, characterized in that the part of electrolyte in excess which is formed, the nature of which is similar to that of the anodic circuit, is conveyed to the cathodic electrolyte circuit through a dissolving station.
21. Plant for treating in continu a steel strip in an electrolytic cell, said cell comprising at least one electrode according to anyone of the claims 1 to 12, for the working of a process according to anyone of the claims 14 to 20.
22. Process for the electrolytic removal of a layer of metal or alloy of metals located on a strip, especially on a steel strip, such as a galvanized steel strip,
* in which an electrolyte is recycled between an insoluble cathode and the anodic metal strip,
in which an electrode according to anyone of the claims 1 to 12 is used as cathode so that the membrane, especially an anionic membrane, is arranged between the cathode and the strip, the said membrane forming a separation between the anodic space of the cell and the cathodic chamber defined by the enclosure of the cathode, and
in which a first circuit of the electrolyte (22) in the chamber and a second circuit of electrolyte (21) in the anodic space are created, the membrane preventing the passage of gases formed at the cathode into the second circuit of electrolyte (C1) and the passage of salt(s) of metal(s) of the layer from the anodic space towards the first circuit of electrolyte (C2).
23. Process according to claim 22, characterized in that an anionic membrane is used, the said membrane allowing, when using a sulfuric electrolyte for the first circuit of electrolyte (C2), the transfer of charge only by the passage of SO4- ions out of the chamber, and preventing the passage of metal salt(s), the hydrogen formed at the cathode is removed from the chamber, the membrane preventing the passage of said hydrogen towards the anodic space of the cell.
24. Process according to claim 23, characterized in that the electrolyte of the first circuit (C2), i.e. the electrolyte flowing in the cathodic chamber, contains from 50 to 100 g/I Na2SO4 and has a pH comprised between 1.5 and 2.
25. Process according to claim 22, characterized in that a velocity of the secondary electrolyte of at least 0.1 m/s is ensured.
26. Process according to anyone of the claims 22 to 25, characterized in that the upper part of the chamber is submitted to a gas suction.
27. Process according to claim 26, characterized in that a vacuum is created at the upper part of the chamber, said vacuum being such that the pressure at the upper part of the chamber is lower to 0.75 x the atmospheric pressure.
28. Plant for treating in continu a steel strip in an electrolytic cell, said cell comprising at least one electrode according to anyone of the claims 1 to 12, for the working of a process according to anyone of the claims 22 to 27.
29. Plant for treating in continu a steel strip in an electrolytic cell, said cell comprising at least one electrode according to anyone of the claims 1 to 12, for the working of a process according to anyone of the claims 14 to 20 and 22 to 27 which comprises two electrolyte cells (1,50 ; 600,601) provided with an electrode according to anyone of the claims 1 to 12, the chambers of said electrodes being mounted in one and same circuit for the flow of secondary electrolyte.
30. Plant according to claim 29, characterized in that the electrolyte flow is such that the electrolyte flowing out of the chamber of an electrode of a first cell (1) is conveyed, possibly after treatment (531), into the chamber of an electrode of a second cell (50) and in that the electrolyte flowing out of an electrode of the second cell (50) is conveyed, possibly after the treatment, in the chamber of an electrode of the first cell.
31. Plant according to anyone of the claims 29 to 30, characterized in that the electrode (53) is placed in an enclosure, the wall of which directed to the strip (3) is a membrane, the said enclosure being connected to a device for conveying electrolyte in the enclosure and to a suction system for removing gases formed in the enclosure.
32. Plant according to claim 29 for the preparation in continu of a steel strip provided with a layer electrodeposited, said plant comprising successively a first unit, preferably an electrolytic cell (11), for depositing on both faces of the steel strip a first layer of Zn or Zn alloy, a second electrolytic cell (1) for depositing on one face (2) of the steel strip (3) a Zn-Ni layer and a unit for the electrolytic removal of Ni possibly deposited on the first layer of Zn or Zn alloy of the other face (4) of the strip (3), in accordance to a process according to anyone of the claims 22 to 27, in which the unit for removing the Ni possibly deposited on the first layer of Zn or Zn alloy is an electrolytic cell (50) comprising an electrode (53) placed in an enclosure, a wall of which is made of the membrane (77).
33. Plant according to claim 32, characterized in that it comprises a first tank (54) for the supply of electrolyte to the electrolytic cell (1) for the deposit of a Zn-Ni layer, a second tank (55) for collecting the electrolyte flowing out of the electrolytic cell (1) for the deposit of a Zn-Ni layer, a third tank (36) for the supply of electrolyte to the cell (50) for removing the Ni possibly deposited on the first layer of Zn or Zn alloy and a fourth tank (57) for collecting the electrolyte flowing out of the cell (50) for the removal of the Ni possibly deposited on the first layer of Zn or Zn alloy, the fourth tank (57) is linked to the first tank (54) so that the enriched electrolyte flowing out of the cell (50) for the removal of Ni possibly deposited on the first layer of Zn or Zn alloy is conveyed to the electrolysis cell (1).
34. Plant according to claim 33, characterized in that a filter (72) is mounted between the cell (50) for the removal of the Ni possibly deposited on the first layer of Zn or Zn alloy and the fourth tank (57).
35. Plant according to claim 33 or 34, characterized in that the second tank (55) and/or the fourth tank (57) is linked to a plant (64) for the enrichment of the electrolyte in Zn and Ni, this plant conveying the enriched electrolyte to the first tank (54).
36. Plant according to claim 34, characterized in that it comprises a unit (67) for stocking and/or preparing secondary electrolyte which is lean or devoid of Zn and Ni, this unit (67) comprising a tank (68) for secondary electrolyte connected to the enclosure surrounding the cathode (53) by means of a supply pipe and a pipe for removing electrolyte, this tank (8) being also connected to the third tank (56) for possibly supplying it with fresh electrolyte.
EP92910109A 1991-05-30 1992-05-27 Electrode for an electrolytic cell, use thereof and method using same Expired - Lifetime EP0580730B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/BE1991/000033 WO1992021792A1 (en) 1991-05-30 1991-05-30 Method and apparatus for continuously preparing a steel strip having an electrolytically deposited coating layer
WOPCT/BE91/00033 1991-05-30
DE19914122543 DE4122543A1 (en) 1991-03-18 1991-07-08 Zinc@ metal strip electrochemical coating - using ionic exchange membrane preventing oxygen@ and chlorine@ gases at anode contaminating cathodic area for metal salt redn.
DE4122543 1991-07-08
PCT/BE1992/000022 WO1992021794A2 (en) 1991-05-30 1992-05-27 Electrode for an electrolytic cell, use thereof and method using same

Publications (3)

Publication Number Publication Date
EP0580730A1 EP0580730A1 (en) 1994-02-02
EP0580730B1 true EP0580730B1 (en) 1995-07-19
EP0580730B2 EP0580730B2 (en) 1999-06-09

Family

ID=25662564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92910109A Expired - Lifetime EP0580730B2 (en) 1991-05-30 1992-05-27 Electrode for an electrolytic cell, use thereof and method using same

Country Status (10)

Country Link
US (1) US5639360A (en)
EP (1) EP0580730B2 (en)
JP (1) JP3267970B2 (en)
KR (1) KR100257807B1 (en)
AT (1) ATE125310T1 (en)
AU (1) AU1749892A (en)
CA (1) CA2109708C (en)
DE (1) DE69203600T3 (en)
ES (1) ES2076034T5 (en)
WO (1) WO1992021794A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036107A1 (en) * 1997-02-14 1998-08-20 Dover Industrial Chrome, Inc. Plating apparatus and method
FI114871B (en) * 2002-07-31 2005-01-14 Outokumpu Oy Removal of copper surface oxides
US20040026255A1 (en) * 2002-08-06 2004-02-12 Applied Materials, Inc Insoluble anode loop in copper electrodeposition cell for interconnect formation
JP4441725B2 (en) * 2003-11-04 2010-03-31 石原薬品株式会社 Electric tin alloy plating method
DE102005060235C5 (en) * 2005-12-14 2010-04-01 Groz-Beckert Kg System part and chrome plating process
WO2008034212A1 (en) * 2006-09-21 2008-03-27 Qit-Fer & Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
JP5277448B2 (en) * 2008-03-20 2013-08-28 リオ ティント フェル エ チタン インコーポレイティド Electrochemical treatment method for recovering the value of metallic iron and chlorine from iron rich metal chloride waste
JP6142408B2 (en) 2015-03-13 2017-06-07 奥野製薬工業株式会社 Electrolytic stripper for jigs
KR101908815B1 (en) * 2016-12-23 2018-10-16 주식회사 포스코 ELECTROPLATED Zn-Ni BASED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY AND METHOD OF MANUFACTURING THE SAME
EP3868923A1 (en) * 2020-02-19 2021-08-25 Semsysco GmbH Electrochemical deposition system for a chemical and/or electrolytic surface treatment of a substrate

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR890015A (en) * 1942-06-24 1944-01-26 Automatic gas valve
JPS5927392B2 (en) * 1976-12-23 1984-07-05 ダイヤモンド・シヤムロツク・テクノロジ−ズエス・エ− Chlorine-alkali electrolyzer
US4197179A (en) * 1978-07-13 1980-04-08 The Dow Chemical Company Electrolyte series flow in electrolytic chlor-alkali cells
DD144427A1 (en) * 1979-06-15 1980-10-15 Hermann Matschiner DEVICE FOR CARRYING OUT UNDER GAS DEVELOPMENT OF ELECTRO-CHEMICAL PROCESSES
DE3176766D1 (en) * 1980-10-21 1988-07-07 Oronzio De Nora Sa Electrolysis cell and method of generating halogen
FI72150C (en) * 1980-11-15 1987-04-13 Asahi Glass Co Ltd Alkalimetallkloridelektrolyscell.
JPS5893893A (en) * 1981-11-30 1983-06-03 Tokuyama Soda Co Ltd Continuous plating device
JPS58177487A (en) * 1982-04-08 1983-10-18 Sumitomo Metal Ind Ltd Method and device for diaphragm electroplating
JPS5980791A (en) * 1982-10-27 1984-05-10 Sumitomo Metal Ind Ltd Proximity electrolyzing device for strip
JPS59126800A (en) * 1983-01-07 1984-07-21 Sumitomo Metal Ind Ltd Electrolytic removing method of plating film
EP0144711B1 (en) * 1983-11-01 1987-08-12 Nippon Steel Corporation Process for electroplating a metallic material with an iron-zinc alloy
US4772362A (en) * 1985-12-09 1988-09-20 Omi International Corporation Zinc alloy electrolyte and process
US4675254A (en) * 1986-02-14 1987-06-23 Gould Inc. Electrochemical cell and method
JPS63145800A (en) * 1986-12-08 1988-06-17 Nisshin Steel Co Ltd Method for managing iron-based electroplating bath
US4770756A (en) * 1987-07-27 1988-09-13 Olin Corporation Electrolytic cell apparatus
JPH0819551B2 (en) * 1989-03-10 1996-02-28 日新製鋼株式会社 Iron-based electrodeposition method and apparatus
JPH0637715B2 (en) * 1989-03-17 1994-05-18 エルナー株式会社 Method for manufacturing electrode foil for aluminum electrolytic capacitor
US5084145A (en) * 1989-04-27 1992-01-28 Sumitomo Metal Industries, Ltd. Method for manufacturing one-sided electroplated steel sheet
USRE34191E (en) * 1989-05-31 1993-03-09 Eco-Tec Limited Process for electroplating metals
JPH0324299A (en) * 1989-06-22 1991-02-01 Kawasaki Steel Corp Method for pickling band stainless steel
BE1004364A3 (en) * 1989-08-11 1992-11-10 Solvay Chassis for electrolyser type filter press and electrolyser monopolar type of filter press.
SE505714C2 (en) * 1991-09-19 1997-09-29 Permascand Ab Electrode with channel forming wires, methods of making the electrode, electrolytic cell provided with the electrode and methods of electrolysis

Also Published As

Publication number Publication date
ES2076034T3 (en) 1995-10-16
AU1749892A (en) 1993-01-08
WO1992021794A3 (en) 1993-02-04
US5639360A (en) 1997-06-17
DE69203600T2 (en) 1996-03-28
JPH06507448A (en) 1994-08-25
ATE125310T1 (en) 1995-08-15
KR100257807B1 (en) 2000-06-01
JP3267970B2 (en) 2002-03-25
DE69203600D1 (en) 1995-08-24
DE69203600T3 (en) 2000-01-05
ES2076034T5 (en) 1999-10-01
EP0580730A1 (en) 1994-02-02
WO1992021794A2 (en) 1992-12-10
CA2109708A1 (en) 1992-12-10
CA2109708C (en) 1999-09-28
EP0580730B2 (en) 1999-06-09

Similar Documents

Publication Publication Date Title
EP0580730B1 (en) Electrode for an electrolytic cell, use thereof and method using same
TWI359883B (en) Apparatus and foam electroplating process
US6890416B1 (en) Copper electroplating method and apparatus
FI123851B (en) Cathodram and use of a cathodram
CA1247047A (en) Electrolytic production of hydrogen on a cathode
FR2473560A1 (en) METHOD AND APPARATUS FOR RECHARGING METAL TO REMOVE AN ELECTROLYTIC VENEER BATH
US20100200408A1 (en) Method and apparatus for the solution deposition of high quality oxide material
CN106480491A (en) There is the electroplating processes device of current sampling electrode
US20090272644A1 (en) Plating apparatus with direct electrolyte distribution system
US20100200067A1 (en) Substrate for semiconductor device and method for its manufacture
CA1251415A (en) Electroplating strip counter-currently in sections containing vertical anodes
EP2718483A1 (en) Method for the treatment, by percolation, of a felt element by means of electrodeposition
FR2680523A1 (en) ELECTRODEPOSITION PROCESS.
FR2546186A1 (en) DEVICE FOR THE ELECTROLYTIC TREATMENT OF METAL TAPES
WO1992021792A1 (en) Method and apparatus for continuously preparing a steel strip having an electrolytically deposited coating layer
US20100200413A1 (en) Solution deposition method and apparatus with partiphobic substrate orientation
FR2918673A1 (en) INSTALLATION AND METHOD FOR ELECTROLYTICALLY SHAPING STEEL BANDS
EP2191044B1 (en) Equipment and method for the electrolytic tinning of steel strips using a non-soluble anode
EP2173928B1 (en) Plant and process for the electrolytic tinning of steel strips, using an insoluble anode
FR2526447A1 (en) METHOD AND DEVICE FOR THE CONTINUOUS, HIGH-CURRENT DENSITY ELECTROLYTIC DEPOSITION OF A LAYER OF A ZINC-BASED ALLOY
GB1598306A (en) Electrolytic method and apparatus
US20040226823A1 (en) Installation for the cataphoretic dip coating of articles
EP3914757B1 (en) Method for electrolytic zinc-nickel alloy deposition using a membrane anode system
NO309048B1 (en) Apparatus and method for electrolytic separation of metals by means of a rotating cathode system and an application of the same
KR200290930Y1 (en) Electrolytic galvanaizing line Zn supply pump suction part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL

17Q First examination report despatched

Effective date: 19941024

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL

REF Corresponds to:

Ref document number: 125310

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69203600

Country of ref document: DE

Date of ref document: 19950824

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076034

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951014

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SOLVAY (SOCIETE ANONYME)

Effective date: 19960417

NLR1 Nl: opposition has been filed with the epo

Opponent name: SOLVAY (SOCIETE ANONYME)

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19990609

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FR GB IT LU NL

NLR2 Nl: decision of opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19990819

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030430

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030508

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030512

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030514

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030522

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030527

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040527

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

BERE Be: lapsed

Owner name: *SCHNETTLER ROLAND

Effective date: 20040531

Owner name: *MAY HANS JOSEF

Effective date: 20040531

Owner name: *SIKEL N.V.

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050527

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040528