EP0578953A1 - High power emitting device - Google Patents

High power emitting device Download PDF

Info

Publication number
EP0578953A1
EP0578953A1 EP93108758A EP93108758A EP0578953A1 EP 0578953 A1 EP0578953 A1 EP 0578953A1 EP 93108758 A EP93108758 A EP 93108758A EP 93108758 A EP93108758 A EP 93108758A EP 0578953 A1 EP0578953 A1 EP 0578953A1
Authority
EP
European Patent Office
Prior art keywords
discharge space
dielectric
discharge
power radiator
radiator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93108758A
Other languages
German (de)
French (fr)
Other versions
EP0578953B1 (en
Inventor
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6462570&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0578953(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP0578953A1 publication Critical patent/EP0578953A1/en
Application granted granted Critical
Publication of EP0578953B1 publication Critical patent/EP0578953B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by an outer and an inner dielectric, the outer surfaces of the outer dielectric being provided with first electrodes, with second electrodes Electrodes on the surface of the second dielectric facing away from the discharge space, and with an alternating current source connected to the first and second electrodes for supplying the discharge.
  • the invention relates to a prior art, such as that which results from EP-A 054 111, US patent application 07/485544 from February 27, 1990 or also EP patent application 90103082.5 from February 17, 1990.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low pressure lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then distribute their radiation over a larger wavelength range.
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
  • Excimer UV lamps based on the principle of silent electrical discharges require a significantly higher voltage than the voltage required for normal operation when they are first ignited or after longer breaks. This is due to the fact that surface charges form on the dielectrics during operation, which in each case ensure easier ignition in the subsequent voltage half-wave. These surface charges are missing the first time you ignite and after long breaks.
  • the object of the invention is to create a high-performance radiator, in particular for UV or VUV radiation, which ignites reliably without complex measures.
  • the invention is based on the knowledge of forcing an initial ignition at one point by local field distortion or field elevation.
  • the resulting UV radiation and the charge carriers of this local discharge then force the reliable ignition of the entire discharge volume.
  • the local field distortion can be e.g. by narrowing the discharge gap, e.g. cause a dent or hump directed against the gap volume, or preferably by means of a disturbing body made of dielectric material in the discharge gap.
  • This latter variant can be implemented in a simple manner by means of a quartz ball or a ball made of aluminum or titanium oxide in the discharge gap.
  • the invention makes it possible for the first time to create excimer UV lamps that ignite safely.
  • the measures to be taken are simple and economical. They can also be carried out retrospectively in existing units when using an interference body, which is considered the most preferred means for field distortion.
  • FIGS. 1 and 2 there is an outer quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter
  • An inner quartz tube 2 of approximately 20 to 30 mm is arranged coaxially.
  • a helical inner electrode 3 bears against the inner surface of the inner quartz tube 2.
  • An outer electrode 4 in the form of a wire mesh or an applied electrode structure extends over the entire outer circumference of the outer quartz tube 1.
  • a wire 4 is inserted into the inner quartz tube 3.
  • the quartz tubes 1 and 2 are closed or melted at both ends by a cover 5 and 6, respectively.
  • the space between the two tubes 1 and 2, the discharge space 7, is filled with a gas / gas mixture which emits radiation under discharge conditions.
  • This liquid also serves to cool the radiator.
  • the coolant is supplied or removed via the connections 9 and 10.
  • the cooling liquid also serves for the electrical coupling of the inner electrode 3 to the inner quartz tube 2, so that it is not necessary for the helical electrode 3 to rest against the inner wall everywhere.
  • the two electrodes 3, 4 are connected to the two poles of an alternating current source 11.
  • the alternating current source supplies an adjustable alternating voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
  • the filling gas is, for example, mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally under Use of an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254,320-370,390-420nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties as well as pressure and / or temperature in the discharge space.
  • FIG. 1 A first variant is shown in Fig. 1, right upper half (Fig. 2 in dashed lines).
  • the outer dielectric tube 1 is provided with an indentation or dent 12. This extends up to half the gap width to the inner dielectric tube 2.
  • a second variant shows Fig. 1, lower right half (Fig. 2 also dashed).
  • the inner dielectric tube 2 is provided with a dent or bump 12a, which reaches the outer dielectric tube 1 approximately up to half the gap width.
  • FIG. 1, left half, and FIG. 2 can also be used retrospectively in the case of emitters.
  • a ball 13 made of dielectric material, e.g. Quartz, preferably made of aluminum or titanium oxide, with an outer sphere diameter equal to or slightly smaller than the gap width of the discharge space 7.
  • This sphere can - but need not - be attached to one wire on both dielectric walls.
  • the exact spherical geometry is not important. Two or more of these balls can also be provided, in particular in the case of elongated radiators. The combination of ball (s) and dents or humps is also possible.
  • Another measure, which can also be taken subsequently with radiators, is to melt quartz drops 12b or 12c on the inner surface of the outer dielectric tube 1 or on the outer surface of the inner dielectric tube 2 in order to achieve the desired field distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Lasers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

In a UV excimer emitting device, the turn-on behaviour (triggering behaviour, ignition behaviour) when it is initially turned on and in the event of relatively long pauses in operation is improved in that means of local field distortion are provided in the discharge space. The means may be either deliberately incorporated local constrictions (12) or an interference body (disturbance body) (13) consisting of aluminium oxide or titanium oxide.

Description

Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein äusseres und ein inneres Dielektrikum gebildet sind, wobei die Aussenflächen des äusseren Dielektrikums mit ersten Elektroden versehen sind, mit zweiten Elektroden an der dem Entladungsraum abgewandten Oberfläche des zweiten Dielektrikums, und mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung.The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by an outer and an inner dielectric, the outer surfaces of the outer dielectric being provided with first electrodes, with second electrodes Electrodes on the surface of the second dielectric facing away from the discharge space, and with an alternating current source connected to the first and second electrodes for supplying the discharge.

Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 054 111, der US-Patentanmeldung 07/485544 vom 27.02.1990 oder auch der EP-Patentanmeldung 90103082.5 vom 17.02.1990 ergibt.The invention relates to a prior art, such as that which results from EP-A 054 111, US patent application 07/485544 from February 27, 1990 or also EP patent application 90103082.5 from February 17, 1990.

Technologischer Hintergrund und Stand der TechnikTechnological background and state of the art

Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low pressure lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then distribute their radiation over a larger wavelength range. The new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.

In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U. Kogelschatz and B. Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18. -20. November 1987, a new excimer radiator is described. This new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation. In the current filaments of this discharge, which exist only for a short time (<1 microsecond), noble gas atoms are excited by electron impact, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.

Auf dem Prinzip der stillen elektrischen Entladungen basierende Excimer-UV-Strahler erfordern beim ersten Zünden bzw. nach längeren Pausen eine wesentlich höhere Spannung als die für den Normalbetrieb erforderliche Spannung. Das hängt damit zusammen, dass sich während des Betriebs Oberflächenladungen auf den Dielektrika bilden, die jeweils für eine erleichterte Zünden in der nachfolgenden Spannungshalbwelle sorgen. Beim ersten Zünden und nach längeren Pausen fehlen diese Oberflächenladungen.Excimer UV lamps based on the principle of silent electrical discharges require a significantly higher voltage than the voltage required for normal operation when they are first ignited or after longer breaks. This is due to the fact that surface charges form on the dielectrics during operation, which in each case ensure easier ignition in the subsequent voltage half-wave. These surface charges are missing the first time you ignite and after long breaks.

Ganz allgemein kann gesagt werden, dass für das Zünden einer Gasentladung zwei Kriterien erfüllt sein müssen. Einerseits müssen Anfangselektronen vorhanden sein, und andererseits muss die elektrische Feldstärke einen kritischen Wert überschreiten (Zündkriterium), damit es zu einer ausreichenden Multiplikation der Anfangselektronen und damit zur Bildung von Elektronenlawinen unter dem Einfluss des angelegten elektrischen Feldes kommen kann.In general it can be said that two criteria must be met for the ignition of a gas discharge. On the one hand initial electrons must be present and, on the other hand, the electric field strength must exceed a critical value (ignition criterion) so that there can be a sufficient multiplication of the initial electrons and thus the formation of electron avalanches under the influence of the applied electric field.

Aus der Lampentechnologie bekannte Methoden sind die Benutzung eines radioaktiven Präparates (z.B. Thorium) oder Gases (Krypton 85), um die Startelektronen zur Verfügung zu stellen, und eines Ueberspannungsimpulses, um die Startfeldstärke zu erhöhen. Insbesondere letztere Massnahme erfordert einen zusätzlichen Aufwand bei der Auslegung der elektrischen Speisgeräte und des Isolationsniveaus von Kabel, Steckern, Halterungen etc.Methods known from lamp technology are the use of a radioactive preparation (e.g. thorium) or gas (Krypton 85) to provide the starting electrons and an overvoltage pulse to increase the starting field strength. The latter measure in particular requires additional effort in the design of the electrical power supplies and the insulation level of cables, plugs, brackets, etc.

Darstellung der ErfindungPresentation of the invention

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, der ohne aufwendige Massnahmen zuverlässig zündet.Proceeding from the prior art, the object of the invention is to create a high-performance radiator, in particular for UV or VUV radiation, which ignites reliably without complex measures.

Zur Lösung dieser Aufgabe ist bei einem Hochleistungsstrahler der eingangs genannten Gattung erfindungsgemäss vorgesehen, dass im Entladungsraum Mittel zur lokalen Feldverzerrung vorgesehen sind.To achieve this object, in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that means for local field distortion are provided in the discharge space.

Der Erfindung liegt dabei die Erkenntnis zugrunde, durch eine lokale Feldverzerrung bzw. Feldüberhöhung an einer Stelle eine Initialzündung zu erzwingen. Durch die dabei entstehende UV-Strahlung und die Ladungsträger dieser lokalen Entladung wird dann die zuverlässige Zündung des gesamten Entladungsvolumens erzwungen.The invention is based on the knowledge of forcing an initial ignition at one point by local field distortion or field elevation. The resulting UV radiation and the charge carriers of this local discharge then force the reliable ignition of the entire discharge volume.

Die lokale Feldverzerrung kann man z.B. durch eine Verengung des Entladungsspaltes, z.B. eine gegen das Spaltvolumen gerichtete Delle oder Buckel, oder bevorzugt durch einen Störkörper aus dielektrischen Material im Entladungsspalt herbeiführen. Auf einfache Weise lässt sich diese letztgenannte Variante durch eine Quarzkugel oder durch eine Kugel aus Aluminium- oder Titanoxid im Entladungsspalt realisieren.The local field distortion can be e.g. by narrowing the discharge gap, e.g. cause a dent or hump directed against the gap volume, or preferably by means of a disturbing body made of dielectric material in the discharge gap. This latter variant can be implemented in a simple manner by means of a quartz ball or a ball made of aluminum or titanium oxide in the discharge gap.

Mit der Erfindung wird es erstmals möglich, Excimer-UV-Strahler zu schaffen, die sicher zünden. Die dabei zu ergreifenden Massnahmen sind einfach und wirtschaftlich. Sie lassen sich bei Verwendung eines Störkörpers, der als bevorzugstes Mittel zur Feldverzerrung angesehen wird, auch nachträglich in bestehende Einheiten durchführen.The invention makes it possible for the first time to create excimer UV lamps that ignite safely. The measures to be taken are simple and economical. They can also be carried out retrospectively in existing units when using an interference body, which is considered the most preferred means for field distortion.

Ausführungsformen der Erfindung sowie die damit erzielbaren Vorteile werden nachstehend anhand der Zeichnung näher erläutert.Embodiments of the invention and the advantages which can be achieved thereby are explained in more detail below with reference to the drawing.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt

Fig.1
einen UV-Zylinderstrahlers mit konzentrischer Anordnung von innerem und äusserem Dielektrikumsrohr im Längsschnitt;
Fig.2
einen Schnitt durch den UV-Strahler nach Fig.1 längs deren Linie AA;
In the drawing, embodiments of the invention are shown schematically; in it shows
Fig. 1
a UV cylinder lamp with a concentric arrangement of the inner and outer dielectric tube in longitudinal section;
Fig. 2
a section through the UV lamp according to Figure 1 along the line AA;

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Gemäss Fig.1 und 2. ist in einem äusseren Quarzrohr 1 mit einer Wandstärke von etwa 0,5 bis 1,5 mm und einem Aussendurchmesser von etwa 20 bis 30 mm ist ein inneres Quarzrohr 2 koaxial angeordnet. An der Innenfläche des inneren Quarzrohrs 2 liegt eine wendelförmige Innenelektrode 3 an.According to FIGS. 1 and 2, there is an outer quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter An inner quartz tube 2 of approximately 20 to 30 mm is arranged coaxially. A helical inner electrode 3 bears against the inner surface of the inner quartz tube 2.

Eine Aussenelektrode 4 in Form eines Drahtnetzes oder einer aufgebrachten Elektrodenstruktur erstreckt sich über den gesamten Aussenumfangs des äusseres Quarzrohrs 1.An outer electrode 4 in the form of a wire mesh or an applied electrode structure extends over the entire outer circumference of the outer quartz tube 1.

In das innere Quarzrohr 3 ist ein Draht 4 eingeschoben. Dieser bildet die Innenelektrode des Strahlers, das Drahtnetz 2 die Aussenelektrode des Strahlers. Die Quarzrohre 1 und 2 sind an beiden Enden durch je einen Deckel 5 bzw. 6 verschlossen oder zugeschmolzen. Der Raum zwischen den beiden Rohren 1 und 2, der Entladungsraum 7, ist mit einem unter Entladungsbedingungen Strahlung aussendendem Gas/Gasgemisch gefüllt. Das Innere 8 des inneren Quarzrohres 2 ist mit einer Flüssigkeit mit hoher Dielektrizitätskonstante, vorzugsweise demineralisiertem Wasser (ε=81), gefüllt. Diese Flüssigkeit dient gleichzeitig zur Kühlung des Strahlers. Die Kühlflüssigkeit wird über die Anschlüsse 9 und 10 zu- bzw. abgeführt. Die Kühlflüssigkeit dient auch zur elektrischen Ankopplung der Innenelektrode 3 an das innere Quarzrohr 2, so dass es nicht nötig ist, dass die wendelförmige Elektrode 3 überall an der Innenwandung anliegt.A wire 4 is inserted into the inner quartz tube 3. This forms the inner electrode of the radiator, the wire mesh 2 the outer electrode of the radiator. The quartz tubes 1 and 2 are closed or melted at both ends by a cover 5 and 6, respectively. The space between the two tubes 1 and 2, the discharge space 7, is filled with a gas / gas mixture which emits radiation under discharge conditions. The interior 8 of the inner quartz tube 2 is filled with a liquid with a high dielectric constant, preferably demineralized water (ε = 81). This liquid also serves to cool the radiator. The coolant is supplied or removed via the connections 9 and 10. The cooling liquid also serves for the electrical coupling of the inner electrode 3 to the inner quartz tube 2, so that it is not necessary for the helical electrode 3 to rest against the inner wall everywhere.

Die beiden Elektroden 3,4 sind mit den beiden Polen einer Wechselstromquelle 11 verbunden. Die Wechselstromquelle liefert eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.The two electrodes 3, 4 are connected to the two poles of an alternating current source 11. The alternating current source supplies an adjustable alternating voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.

Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The filling gas is, for example, mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally under Use of an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden: Füllgas Strahlung Helium 60 - 100 nm Neon 80 - 90 nm Argon 107 - 165 nm Argon + Fluor 180 - 200 nm Argon + Chlor 165 - 190 nm Argon + Krypton + Chlor 165 - 190, 200 - 240 nm Xenon 160 - 190 nm Stickstoff 337 - 415 nm Krypton 124, 140 - 160 nm Krypton + Fluor 240 - 255 nm Krypton + Chlor 200 - 240 nm Quecksilber 185, 254,320-370,390-420nm Selen 196, 204, 206 nm Deuterium 150 - 250 nm Xenon + Fluor 340 - 360 nm, 400 - 550 nm Xenon + Chlor 300 - 320 nm Depending on the desired spectral composition of the radiation, a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254,320-370,390-420nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm

Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:

  • Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere 0-Atome abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
In addition, a whole series of other filling gases are possible:
  • A noble gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge;
  • a noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that splits off one or more 0 atoms in the discharge;
  • an inert gas (Ar, He, Kr, Ne, Xe) with Hg.

Bei Anliegen einer Wechselspannung zwischen den Elektroden 3 und 4 bildet sich eine Vielzahl von Entladungskanälen (Teilentladungen) im Entladungsraum 7 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.When an alternating voltage is applied between the electrodes 3 and 4, a large number of discharge channels (partial discharges) form in the discharge space 7. These interact with the atoms / molecules of the filling gas, which ultimately leads to UV or VUV radiation.

In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika und deren Eigenschaften sowie Druck und/oder Temperatur im Entladungsraum optimal eingestellt werden.In the silent discharge that forms, the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties as well as pressure and / or temperature in the discharge space.

Soweit sind Excimer-UV-Strahler bekannt.So far, excimer UV lamps are known.

Um nun das eingangs beschriebene Zündproblem zu lösen, sind erfindungsgemäss eine Reihe von Möglichkeiten vorgesehen, die allesamt auf der Idee beruhen, an einer Stelle im Entladungsraum 7 lokal eine Feldverzerrung bzw. Feldüberhöhung zu erzwingen. Durch die dabei entstehende UV-Strahlung und die Ladungsträger dieser lokalen Entladung wird dann die zuverlässige Zündung des gesamten Entladungsvolumens erzwungen.In order to solve the ignition problem described at the outset, a number of possibilities are provided according to the invention, all of which are based on the idea of locally forcing a field distortion or field increase at a point in the discharge space 7. The resulting UV radiation and the charge carriers of this local discharge then force the reliable ignition of the entire discharge volume.

Eine erste Variante ist in Fig.1 rechte obere Hälfte (Fig.2 strichliert) dargestellt. Das äussere Dielektrikumsrohr 1 ist mit einer nach innen weisenden Delle oder Buckel 12 versehen. Diese reicht etwa bis zur halben Spaltweite an das innere Dielektrikumsrochr 2 heran.A first variant is shown in Fig. 1, right upper half (Fig. 2 in dashed lines). The outer dielectric tube 1 is provided with an indentation or dent 12. This extends up to half the gap width to the inner dielectric tube 2.

Eine zweite Variante zeigt Fig.1, rechte untere Hälfte, (Fig.2 gleichfalls strichliert). Dort ist das innere Dielektrikumsrohr 2 mit eine Delle oder Buckel 12a versehen, der etwa bis zur halben Spaltweite an das äussere Dielektrikumsrohr 1 heranreicht.A second variant shows Fig. 1, lower right half (Fig. 2 also dashed). There, the inner dielectric tube 2 is provided with a dent or bump 12a, which reaches the outer dielectric tube 1 approximately up to half the gap width.

Während diese beiden Varianten der Feldverzerrung vonvornherein vorgesehen werden müssten, kann die in Fig.1, linke Hälfte, und Fig.2 dargestellte Ausführungsform auch nachträglich bei ausgeführten Strahlern verwendet werden.While these two variants of field distortion would have to be provided from the outset, the embodiment shown in FIG. 1, left half, and FIG. 2 can also be used retrospectively in the case of emitters.

In den Entladungsraum 7 ist eine Kugel 13 aus dielektrischem Material, z.B. Quarz, vorzugsweise aus Aluminium- oder Titanoxid, eingelegt, mit einem Kugelaussendurchmesser gleich oder wenig kleiner als die Spaltweite des Entladungsraums 7. Diese Kugel kann - muss aber nicht - an einer ader an beiden Dielektrikumswänden befestigt sein. Dabei kommt es nicht auf die exakte Kugelgeometrie an. Auch können insbesondere bei langgestreckten Strahlern zwei oder mehrere dieser Kugeln vorgesehen werden. Auch ist die Kombination von Kugel(n) und Dellen oder Buckeln möglich.In the discharge space 7 there is a ball 13 made of dielectric material, e.g. Quartz, preferably made of aluminum or titanium oxide, with an outer sphere diameter equal to or slightly smaller than the gap width of the discharge space 7. This sphere can - but need not - be attached to one wire on both dielectric walls. The exact spherical geometry is not important. Two or more of these balls can also be provided, in particular in the case of elongated radiators. The combination of ball (s) and dents or humps is also possible.

Eine weitere, durchaus auch bei Strahlern nachträglich zu ergreifende Massnahme besteht darin, an die Innenfläche des äusseren Dielektrikumsrohres 1 oder an die Aussenfläche des inneren Dielektrikumsrohres 2 Quarztropfen 12b bzw. 12c anzuschmelzen, um die gewünschte Feldverzerrung zu erreichen.Another measure, which can also be taken subsequently with radiators, is to melt quartz drops 12b or 12c on the inner surface of the outer dielectric tube 1 or on the outer surface of the inner dielectric tube 2 in order to achieve the desired field distortion.

BezeichnungslisteLabel list

11
äusseres Quarzrohrouter quartz tube
22nd
inneres Quarzrohrinner quartz tube
33rd
wendelförmige Innenelektrodehelical inner electrode
3'3 '
zentrale Innenelektrodecentral inner electrode
44th
AussenelektrodeOutside electrode
5,65.6
Deckelcover
77
EntladungsraumDischarge space
88th
Innenraum von 2Interior of 2
99
KühlflüssigkeitsabflussCoolant drain
1010th
KühlflüssigkeitsabflussCoolant drain
1111
WechselstromquelleAC power source
1212th
Delle oder Buckel an 1Dent or hump on 1st
12a12a
Delle oder Buckel an 2Dent or hump on 2
12b12b
Quarztrofen an 1Quartz trofen on 1st
12c12c
Quarztrofen an 2Quartz trofen on 2nd
1313
Kugel aus Aluminium- oder TitanoxidBall made of aluminum or titanium oxide

Claims (6)

Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum (7), dessen Wandungen durch ein äusseres (1) und ein inneres Dielektrikum (2) gebildet sind, wobei die Aussenflächen des äusseren Dielektrikums mit ersten Elektroden (4) versehen sind, mit zweiten Elektroden (3;3') an der dem Entladungsraum (7) abgewandten Oberfläche des zweiten Dielektrikums (2), und mit einer an die ersten (4) und zweiten Elektroden (3;3') angeschlossenen Wechselstromquelle (11) zur Speisung der Entladung, dadurch gekennzeichnet dass im Entladungsraum (7) Mittel (12;12a...;13) zur lokalen Feldverzerrung vorgesehen sind.High-power radiator, in particular for ultraviolet light, with a discharge space (7) filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by an outer (1) and an inner dielectric (2), the outer surfaces of the outer dielectric having first electrodes (4 ) are provided with second electrodes (3; 3 ') on the surface of the second dielectric (2) facing away from the discharge space (7), and with an alternating current source (3) connected to the first (4) and second electrodes (3; 3'). 11) for supplying the discharge, characterized in that means (12; 12a ...; 13) for local field distortion are provided in the discharge space (7). Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel durch lokale Verengung des Entladungsraums (7) gebildet sind.High-power radiator according to claim 1, characterized in that the means are formed by local narrowing of the discharge space (7). Hochleistungsstrahler nach Anspruch 2, dadurch gekennzeichnet, dass die Verengung eine Delle oder Buckel (12,12a) auf der dem Entladungsraum zugewandten Wandung der Dielektrikumsrohre (1,2) ist, die einstückig mit dem inneren und/oder äusserem Dielektrikum (1,2) ausgeführt ist.High-power radiator according to Claim 2, characterized in that the constriction is a dent or hump (12, 12a) on the wall of the dielectric tubes (1, 2) facing the discharge space, which is integral with the inner and / or outer dielectric (1, 2) is executed. Hochleistungsstrahler nach Anspruch 2, dadurch gekennzeichnet, dass die Verengung durch Anbringen von Zusatzmaterials (12b,12c) aus Dielektrikumsmaterial auf der dem Entladungsraum zugewandten Wandung der Dielektrikumsrohre (1,2) ausgeführt ist.High-power radiator according to Claim 2, characterized in that the narrowing is carried out by attaching additional material (12b, 12c) made of dielectric material on the wall of the dielectric tubes (1, 2) facing the discharge space. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass im Entladungsraum (7) ein oder mehrere Störkörper aus dielektrischem Material vorgesehen sind, welche das eine oder das andere oder beide Dielektrika (1,2) berühren.High-power radiator according to claim 1, characterized in that one or more interfering bodies made of dielectric material are provided in the discharge space (7), which contact one or the other or both dielectrics (1, 2). Hochleistungsstrahler nach Anspruch 5, dadurch gekennzeichnet, dass der oder die Störkörper aus Quarz, Alumnium- oder Titanoxid bestehen.High-power radiator according to claim 5, characterized in that the or the interference body consist of quartz, aluminum or titanium oxide.
EP93108758A 1992-07-06 1993-06-01 High power emitting device Expired - Lifetime EP0578953B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4222130A DE4222130C2 (en) 1992-07-06 1992-07-06 High-power radiation
DE4222130 1992-07-06

Publications (2)

Publication Number Publication Date
EP0578953A1 true EP0578953A1 (en) 1994-01-19
EP0578953B1 EP0578953B1 (en) 1997-09-17

Family

ID=6462570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108758A Expired - Lifetime EP0578953B1 (en) 1992-07-06 1993-06-01 High power emitting device

Country Status (5)

Country Link
US (1) US5432398A (en)
EP (1) EP0578953B1 (en)
JP (1) JP2771428B2 (en)
CA (1) CA2099073C (en)
DE (1) DE4222130C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703602A1 (en) * 1994-09-20 1996-03-27 Ushiodenki Kabushiki Kaisha Light source device using a dielectric barrier discharge lamp
WO1998011596A1 (en) * 1996-09-11 1998-03-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electric radiation source and irradiation system with this radiation source
EP0871203A2 (en) * 1997-04-11 1998-10-14 Nec Corporation Noble gas discharge lamp
EP0948030A2 (en) * 1998-03-30 1999-10-06 Toshiba Lighting & Technology Corporation Rare gaseous discharge lamp, lighting circuit, and lighting device
EP1220285A2 (en) * 2000-09-09 2002-07-03 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Ion source in which a UV/VUV light source is used for ionization
WO2011117045A1 (en) * 2010-03-26 2011-09-29 Osram Gesellschaft mit beschränkter Haftung Dielectric barrier discharge lamp having a holding disc

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9519283D0 (en) * 1995-09-21 1995-11-22 Smiths Industries Plc Gas discharge lamps and systems
DE19543342A1 (en) * 1995-11-22 1997-05-28 Heraeus Noblelight Gmbh Process and radiation arrangement for generating UV rays for body radiation and use
DE19613502C2 (en) * 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Durable excimer emitter and process for its manufacture
US6888041B1 (en) * 1997-02-12 2005-05-03 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
DE19744940A1 (en) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Laboratory equipment for photochemical reaction, prior to analysis
DE19708149A1 (en) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Electrodeless discharge tube containing mercury and noble gas mixture
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
DE19844720A1 (en) * 1998-09-29 2000-04-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
JP3439679B2 (en) * 1999-02-01 2003-08-25 株式会社オーク製作所 High brightness light irradiation device
JP3604606B2 (en) * 2000-01-07 2004-12-22 コニカミノルタビジネステクノロジーズ株式会社 Light emission control device and image forming apparatus using this light emission control device
DE10026781C1 (en) * 2000-05-31 2002-01-24 Heraeus Noblelight Gmbh Discharge lamp for dielectric discharge
DE10133326A1 (en) 2001-07-10 2003-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp with ignition aid
EP1328007A1 (en) 2001-12-14 2003-07-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with starting aid.
US20050035711A1 (en) * 2003-05-27 2005-02-17 Abq Ultraviolet Pollution Solutions, Inc. Method and apparatus for a high efficiency ultraviolet radiation source
US20050199484A1 (en) * 2004-02-10 2005-09-15 Franek Olstowski Ozone generator with dual dielectric barrier discharge and methods for using same
CN1985348B (en) * 2004-07-09 2011-05-25 皇家飞利浦电子股份有限公司 Dielectric barrier discharge lamp with integrated multifunction means
DE102005062638A1 (en) * 2005-12-23 2007-07-05 Heraeus Noblelight Gmbh Electric discharge lamp e.g. ultraviolet light, has discharge chamber and outer side of discharge chamber arranged with electrodes
WO2008129440A2 (en) * 2007-04-18 2008-10-30 Koninklijke Philips Electronics N.V. Dielectric barrier discharge lamp
WO2015163948A1 (en) 2014-04-22 2015-10-29 Hoon Ahn Power amplifying radiator (par)
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
EP3143638B1 (en) 2014-05-15 2018-11-14 Excelitas Technologies Corp. Laser driven sealed beam lamp
CN104701132B (en) * 2015-03-17 2016-10-12 中国工程物理研究院激光聚变研究中心 A kind of unidirectional xenon flash lamps of heavy caliber planar
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same
JP6948606B1 (en) * 2020-08-28 2021-10-13 ウシオ電機株式会社 Excimer lamp and light irradiation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184214A2 (en) * 1984-12-06 1986-06-11 GTE Products Corporation Compact fluorescent lamp assembly
EP0477914A2 (en) * 1990-09-25 1992-04-01 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting method
EP0547366A1 (en) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH High power radiator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633760C (en) * 1930-09-26 1936-08-05 Siemens Ag Discharge lamp in which the discharge passes through a narrowed cross section
DE618261C (en) * 1933-04-04 1935-09-04 Philips Nv Electric, U-shaped bent metal vapor discharge tubes with fixed electrodes and vapor of low-volatility metal, especially for emitting light rays
DE761839C (en) * 1941-08-09 1954-10-11 Patra Patent Treuhand Electric rectifier tubes, especially for high voltages
JPS56131985A (en) * 1980-03-19 1981-10-15 Mitsubishi Electric Corp Amplifying device for laser beam
JPS56131983A (en) * 1980-03-19 1981-10-15 Mitsubishi Electric Corp Gas laser device
US4392105A (en) * 1980-12-17 1983-07-05 International Business Machines Corp. Test circuit for delay measurements on a LSI chip
JPS5815286A (en) * 1981-07-21 1983-01-28 Mitsubishi Electric Corp Electrode for silent discharge laser
JPS617676A (en) * 1984-06-22 1986-01-14 Hitachi Ltd Electrode for gas laser oscillator
US4845408A (en) * 1984-12-06 1989-07-04 Gte Products Corporation Compact fluorescent lamp assembly
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
IL81439A (en) * 1987-01-30 1991-08-16 Alumor Lasers Ltd Ultra compact,rf excited gaseous lasers
JPH01264137A (en) * 1988-04-14 1989-10-20 Dainippon Toryo Co Ltd Plasma display device
CH677292A5 (en) * 1989-02-27 1991-04-30 Asea Brown Boveri
DE4010809A1 (en) * 1989-04-11 1990-10-18 Asea Brown Boveri High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
DE4010190A1 (en) * 1990-03-30 1991-10-02 Asea Brown Boveri RADIATION DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184214A2 (en) * 1984-12-06 1986-06-11 GTE Products Corporation Compact fluorescent lamp assembly
EP0477914A2 (en) * 1990-09-25 1992-04-01 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting method
EP0547366A1 (en) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH High power radiator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 55 (E-481)(2502) 20. Februar 1987 & JP-A-61 216 232 ( MATSUSHITA ELECTRONICS ) 25. September 1986 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703602A1 (en) * 1994-09-20 1996-03-27 Ushiodenki Kabushiki Kaisha Light source device using a dielectric barrier discharge lamp
WO1998011596A1 (en) * 1996-09-11 1998-03-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electric radiation source and irradiation system with this radiation source
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
EP0871203A2 (en) * 1997-04-11 1998-10-14 Nec Corporation Noble gas discharge lamp
EP0871203A3 (en) * 1997-04-11 1999-03-17 Nec Corporation Noble gas discharge lamp
EP0948030A2 (en) * 1998-03-30 1999-10-06 Toshiba Lighting & Technology Corporation Rare gaseous discharge lamp, lighting circuit, and lighting device
EP0948030A3 (en) * 1998-03-30 1999-12-29 Toshiba Lighting & Technology Corporation Rare gaseous discharge lamp, lighting circuit, and lighting device
EP1220285A2 (en) * 2000-09-09 2002-07-03 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Ion source in which a UV/VUV light source is used for ionization
EP1220285B1 (en) * 2000-09-09 2014-08-20 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Ion source in which a UV/VUV light source is used for ionization
WO2011117045A1 (en) * 2010-03-26 2011-09-29 Osram Gesellschaft mit beschränkter Haftung Dielectric barrier discharge lamp having a holding disc

Also Published As

Publication number Publication date
JP2771428B2 (en) 1998-07-02
EP0578953B1 (en) 1997-09-17
DE4222130C2 (en) 1995-12-14
JPH06209131A (en) 1994-07-26
CA2099073A1 (en) 1994-01-07
CA2099073C (en) 1999-03-02
US5432398A (en) 1995-07-11
DE4222130A1 (en) 1994-01-13

Similar Documents

Publication Publication Date Title
EP0578953B1 (en) High power emitting device
EP0509110B1 (en) Irradation device
EP0385205B1 (en) High-power radiation device
EP0389980A1 (en) High power radiation device
EP0254111B1 (en) Ultraviolett radiation device
DE19636965B4 (en) Electrical radiation source and radiation system with this radiation source
DE4140497C2 (en) High-power radiation
DE69310314T2 (en) Arc tube with an ignition source
CH675178A5 (en)
EP0458140A1 (en) High power radiator
EP0517929B1 (en) Irradiation device with a high power radiator
EP0782871A2 (en) Body ultra-violet radiation process, its device and its use
DE19950601A1 (en) Pre-ionization device for gas laser
EP0489184B1 (en) High power radiation device
DE4302465C1 (en) Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
DE10222100A1 (en) Dielectric barrier discharge lamp for producing visible, ultraviolet, vacuum ultraviolet and infrared radiation has base with tube fitted to lamp foot end of discharge vessel and enclosing lamp foot
EP1276137B1 (en) Dielectric-barrier discharge lamp with starting aid
EP0393449B1 (en) Fluorescent lamp
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE10356762A1 (en) Discharge lamp of the short arc type
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE102009030310A1 (en) Dielectric barrier discharge lamp with discharge spaces
WO2013017304A1 (en) High-pressure discharge lamp having a starting aid
WO1994013330A1 (en) Disinfection of liquids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19950921

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): CH GB LI NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020605

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040101