EP0579910B1 - Device for the electrolytic treatment of liquids in anodic and cathodic compartments - Google Patents

Device for the electrolytic treatment of liquids in anodic and cathodic compartments Download PDF

Info

Publication number
EP0579910B1
EP0579910B1 EP93107034A EP93107034A EP0579910B1 EP 0579910 B1 EP0579910 B1 EP 0579910B1 EP 93107034 A EP93107034 A EP 93107034A EP 93107034 A EP93107034 A EP 93107034A EP 0579910 B1 EP0579910 B1 EP 0579910B1
Authority
EP
European Patent Office
Prior art keywords
separation plate
chamber
electrolyte
membrane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107034A
Other languages
German (de)
French (fr)
Other versions
EP0579910A1 (en
Inventor
Karl-Heinz Dulle
Benno Dr. Lüke
Jochen Prasser
Wolfgang Dr. Strewe
Joachim Dr. Schulze
Martin Wollny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP0579910A1 publication Critical patent/EP0579910A1/en
Application granted granted Critical
Publication of EP0579910B1 publication Critical patent/EP0579910B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention is directed to a device for the electrolytic treatment of liquids, of the type specified in the preamble of claim 1.
  • Such a metal electrolysis cell is known for example from the applicant's EP-0 095 039.
  • Such membrane cells have great advantages over other cell designs. They are used in particular for the production of chlorine, sodium hydroxide solution and hydrogen, and they have advantages over conventional mercury and diaphragm cells in both ecological and energy terms. In the standard fields of application, such cells are also used for the electrolytic cleaning or regeneration of waste water, thin acids and the like.
  • the membranes effectively separate the anodic NaCl solution from the cathodic NaOH solution and separate the gaseous products chlorine and hydrogen.
  • they have the special task of controlling the electrolysis process in such a way that only cations can pass through the membranes, while the passage of the anions is almost completely prevented becomes. This ensures that the hydroxyl ions of the NaOH solution which are pushing in the direction of the anode are largely retained by the membrane and cannot be discharged at the anode with the formation of oxygen and other by-products.
  • Modern ion exchange membranes have a current yield of 95-98% related to the NaOH production, ie only a few percent of the hydroxyl ions can pass through the membrane with the formation of about 1.5-2% oxygen in chlorine gas.
  • the electrolyte For the electrolysis process to function properly inside the electrode chambers, the electrolyte must be distributed as evenly as possible over the entire height and width of the chamber, i.e. the best possible mixing of the liquids in the chambers is desirable. This fluid mixing is particularly important in the anolyte chambers of the chlor-alkali cells, since the ion exchange membranes only work optimally in a relatively narrow range of chloride concentration, temperature and pH.
  • the electrolysis cell is operated in such a way that the inlet concentration of the anolyte of chloride is 300 g / l and the outlet concentration is approximately 200 g / l, it cannot be ruled out that stagnation of the anolyte in regions of the anode chamber where the flow is unfavorable chloride depletion to well below 200 g / l can occur, which would lead to local membrane damage in a short time.
  • the anolyte is reduced to a pH value of 1 or less by adding hydrochloric acid to reduce the oxygen content in the chlorine gas before entering the anolyte chambers.
  • the membranes only have sufficient chemical resistance at pH values above about 1.5 to 2, it is absolutely necessary to mix the anolyte so well immediately after entering the anolyte chamber that the electrolysis effect, in particular by reaction with the If the membrane contains hydroxyl ions in the anolyte, the pH value above 1.5 is also secured in the inlet area of the anolyte chamber.
  • the average flow rate in the anolyte chamber in the horizontal direction is very low at a few centimeters per minute. In the vertical direction, however, it is larger, especially in the upper chamber area, due to the buoyancy effect of the chlorine gas. As a result, a certain natural liquid mixing occurs in the vertical direction in the anolyte chamber, the intensity of which essentially depends on the amount of chlorine gas produced, ie on the cell load. The natural mixing is in the horizontal direction in the lower chamber area on the other hand, very small and the worse the wider the cell, the worse.
  • DE-30 17 006-C2 serves to improve the gas bubble extraction in mercury cells with horizontal electrodes in order to prevent gas cushions between the electrodes. It can only be used with horizontally arranged electrodes.
  • An electrolyte cell without a separator is shown in DE-20 03 885-B2, while EP-0 121 608-A2 discloses a plate-shaped cathode without perforation and with a fine perforated counter anode for better current distribution and voltage gain.
  • the object of the invention is to create a solution with which a better liquid mixing and flow in the respective electrolysis chambers of membrane electrolysis cells is achieved without external aids, with as uniform a membrane load as possible while avoiding foam formation in the membrane area, a strongly acidified anolyte solution being able to be supplied to the membrane cell as a feedstock, without the ion exchange membrane becoming ineffective prematurely.
  • the invention makes use of the knowledge of using the gas bubbles formed on the electrodes as a kind of conveying aid, by preventing the gas bubbles from being distributed over the entire chamber space. An upward flow is generated by the gas bubbles which only form on one side of the separating element in the region of the electrode.
  • well-designed flow profiles are influenced both by the design of the partition plate itself, for example its profiling, or by the provision of guide webs, but also by the geometric arrangement of the partition plate within the chamber.
  • An influence by varying the distance of the separating plate to the electrode plate on the one hand and to the opposite chamber wall on the other hand can result in different flow configurations.
  • the invention represents a significant improvement of the known ion exchange membrane cells, since it makes it possible to produce chlorine gas with a high concentration and low oxygen content without the aid of external pump devices and without adverse effects on the membrane behavior.
  • the object stated at the outset can be achieved in terms of the method according to the invention by using a method using the device described, such a method being characterized in that a natural soleplate is generated at least in the anode chamber via a separating element.
  • the device for electrolytic treatment of liquids shown in simplified form in FIG. 1 is generally designated 1 and is formed by an anode chamber 2 and a cathode chamber 3, which are separated from one another in the center by an ion exchange membrane 4.
  • inlet openings 5 for the supply of fresh electrolytes or fresh brine and upper outlet openings 6 for the removal of the respective electrolyte product.
  • Electrode plate 7 Shown in dashed lines on both sides of the ion exchange membrane 4 is an electrode plate 7 with the electrical ones Connections 8 and 9, which in turn are only indicated symbolically.
  • a separating plate denoted by 10 is located in the anode and / or in the cathode chamber, only one separating plate being shown in FIG. 1.
  • a bubble formation is indicated by dots, the left half of the figure in FIG. 1 without the partition plate indicating the undisturbed distribution of the bubbles in the chamber 3, while a directional bubble formation in the electrolyte is indicated by the partition plate.
  • FIG. 2 shows the side view of a separating plate 10a, which is equipped on both sides with essentially vertical guide webs 12 which are inclined against the direction of gravity, the direction of inclination being different on the front and rear. It can be seen from such a configuration that there is a kind of helical flow around the separating plate, as indicated by the arrows, the rear separating webs are indicated by dashed lines and with 12 ' referred to and which causes the horizontal throughput of the electrolyte in the chamber.
  • FIGS. 3a and 3b Another embodiment is shown in FIGS. 3a and 3b, here the separating plate 10b is formed from individual segments which alternately have a lower underflow weir 13 and upper overflow weirs 14, the partial plates denoted by 10 'being able to be arranged in a zigzag shape, as can be seen from Fig. 3b.
  • FIG. 4 shows a further modified exemplary embodiment in the representation corresponding to FIG. 1.
  • An inflow weir 15 is provided in the area of the lower fresh brine supply 5c, which forces the fresh brine to first carry out the flow deflection indicated by the arrows 11c.

Abstract

The object is to achieve a better liquid mixing in the respective electrolysis chambers without external aids and with as uniform as possible membrane loading avoiding foam formation in the membrane region using a device (1) for the electrolytic treatment of liquids in an anodic (2) and a cathodic compartment (3) which are separated from one another by an ion exchanger membrane (4). The chambers (2, 3) are equipped with an inlet opening (5) and an outlet opening (6) for the flowing electrolyte and with one two-dimensional electrode in each case having associated power-supply terminals (8, 9). A strongly acidified anolyte solution can be fed to the membrane cell as feedstock without the ion exchanger membrane becoming inoperative prematurely. This is achieved by providing at least one separating element (10) having circulating flow in some areas to produce a defined mixing flow in each chamber (2, 3). <IMAGE>

Description

Die Erfindung richtet sich auf eine Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten, der im Oberbegriff des Anspruches 1 angegebenen Gattung.The invention is directed to a device for the electrolytic treatment of liquids, of the type specified in the preamble of claim 1.

Eine derartige Metallelektrolysezelle ist beispielsweise aus der EP-0 095 039 der Anmelderin bekannt. Derartige Membranzellen haben gegenüber anderen Zellenkonstruktionen große Vorteile. Sie werden insbesondere zur Herstellung von Chlor, Natronlauge und Wasserstoff eingesetzt, und sie weisen Vorteile gegenüber gebräuchlichen Quecksilber und Diaphragmazellen sowohl in ökologischer als auch energetischer Hinsicht auf. In den standardgemäßen Einsatzgebieten werden derartige Zellen auch bei der elektrolytischen Reinigung bzw. Regenerierung von Abwässern, Dünnsäuren und dgl. eingesetzt.Such a metal electrolysis cell is known for example from the applicant's EP-0 095 039. Such membrane cells have great advantages over other cell designs. They are used in particular for the production of chlorine, sodium hydroxide solution and hydrogen, and they have advantages over conventional mercury and diaphragm cells in both ecological and energy terms. In the standard fields of application, such cells are also used for the electrolytic cleaning or regeneration of waste water, thin acids and the like.

In Chloralkali-Elektrolysezellen sorgen die Membranen für eine wirksame Trennung der anodischen NaCl-Lösung von der kathodischen NaOH-Lösung sowie für die Trennung der gasförmigen Produkte Chlor und Wasserstoff. Daneben haben sie aber die besondere Aufgabe, den Elektrolysevorgang so zu steuern, daß nur Kationen die Membranen passieren können, während der Durchtritt der Anionen nahezu vollständig verhindert wird. Damit wird erreicht, daß die in Richtung Anode drängenden Hydroxylionen der NaOH-Lösung von der Membran weitestgehend zurückgehalten werden und sich nicht an der Anode unter Bildung von Sauerstoff und anderen Nebenprodukten entladen können. Moderne Ionenaustauschermembranen haben auf die NaOH-Produktion bezogene Stromausbeuten von 95 - 98 %, d.h. nur wenigen Prozent der Hydroxylionen gelingt die Passage durch die Membran unter Bildung von etwa 1,5 - 2 % Sauerstoff in Chlorgas.In chlor-alkali electrolysis cells, the membranes effectively separate the anodic NaCl solution from the cathodic NaOH solution and separate the gaseous products chlorine and hydrogen. In addition, however, they have the special task of controlling the electrolysis process in such a way that only cations can pass through the membranes, while the passage of the anions is almost completely prevented becomes. This ensures that the hydroxyl ions of the NaOH solution which are pushing in the direction of the anode are largely retained by the membrane and cannot be discharged at the anode with the formation of oxygen and other by-products. Modern ion exchange membranes have a current yield of 95-98% related to the NaOH production, ie only a few percent of the hydroxyl ions can pass through the membrane with the formation of about 1.5-2% oxygen in chlorine gas.

Für eine einwandfreie Funktion des Elektrolysevorganges im Inneren der Elektrodenkammern ist eine möglichst gleichmäßige Verteilung des Elektrolyten über die gesamte Kammerhöhe und -breite erforderlich, d.h., es ist eine möglichst gute Flüssigkeitsdurchmischung in den Kammern anzustreben. Diese Flüssigkeitsdurchmischung ist besonders in den Anolytkammern der Chloralkalizellen wichtig, da die Ionenaustauschermembranen nur in einem verhältnismäßig engen Bereich von Chloridkonzentration, Temperatur und pH-Wert optimal arbeiten.For the electrolysis process to function properly inside the electrode chambers, the electrolyte must be distributed as evenly as possible over the entire height and width of the chamber, i.e. the best possible mixing of the liquids in the chambers is desirable. This fluid mixing is particularly important in the anolyte chambers of the chlor-alkali cells, since the ion exchange membranes only work optimally in a relatively narrow range of chloride concentration, temperature and pH.

Wird z.B. die Elektrolysezelle so betrieben, daß die Eintrittskonzentration des Anolyten an Chlorid 300 g/l und die Austrittskonzentration ca. 200 g/l beträgt, so ist nicht auszuschließen, daß in strömungsmäßig ungünstig gelegenen Bereichen der Anodenkammer durch Stagnation des Anolyten eine Chloridverarmung auf weit unter 200 g/l eintreten kann, die in kurzer Zeit zu lokalen Membranschädigungen führen würde. Die gleiche Gefahr besteht, wenn der Anolyt zur Verringerung des Sauerstoffgehaltes im Chlorgas vor Eintritt in die Anolytkammern durch Zugabe von Salzsäure auf pH-Werte von 1 und darunter stark angesäuert wird. Da die Membranen erst bei pH-Werten oberhalb von etwa 1,5 bis 2 ausreichende chemische Resistenz besitzen, ist es unbedingt erforderlich, den Anolyten unmittelbar nach Eintritt in die Anolytkammer so gut zu vermischen, daß die durch Elektrolysewirkung, insbesondere durch Reaktion mit den durch die Membran in dem Anolyten gelangten Hydroxylionen, eintretende pH-Wert über 1,5 auch im Eintrittsbereich der Anolytkammer gesichert ist.If, for example, the electrolysis cell is operated in such a way that the inlet concentration of the anolyte of chloride is 300 g / l and the outlet concentration is approximately 200 g / l, it cannot be ruled out that stagnation of the anolyte in regions of the anode chamber where the flow is unfavorable chloride depletion to well below 200 g / l can occur, which would lead to local membrane damage in a short time. The same danger exists if the anolyte is reduced to a pH value of 1 or less by adding hydrochloric acid to reduce the oxygen content in the chlorine gas before entering the anolyte chambers. Since the membranes only have sufficient chemical resistance at pH values above about 1.5 to 2, it is absolutely necessary to mix the anolyte so well immediately after entering the anolyte chamber that the electrolysis effect, in particular by reaction with the If the membrane contains hydroxyl ions in the anolyte, the pH value above 1.5 is also secured in the inlet area of the anolyte chamber.

Bei den üblichen Chloridverarmungen des Elektrolyten von ca. 300 auf ca. 200 g/l ist die mittlere Strömungsgeschwindigkeit in der Anolytkammer in Horizontalrichtung mit wenigen Zentimetern pro Minute sehr gering. In Vertikalrichtung ist sie dagegen vor allem im oberen Kammerbereich infolge der Auftriebswirkung des Chlorgases größer. Dadurch tritt in der Anolytkammer eine gewisse natürliche Flüssigkeitsdurchmischung in vertikaler Richtung ein, deren Intensität im wesentlichen von der entstehenden Chlorgasmenge, d.h. von der Zellenbelastung abhängt. In horizontaler Richtung im unteren Kammerbereich ist die natürliche Durchmischung dagegen sehr gering und wird um so schlechter je breiter die Zelle ist.With the usual chloride depletion of the electrolyte from approx. 300 to approx. 200 g / l, the average flow rate in the anolyte chamber in the horizontal direction is very low at a few centimeters per minute. In the vertical direction, however, it is larger, especially in the upper chamber area, due to the buoyancy effect of the chlorine gas. As a result, a certain natural liquid mixing occurs in the vertical direction in the anolyte chamber, the intensity of which essentially depends on the amount of chlorine gas produced, ie on the cell load. The natural mixing is in the horizontal direction in the lower chamber area on the other hand, very small and the worse the wider the cell, the worse.

Ferner kann man beobachten, daß die im Elektrolyten aufsteigenden Gasblasen die Neigung haben, sich im oberen Kammerbereich zu einer geschlossenen Schaumschicht zu vereinigen. Diese Schaumbildung ist um so stärker, je größer die Zellenbelastung und je höher die Zelle ist. Da der elektrische Widerstand im Schaum größer ist als im übrigen Elektrolyten, wird dadurch die Stromverteilung über die Membranfläche und damit die Membranbelastung ungleichmäßig.It can also be observed that the gas bubbles rising in the electrolyte have a tendency to unite in the upper chamber area to form a closed foam layer. This foam formation is stronger, the greater the cell load and the higher the cell. Since the electrical resistance in the foam is greater than in the rest of the electrolyte, the current distribution over the membrane surface and thus the membrane load become uneven.

Es ist bekannt, zur Verbesserung der Flüssigkeitsdurchmischung für einen externen Mischvorgang zu sorgen, etwa über Hochbehälter mit Pumpenunterstützung. Derartige Hilfseinrichtungen (z.B. nach DE 41 15 556-A1) sind in der Regel aufwendig und müssen an jedem Elektrolyseur vorgesehen sein als Rohrleitungen, Pumpen, Behälter und dgl. mit den damit verbundenen zusätzlichen Kosten.It is known to provide an external mixing process to improve the liquid mixing, for example via elevated tanks with pump support. Such auxiliary devices (e.g. according to DE 41 15 556-A1) are generally complex and must be provided on each electrolyzer as pipelines, pumps, containers and the like, with the associated additional costs.

Zum Stand der Technik sei noch auf folgende Literaturstellen verwiesen: DE 32 28 884-A1. Die dort beschriebene Erfindung beschäftigt sich mit der wirksamen Entfernung der Gasblasen aus dem Elektrolytbereich zwischen Ionenaustauschermembran und Elektrode, um dadurch eine möglichst gleichmäßige Stromverteilung und niedrige Zellenspannung zu erreichen. Dazu ist eine nicht perforierte Plattenelektrode mit Gasaustrittsschlitzen vorgesehen, die aber nur bedingt einsatzfähig ist. So ist sie bei der Chloralkali-Elektrolyse nur für die Kathode möglich, da nur dort ein Spalt zwischen Membran und Elektrode aufrechterhalten werden kann, während wegen des Dichteunterschiedes Katholyt/Anolyt die Membran auf der Anode aufliegt. Die Anode benötigt deshalb dort eine Feinperforation der gesamten Oberfläche, da nur diese bei einem Nullabstand zwischen Membran und Anode eine genügende Entgasungsfähigkeit besitzen würde.With regard to the prior art, reference is also made to the following references: DE 32 28 884-A1. The invention described there is concerned with the effective removal of the gas bubbles from the electrolyte area between the ion exchange membrane and the electrode, in order to thereby achieve the most uniform possible current distribution and low cell voltage to reach. A non-perforated plate electrode with gas outlet slots is provided for this purpose, but it is only of limited use. In chlor-alkali electrolysis, for example, it is only possible for the cathode, since a gap between the membrane and the electrode can only be maintained there, while the membrane lies on the anode due to the difference in density of catholyte / anolyte. The anode therefore requires fine perforation of the entire surface there, since only this would have sufficient degassing capability if the membrane and anode were at a zero distance.

Die DE-30 17 006-C2 dient der Verbesserung des Gasblasenabzuges bei Quecksilberzellen mit horizontalen Elektroden, um Gaspolster zwischen den Elektroden zu verhindern. Sie kann nur bei horizontal angeordneten Elektroden eingesetzt werden. Eine Elektrolytzelle ohne Separator zeigt die DE-20 03 885-B2, während die EP-0 121 608-A2 eine plattenförmige Kathode ohne Perforation und mit fein perforierter Gegenanode zur besseren Stromverteilung und Spannungsgewinn offenbart.DE-30 17 006-C2 serves to improve the gas bubble extraction in mercury cells with horizontal electrodes in order to prevent gas cushions between the electrodes. It can only be used with horizontally arranged electrodes. An electrolyte cell without a separator is shown in DE-20 03 885-B2, while EP-0 121 608-A2 discloses a plate-shaped cathode without perforation and with a fine perforated counter anode for better current distribution and voltage gain.

Aus der US-4 138 295 ist es bekannt, mit Leitblechen bzw. Leitkästen für eine Zirkulation des Elektrolyten zu sorgen, wobei dort die Anoden bei einem Ausführungsbeispiel kastenförmig mit unteren Austrittsöffnungen gestaltet sind, die im Inneren nicht leitende Platten als Strömungaleitelemente aufweisen, so daß es zu einer vertikal gerichteten Auf- und Abwärtsströmung des Elektrolyten kommt.From US Pat. No. 4,138,295 it is known to provide circulation of the electrolyte with baffles or baffle boxes, the anodes in one embodiment being box-shaped with lower outlet openings which have non-conductive plates inside as flow baffle elements have, so that there is a vertically directed upward and downward flow of the electrolyte.

Aufgabe der Erfindung ist die Schaffung einer Lösung mit der ohne externe Hilfsmittel eine bessere Flüssigkeitsdurchmischung und -durchströmung in den jeweiligen Elektrolysekammern von Membranelektrolysezellen erreicht wird mit möglichst gleichmäßiger Membranbelastung unter Vermeidung von Schaumbildung im Membranenbereich, wobei eine stark angesäuerte Anolytlösung der Membranzelle als Einsatzstoff zuführbar ist, ohne daß dabei die Ionenaustauschermembran vorzeitig unwirksam wird.The object of the invention is to create a solution with which a better liquid mixing and flow in the respective electrolysis chambers of membrane electrolysis cells is achieved without external aids, with as uniform a membrane load as possible while avoiding foam formation in the membrane area, a strongly acidified anolyte solution being able to be supplied to the membrane cell as a feedstock, without the ion exchange membrane becoming ineffective prematurely.

Mit einer Vorrichtung der eingangs bezeichneten Art wird diese Aufgabe gemäß der Erfindung durch die kennzeichnenden Merkmale des Anspruches 1 gelöst.With a device of the type described in the introduction, this object is achieved according to the invention by the characterizing features of claim 1.

Die Erfindung macht sich die Erkenntnis zunutze, die an den Elektroden entstehenden Gasblasen quasi als Förderhilfsmittel einzusetzen, indem die Verteilung der Gasblasen über den gesamten Kammerraum verhindert wird. Durch die nur auf einer Seite des Trennelementes im Bereich der Elektrode entstehenden Gasblasen wird eine nach oben gerichtete Strömung erzeugt.The invention makes use of the knowledge of using the gas bubbles formed on the electrodes as a kind of conveying aid, by preventing the gas bubbles from being distributed over the entire chamber space. An upward flow is generated by the gas bubbles which only form on one side of the separating element in the region of the electrode.

Die Einflußnahme auf gut ausgebildete Strömungsprofile erfolgt erfindungsgemäß sowohl über die Gestaltung der Trennplatte selbst, etwa deren Profilierung, oder des Vorsehens von Führungsstegen, aber auch durch die geometrische Anordnung der Trennplatte innerhalb der Kammer. So kann eine Einflußnahme durch die Variation des Abstandes der Trennplatte zur Elektrodenplatte einerseits und zu der gegenüberliegenden Kammerwand andererseits für unterschiedliche Strömungsausbildungen sorgen.According to the invention, well-designed flow profiles are influenced both by the design of the partition plate itself, for example its profiling, or by the provision of guide webs, but also by the geometric arrangement of the partition plate within the chamber. An influence by varying the distance of the separating plate to the electrode plate on the one hand and to the opposite chamber wall on the other hand can result in different flow configurations.

Durch Änderung der Neigungswinkel von Führungsstegen und/oder durch entsprechende Profilierung der Trennplatte kann eine Art schraubenförmig zirkulierende Durchströmung der Anoden- bzw. Kathodenkammer erzeugt werden und dgl. mehr.By changing the angle of inclination of guide webs and / or by appropriately profiling the separating plate, a type of helically circulating flow through the anode or cathode chamber can be generated and the like. More.

Beispiel: For example :

Es wurde ein Versuch mit drei Zellenelementen vorgenommen, bei einem Versuchsaufbau in Zelle Nr. 3 etwa gemäß Fig. 4 weiter unten, d.h. in der Anolytkammer wurde zwischen der Soleeintrittsstelle und einer vorgesehenen Trennplatte ein Wehr angeordnet, welches dicht mit dem Kammerboden und den Kammerseiten verbunden war. Dadurch wurde verhindert, daß frische Sole von den Eintrittsstellen direkt zur Membran gelangen konnte. Während des Versuches wurde in allen drei Zellen der pH-Wert auf 0,6 gehalten und es wurde in Zelle Nr. 3 eine O2-Konzentration von nur 0,4 % im Chlorgas gemessen. Trotz des niedrigen pH-Wertes der Sole wurde im Elektrolyseraum an keiner Stelle der pH-Wert von 1,5 unterschritten.An experiment was carried out with three cell elements, in an experimental setup in cell No. 3, for example according to FIG. 4 below, ie a weir was arranged in the anolyte chamber between the brine entry point and an intended separating plate, which weir tightly connected to the chamber bottom and the chamber sides was. This prevented fresh brine from reaching the membrane directly from the entry points. During the experiment, the pH was kept at 0.6 in all three cells and an O 2 concentration of only 0.4% in the chlorine gas was measured in cell No. 3. Despite the low pH of the brine, At no point in the electrolysis room did the pH fall below 1.5.

Die folgende Tabelle zeigt, daß diese niedrige O2-Konzentration nur in Zelle Nr. 3 erreicht wurde, während in den Zellen Nr. 1 und Nr. 2 (ohne erfindungsgemäße Einbauten) die O2-Konzentration trotz gleicher Soleansäuerung doppelt so hoch war. Stromdichte 3,0 kA/m2 Sole l/h 520 Sole % NaCl 25,08 Sole pH 0,6 Sole °C 80 Anolyt pH Zelle 1/2/3 2,7/2,8/1,5 Anolyt % NaCl Zelle 1/2/3 19,10/18,80/18,61 Anolyt °C 90 P(H2) mmWS 610 P(Cl2) mmWS 510 Restgase % Zelle 1/2/3 0,80/0,80/0,40 The following table shows that this low O 2 concentration was only achieved in cell No. 3, while in cells No. 1 and No. 2 (without internals according to the invention) the O 2 concentration was twice as high despite the same brine acidification. Current density 3.0 kA / m 2 Brine l / h 520 Brine% NaCl 25.08 Brine pH 0.6 Brine ° C 80 Anolyte pH cell 1/2/3 2.7 / 2.8 / 1.5 Anolyte% NaCl cell 1/2/3 19.10 / 18.80 / 18.61 Anolyte ° C 90 P (H 2 ) mmWS 610 P (Cl 2 ) mmWS 510 Residual gases% cell 1/2/3 0.80 / 0.80 / 0.40

Bei einem weiteren Versuch mit einem pH-Wert der Frischsole von 0,9 stieg der O2-Anteil im Chlorgas lediglich auf 0,6 % an und der niedrigste pH-Wert im Elektrolytraum lag bei 1,9.In a further test with a pH value of the fresh brine of 0.9, the O 2 content in the chlorine gas rose only to 0.6% and the lowest pH value in the electrolyte compartment was 1.9.

Die Erfindung stellt eine wesentliche Verbesserung der bekannten Ionenaustauschermembranzellen dar, da sie es ermöglicht, ohne Zuhilfenahme äußerer Pumpeinrichtungen und ohne nachteilige Auswirkungen auf das Membranverhalten Chlorgas mit hoher Konzentration und niedrigem Sauerstoffgehalt zu erzeugen.The invention represents a significant improvement of the known ion exchange membrane cells, since it makes it possible to produce chlorine gas with a high concentration and low oxygen content without the aid of external pump devices and without adverse effects on the membrane behavior.

Obgleich im obigen Beispiel die Vorteile der Erfindung im Anolytraum von Chloralkalizellen beschrieben wurden, ist die Erfindung darauf nicht beschränkt; es ist in gleicher Weise möglich, im Katolytraum vom Chlorkalizellen oder auch bei anderen Elektrolyseverfahren, die mit Ionenaustauschermembranen arbeiten, die Erfindung einzusetzen.Although the advantages of the invention in the anolyte compartment of chloralkali cells have been described in the example above, the invention is not restricted to this; in the same way it is possible to use the invention in the catholyte space of chlorine potassium cells or in other electrolysis processes which work with ion exchange membranes.

Die eingangs gestellte Aufgabe läßt sich verfahrensmäßig erfindungsgemäß dadurch lösen, daß ein Verfahren unter Einsatz der beschriebenen Vorrichtung eingesetzt wird, wobei sich ein solches Verfahren dadurch auszeichnet, daß wenigstens in der Anodenkammer über ein Trennelement ein natürlicher Soleumlauf erzeugt wird.The object stated at the outset can be achieved in terms of the method according to the invention by using a method using the device described, such a method being characterized in that a natural soleplate is generated at least in the anode chamber via a separating element.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aufgrund der nachfolgenden Beschreibung sowie anhand der Zeichnungen. Diese zeigt in

Fig. 1
eine prinzipielle Schnittdarstellung durch eine Vorrichtung mit Trennplatte,
Fig. 2
eine vereinfachte Seitenansicht einer erfindungsgemäßen Trennplatte,
Fig. 3a
eine vereinfachte Seitenansicht eines weiteren Ausührungsbeispieles,
Fig. 3b
eine entsprechende Aufsicht auf die Trennplatten sowie in
Fig. 4
eine vereinfachte Schnittdarstellung gemäß Fig. 1 eines anderen Ausführungsbeispieles.
Further features, details and advantages of the invention result from the following description and from the drawings. This shows in
Fig. 1
a basic sectional view through a Device with partition plate,
Fig. 2
a simplified side view of a partition plate according to the invention,
Fig. 3a
a simplified side view of another exemplary embodiment,
Fig. 3b
appropriate supervision of the separating plates and in
Fig. 4
a simplified sectional view of FIG. 1 of another embodiment.

Die in Fig. 1 vereinfacht dargestellte Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten ist allgemein mit 1 bezeichnet und wird gebildet von einer Anodenkammer 2 und einer Kathodenkammer 3 die mittig durch eine Ionenaustauschermembran 4 voneinander getrennt sind.The device for electrolytic treatment of liquids shown in simplified form in FIG. 1 is generally designated 1 and is formed by an anode chamber 2 and a cathode chamber 3, which are separated from one another in the center by an ion exchange membrane 4.

Angedeutet sind jeweils im unteren Bereich Einlaßöffnungen 5 für die Zuführung von frischen Elektrolyten bzw. frischer Sole und oberer Auslaßöffnungen 6 zum Abführen des jeweiligen Elektrolytproduktes.Indicated in the lower area are inlet openings 5 for the supply of fresh electrolytes or fresh brine and upper outlet openings 6 for the removal of the respective electrolyte product.

Gestrichelt dargestellt ist beidseitig der Ionenaustauschermembran 4 je eine Elektrodenplatte 7 mit den elektrischen Anschlüssen 8 und 9, die wiederum nur symbolisch angedeutet sind.Shown in dashed lines on both sides of the ion exchange membrane 4 is an electrode plate 7 with the electrical ones Connections 8 and 9, which in turn are only indicated symbolically.

Eine mit 10 bezeichnete Trennplatte befindet sich in der Anoden- und/oder in der Kathodenkammer, wobei in Figur 1 jeweils nur eine Trennplatte dargestellt ist.A separating plate denoted by 10 is located in the anode and / or in the cathode chamber, only one separating plate being shown in FIG. 1.

Durch Punkte angedeutet ist eine Bläschenbildung dargestellt, wobei die linke Figurenhälfte der Fig. 1 ohne die Trennplatte die ungestörte Verteilung der Bläschen in der Kammer 3 andeutet, während mit Trennplatte eine gerichtete Bläschenausbildung im Elektrolyten angedeutet ist. Erkennbar ergibt sich durch die obere und untere umspülbare Trennplatte 10 eine gerichtete Strömungsausbildung, was in Fig. 1 durch die Pfeile 11 angedeutet ist.A bubble formation is indicated by dots, the left half of the figure in FIG. 1 without the partition plate indicating the undisturbed distribution of the bubbles in the chamber 3, while a directional bubble formation in the electrolyte is indicated by the partition plate. As can be seen, there is a directional flow formation through the upper and lower washable partition plate 10, which is indicated in FIG. 1 by the arrows 11.

In Fig. 2 ist die Seitenansicht einer Trennplatte 10a dargestellt, die mit im wesentlichen senkrechten, aber gegen die Schwerkraftrichtung geneigten Führungsstegen 12 beidseitig ausgerüstet ist, wobei die Neigungsrichtung auf Vor- und Rückseite unterschiedlich ist. Erkennbar kann durch eine solche Ausgestaltung erreicht werden, daß sich eine Art schraubenförmige Strömung um die Trennplatte herum ergibt, wie dies durch die Pfeile angedeutet ist, die rückwärtigen Trennstege sind gestrichelt angedeutet und mit 12' bezeichnet und die in der Kammer den horizontalen Durchsatz des Elektrolyten bewirkt.2 shows the side view of a separating plate 10a, which is equipped on both sides with essentially vertical guide webs 12 which are inclined against the direction of gravity, the direction of inclination being different on the front and rear. It can be seen from such a configuration that there is a kind of helical flow around the separating plate, as indicated by the arrows, the rear separating webs are indicated by dashed lines and with 12 ' referred to and which causes the horizontal throughput of the electrolyte in the chamber.

In den Figuren 3a und 3b ist eine andere Ausführungsform wiedergeben, hier ist die Trennplatte 10b aus einzelnen Segmenten gebildet, die wechselweise ein unteres Unterströmwehr 13 und obere Überströmwehre 14 aufweisen, wobei die mit 10' bezeichneten Teilplatten zick-zack-förmig angeordnet sein können, wie sich dies aus Fig. 3b ergibt.Another embodiment is shown in FIGS. 3a and 3b, here the separating plate 10b is formed from individual segments which alternately have a lower underflow weir 13 and upper overflow weirs 14, the partial plates denoted by 10 'being able to be arranged in a zigzag shape, as can be seen from Fig. 3b.

Schließlich zeigt Fig. 4 in der in Fig. 1 entsprechenden Darstellung ein weiteres abgewandeltes Ausführungsbeispiel. Hier ist im Bereich der unteren Frischsolezuführung 5c ein Anströmwehr 15 vorgesehen, das die frische Sole zwingt, zunächst die durch die Pfeile 11c angedeutete Strömungsumlenkung vorzunehmen.Finally, FIG. 4 shows a further modified exemplary embodiment in the representation corresponding to FIG. 1. An inflow weir 15 is provided in the area of the lower fresh brine supply 5c, which forces the fresh brine to first carry out the flow deflection indicated by the arrows 11c.

In Fig. 4 linke Figurenhälfte ist noch lediglich gestrichelt angedeutet, die Möglichkeit, etwa zwei schmalere Trennplatten 10d und 10e im Abstand zueinander und im Winkel angestellt vorzusehen.4, the left half of the figure is only indicated by dashed lines, the possibility of providing approximately two narrower separating plates 10d and 10e at a distance from one another and at an angle.

Claims (9)

  1. Apparatus (1) for the electrolytic treatment of liquids comrising an anode and a cathode chamber (2, 3) which are separated from each other by way of an ion-exchanger membrane (4), wherein the chambers are provided with an inlet and outlet opening (5, 6) for the flowing electrolyte and each with a flat electrode (7) with associated current connections (8, 9), characterised in that there is provided at least one separation plate (10) which is known per se and around which the electrolyte flows in a region-wise manner, for providing a defined mixing flow and a horizontal through-flow of the electrolyte in each anode and/or cathode chamber (2, 3), wherein as viewed in the direction of the force of gravity the separation plate (10) forms a lower edge around which electrolyte flows and an upper edge over which electrolyte flows, within the electrolyte, and is provided with flow guide webs (12, 12') and/or a profiling and is liquid-tightly fixed to the vertical side walls of the respective chamber (2, 3).
  2. Apparatus according to claim 1 characterised in that the flow guide webs (12, 12') are fixed on the separation plate (10a) perpendicularly to the surface at an angle with respect to the direction of the force of gravity.
  3. Apparatus according to claim 1 or claim 2 characterised in that the angle of inclination of the guide webs (12, 12') on the one side of the separation plate (10a) is opposite to that on the other side of the separation plate.
  4. Apparatus according to claim 3 characterised in that the separation plate (10b) comprises a multiplicity of individual segments (10') with an alternate sequence of an underflow (13) and an overflow weir (14).
  5. Apparatus according to claim 1 or one of the following claims characterised in that an overflow weir (15) is mounted upstream of the separation plate (10c) in the region of the electrolyte feed flow (5c).
  6. Apparatus according to claim 1 or one of the following claims characterised in that the separation plate (10d) is arranged asymmetrically in the respective chamber at a smaller spacing relative to the electrode than relative to the parallel chamber wall.
  7. Apparatus according to claim 1 or one of the following claims characterised in that the separation plate (10) is arranged in the upper region of the chamber and/or that the upper boundary limit of the separation plate is at a smaller spacing relative to the electrode than the lower edge of the separation plate.
  8. Apparatus according to one of the preceding claims characterised in that at least two partial separation plates (10d, 10e) are provided in a chamber (3c).
  9. Use of the apparatus according to one or more of claims 1 to 9 for the production of chlorine gas with an oxygen content of less than 0.65%, wherein a natural brine circulation is guaranteed by way of a separation element at least in the anode chamber.
EP93107034A 1992-07-24 1993-04-30 Device for the electrolytic treatment of liquids in anodic and cathodic compartments Expired - Lifetime EP0579910B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4224492A DE4224492C1 (en) 1992-07-24 1992-07-24 Apparatus for the electrolytic treatment of liquids with an anode and a cathode chamber and their use
DE4224492 1992-07-24

Publications (2)

Publication Number Publication Date
EP0579910A1 EP0579910A1 (en) 1994-01-26
EP0579910B1 true EP0579910B1 (en) 1996-10-09

Family

ID=6464018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107034A Expired - Lifetime EP0579910B1 (en) 1992-07-24 1993-04-30 Device for the electrolytic treatment of liquids in anodic and cathodic compartments

Country Status (4)

Country Link
EP (1) EP0579910B1 (en)
AT (1) ATE144006T1 (en)
DE (2) DE4224492C1 (en)
ES (1) ES2093311T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607667C2 (en) * 1996-02-29 2000-11-02 Krupp Uhde Gmbh Process for recycling waste hydrochloric acid
DE19740673C2 (en) * 1997-09-16 2001-10-31 Krupp Uhde Gmbh Electrolysis apparatus
DE19850071A1 (en) 1998-10-30 2000-05-04 Bayer Ag Membrane electrolysis cell with active gas / liquid separation
DE102008007605A1 (en) 2008-02-04 2009-08-06 Uhde Gmbh Modified nickel
DE102017217361A1 (en) 2017-09-29 2019-04-04 Thyssenkrupp Uhde Chlorine Engineers Gmbh electrolyzer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH242830A (en) * 1946-12-13 1946-06-15 Oerlikon Maschf Bipolar electrolyser.
CA928245A (en) * 1969-01-30 1973-06-12 Ppg Industries, Inc. Electrolytic cell
JPS5927392B2 (en) * 1976-12-23 1984-07-05 ダイヤモンド・シヤムロツク・テクノロジ−ズエス・エ− Chlorine-alkali electrolyzer
IT1165047B (en) * 1979-05-03 1987-04-22 Oronzio De Nora Impianti PROCEDURE FOR IMPROVING THE TRANSPORT OF MATERIAL TO AN ELECTRODE AND RELATED HYDRODYNAMIC MEDIA
DE3219704A1 (en) * 1982-05-26 1983-12-01 Uhde Gmbh, 4600 Dortmund MEMBRANE ELECTROLYSIS CELL
DE3228884A1 (en) * 1982-08-03 1984-02-09 Metallgesellschaft Ag, 6000 Frankfurt VERTICALLY ARRANGED PLATE ELECTRODE FOR GAS GENERATING ELECTROLYSIS
JPS59190379A (en) * 1983-04-12 1984-10-29 Kanegafuchi Chem Ind Co Ltd Vertical type electrolytic cell and electrolyzing method using said cell

Also Published As

Publication number Publication date
ES2093311T3 (en) 1996-12-16
DE4224492C1 (en) 1993-12-09
ATE144006T1 (en) 1996-10-15
DE59304090D1 (en) 1996-11-14
EP0579910A1 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
DE2437273C2 (en)
AT401739B (en) DEVICE FOR TREATING METAL CONTAINING LIQUIDS BY ION EXCHANGE AND SIMULTANEOUSLY OR PERIODICALLY REGENERATING THE ION EXCHANGE RESIN BY ELECTRODIALYSIS
DE19540469B4 (en) Apparatus and method for producing electrolytically ionized water
DE2629506A1 (en) ELECTROLYSIS CELL FOR THE PRODUCTION OF ALKALIMETAL HYDROXIDES AND HALOGENES
DE2514132C3 (en) Bipolar chlor-alkali electrolyzer
DD154831A5 (en) METHOD AND DEVICE FOR ELECTROLYSIS
CH649101A5 (en) APPARATUS FOR PRODUCING SODIUM HYPOCHLORITE.
EP2029492B1 (en) Device for electrochemical water preparation
WO2015128076A1 (en) Method for electrochemically producing electrolyzed water
DE2856882A1 (en) ELECTROLYZING DEVICE AND METHOD FOR PRODUCING CHLORINE BY ELECTROLYZING
DE2316124A1 (en) METHOD AND DEVICE FOR REDUCING THE CONCENTRATION OF ANODIC OXIDIZABLE COMPOUNDS
DE2303589A1 (en) ELECTROLYTIC CELL ARRANGEMENTS AND CHEMICAL MANUFACTURING METHODS
DE1467067A1 (en) Electrolytic cell
EP0579910B1 (en) Device for the electrolytic treatment of liquids in anodic and cathodic compartments
WO1999053122A1 (en) Electrolysis apparatus for producing halogen gases
DE2747381C2 (en)
DE2430915C3 (en) Electrolysis cell and electrolysis process
DE2828621A1 (en) ELECTROLYSIS CELL AND ELECTROLYSIS PROCEDURE
DE69921735T2 (en) Electrolysis device with ion exchange membrane
DE2719759B2 (en) Electrolytic cell
EP3688206B1 (en) Electrolysis device
DE1467234B2 (en)
DE3043013A1 (en) ELECTROLYSIS CELL
DE2434921B2 (en) Electrolysis cell and process for the electrolysis of ionizable chemical compounds
DE102020005683A1 (en) Electrolytic cell for the electrolytic provision of chlorine dioxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19931231

17Q First examination report despatched

Effective date: 19950530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 144006

Country of ref document: AT

Date of ref document: 19961015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59304090

Country of ref document: DE

Date of ref document: 19961114

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093311

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050412

Year of fee payment: 13

Ref country code: SE

Payment date: 20050412

Year of fee payment: 13

Ref country code: NL

Payment date: 20050412

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050414

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050415

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050509

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060503

BERE Be: lapsed

Owner name: *UHDE G.M.B.H.

Effective date: 20060430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120419

Year of fee payment: 20

Ref country code: FR

Payment date: 20120507

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120424

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304090

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130501

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130429