EP0569511B1 - Verfahren und vorrichtung zum giessen eines legierungsingots mit feinem dendritischen gefüge - Google Patents

Verfahren und vorrichtung zum giessen eines legierungsingots mit feinem dendritischen gefüge Download PDF

Info

Publication number
EP0569511B1
EP0569511B1 EP92905737A EP92905737A EP0569511B1 EP 0569511 B1 EP0569511 B1 EP 0569511B1 EP 92905737 A EP92905737 A EP 92905737A EP 92905737 A EP92905737 A EP 92905737A EP 0569511 B1 EP0569511 B1 EP 0569511B1
Authority
EP
European Patent Office
Prior art keywords
ingot
alloy
casting
temperature
impression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92905737A
Other languages
English (en)
French (fr)
Other versions
EP0569511A1 (de
Inventor
Jean Collot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transvalor SA
Original Assignee
Transvalor SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transvalor SA filed Critical Transvalor SA
Publication of EP0569511A1 publication Critical patent/EP0569511A1/de
Application granted granted Critical
Publication of EP0569511B1 publication Critical patent/EP0569511B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the present invention relates to a method of molding an ingot made of an alloy with a fine dendritic structure (claim 1), as well as to a method of molding metallic parts without porosities from said ingot (claim 9). It also relates to a molding machine enabling the above-mentioned methods to be implemented (claim 12).
  • One of the techniques used to avoid this type of drawback consists in producing, from the molten metal alloy, a thixotropic suspension or jelly, that is to say in the semi-liquid semi-solid state. , and then pour this thixotropic jelly under pressure into a mold.
  • Such a treatment makes it possible to improve, in a notable manner, both the tensile strength and the elongation before rupture of the parts thus produced, but the importance of its duration, and consequently the increase in manufacturing costs that this treatment implies the fact that it is reserved for the manufacture of parts whose quality standards are particularly strict.
  • the object of the present invention is to propose a process for molding metallic alloys without porosities, which can be easily implemented, without requiring the use of specific machines of high dimensions and cost, and which, moreover, allows obtain large molded parts.
  • the object of the present invention is to propose a simple method of manufacturing ingots of alloys which, in order to constitute a thixotropic alloy, capable of supplying by an injection operation metal parts without porosities, require only a simple heating operation at a determined temperature.
  • the present invention also aims to provide a pressure casting process whose speed of implementation allows to achieve significant production rates to reduce, significantly, the cost of the products manufactured.
  • the present invention thus relates to a method of molding an ingot with a fine dendritic structure from a metal alloy, characterized in that it consists in carrying out a pressure casting of the molten alloy inside. an imprint of a mold, this imprint being maintained, throughout the casting, at a substantially constant temperature, higher than ambient temperature and lower than the solidus temperature of the alloy.
  • the Applicant has thus established that the fact of carrying out a pressure casting of a metal alloy in a mold, the walls of which are maintained at a temperature above the ambient temperature and below the solidus temperature of the alloy, allows ingots to be produced with a fine dendritic structure and without porosities such that, when these ingots are then reheated so as to bring them to a temperature between the temperature of solidus and the liquidus temperature of the alloy, so as to bring them to a pasty state of thixotropic jelly type, and which is then injected under pressure from these ingots, the pieces thus obtained have a structure fine globular, free of porosity and with remarkable mechanical qualities.
  • An advantage of the process according to the invention compared to those implemented according to the prior art, is that both the operation of casting the ingots and the operation of injecting the final part from these ingots can be carried out simply, that is to say without the need to resort to complex operations, such as agitation, centrifugation or extrusion, which puts the process within the reach of users not specialized in this type of molding.
  • the method can be implemented with conventional type molding machines, which avoids both the producer of ingots and the user thereof having to invest in specific expensive machines.
  • the ingots produced can, of course, be of dimensions suitable for the final pieces that it is desired to mold so as to avoid the cutting operations of the prior art, which constitute a waste of time and money.
  • the ratio of the absolute temperature T s of the solidus of the alloy to the absolute temperature T m at which the mold imprint is maintained during casting is between 1, 5 and 2.5.
  • the present invention is particularly suitable for the production of pressure-molded parts of magnesium alloy, it can, of course, also be used to carry out the molding of other metal alloys and in particular of base alloys, by example, aluminum or zinc.
  • the present invention also aims to provide means for passing directly from the production of the ingot to the injection of the final part from this ingot.
  • the present invention also relates to a machine for die-casting a metal alloy allowing the manufacture of parts without porosity, characterized in that it comprises three sections arranged one next to the other, namely a casting section, comprising an ingot mold cooled by circulation of a fluid, a reheating section and an injection section, these three sections having respective internal volumes aligned longitudinally to constitute a continuous treatment channel, and at least one piston movable longitudinally in this channel treatment, this piston serving as the bottom for the internal volume of the ingot mold of the casting section, during its filling with the liquid metal, possibly intervening to transport, in the reheating section, the ingot formed after cooling and intervening for the injection under pressure, in the injection section, of the heated ingot presenting itself in the form of thixotropic jelly.
  • the injection section is located between the casting section and the reheating section and a thermally insulating seal is interposed between the casting section and the injection section.
  • the process according to the invention uses a pressure molding machine which is provided with means making it possible to maintain the walls of the mold cavity at a temperature lying between ambient temperature and the solidus temperature of the alloy.
  • This machine essentially consists of an ingot mold 1 consisting of a substantially horizontal tube comprising, at one of its ends, a supply orifice 2 opening into an injection channel 4 in which is movably mounted a piston injection 6, this ingot mold 1 being further provided with heating and temperature regulation means, for example consisting of heating cartridges 3 with temperature regulation.
  • the mold consists of two parts, namely one part anterior 10a and a posterior part 10b.
  • the injection channel 4 opens into a cylindrical cavity 8 hollowed out in the front part 10a, and which constitutes the imprint of the ingot which one wishes to mold.
  • This imprint 8 is of the same diameter as the injection channel 4.
  • the front part 10a of the mold 10 comprises, like the mold 1, heating and temperature regulation means, consisting of heating cartridges 3 with temperature regulation.
  • the rear part 10b of the mold has a series of "washing heels” 12 distributed around the cavity 8, as well as fine channels called “air trails” 12 ', in communication, by one of their ends, with the washing heels 12 and, by their other end, with the outside of the mold, the total volume of the washing heels 12 and the air trails 12're representing approximately a quarter of the volume of the ingot which it is desired to pour .
  • the molten metal is poured, consisting, for example, of a magnesium alloy GA9Z1, (that is to say of a magnesium alloy containing 9% aluminum and 1% zinc) , whose solidus and liquidus temperatures are respectively 468 ° C and 595 ° C, and it is melted at a temperature higher than the liquidus temperature, namely a temperature of the order of 700 ° C, then pour it into the mold 1, using a feed chute, not shown in the drawing.
  • This alloy fills part of the ingot mold 1, depending on the volume which it is desired to give to the ingot.
  • the injection piston 6 is then moved so as to exert with it a pressure P on the molten metal, to inject it inside the cavity 8 of the mold 10.
  • the part of molten metal injected first into the cavity 8 passes through it to be ejected, out of it, in the washing heels 12 and in the streaks of air 12 '.
  • the ejection of the ingot 14 thus formed and its separation from the washing heels 12 it is possible either to let the ingot 14 cool, preferably to room temperature, or immediately proceed to the operation d injection of the final part to be molded.
  • a metallographic study of the ingot 14 thus obtained reveals, as can be seen in FIG. 4, a fine dendritic structure, while the structure of the same alloy obtained by a conventional type molding process shows a structure with porosities, such as that shown in FIG. 3.
  • the ingots thus obtained can therefore be marketed as is .
  • the heating and temperature regulation means may consist of pipes 19 carrying a heat transfer fluid.
  • heating means can be used, for example by Joule effect or of the type of those represented in FIGS. 6 and 7.
  • These include an inductor 20, of longitudinal axis xx ′, substantially horizontal, intended to be traversed for a medium frequency current, inside which is disposed a quartz tube 22 open at one of its ends, and which is intended to receive the ingot 14 to be heated.
  • the opposite closed part of the tube 22 has, at its lower part, a window 23 which opens on an inclined plane 24, opening into an intake opening 26 provided at the upper part of an injection tube 28.
  • a push piston 36 with a diameter less than the internal diameter of the quartz tube 22, is mounted movable in translation therein.
  • the injection tube 28 opens, as shown in FIG. 7, into a cavity 32 of a mold 33 in two parts, namely a front part 33a and a rear part 33b.
  • the injection piston 38 is slidably mounted in the injection tube 28 and in the cavity 32.
  • the ingot 14 is introduced into the quartz tube 22, then the coil of the inductor 20 is supplied with alternating current, so as to cause the ingot 14 to heat up and bring it to a temperature comprised between its solidus temperature T s and its liquidus temperature T l , and preferably close to the latter, namely in the case of the magnesium alloy GA9Z1 a temperature of approximately 530 ° C to 560 ° C, so that the ingot 14 is brought to a state of thixotropic jelly.
  • a pasty state of the ingot 14 allows it to lend itself particularly well to injection under pressure.
  • the ingot 14 After the ingot 14 has warmed up, it is moved longitudinally, by means of the piston 36, to present it facing the window 23, in line with the inclined plane 24, on which it slides to penetrate into the injection tube 28, by admission opening 26.
  • the first alloy is an AS9U3, that is to say an aluminum alloy with 9% silicon and 3% copper. It is noted that the method according to the invention makes it possible to improve both the tensile strength and the elongation before rupture of such an alloy.
  • the second alloy is a ZA27, that is to say a zinc alloy containing 27% aluminum. It has been found that such an alloy has good tensile strength characteristics and an average elongation resistance.
  • the process according to the invention retains the satisfactory tensile strength of the alloy and multiplies by more than two the elongation characteristic before it breaks.
  • the third alloy is GA9Z1, that is to say a magnesium alloy containing 9% aluminum and 1% zinc. It can be seen that the process according to the invention significantly improves the tensile strength and multiplies the elongation characteristic by more than 2. It is also known that the mechanical characteristics of breaking strength and elongation of such an alloy can be improved by a heat treatment of the T6 type, the various phases of which have been explained above. We have thus included in the previous table the characteristics of the alloy GA9Z1 molded by gravity and after heat treatment T6, in order to compare it with the process according to the invention.
  • an average processing time of the T6 process is of the order of forty hours, while the process according to the invention requires only the times for casting the ingot, for reheating the latter, and injection of the final part, which represents only a few tens of seconds.
  • the ingot casting operation 14 can be carried out by means of an ingot mold consisting of a vertical tube 40 inside which two pistons are movably mounted, namely an upper piston 42 and a lower piston 44 between which the molten alloy is brought, the latter being injected, by downward movement of the upper piston 42, through a lateral injection nozzle 46 provided in the wall of the mold 40, in an imprint 48 of a mold 50.
  • ejectors 52 pass through the wall of the mold and ensure, from the opening of the latter, the ejection of the ingot.
  • the use of an injection nozzle 46 of reduced section improves the fineness of the structure of the ingot by producing a "shear" of the alloy.
  • the ingot casting operations and the injection of the part to be molded can be carried out, one after the other, by a single molding machine, of the type shown in FIGS. 9 to 14.
  • This molding machine is of the vertical type and successively comprises, from top to bottom, a section upper A for casting a liquid alloy 100 poured into this section, an intermediate injection section C and a lower reheating section B.
  • the upper casting section A comprises a mold 102 into which the liquid alloy 100 is poured.
  • the wall of the mold 102 contains channels 103 through which a cooling fluid, such as cold water, passes.
  • the liquid metal 100 is poured from a feed chute 104 and it fills the internal volume, or imprint 105, of the mold 102, forming a bath of liquid alloy.
  • the liquid metal in the ingot mold 102 is held down by a lower piston 106, sliding vertically in the cavity 105 of the ingot mold 102 and the upper surface of which is coated with a wafer 107 made of a material resistant to heat, such as a ceramic cake.
  • a lower piston 106 sliding vertically in the cavity 105 of the ingot mold 102 and the upper surface of which is coated with a wafer 107 made of a material resistant to heat, such as a ceramic cake.
  • the outlet orifice of the chute 104 for supplying liquid metal 100 and the piston 108 are housed inside an enclosure 109 into which a suitable protective gas or mixture of protective gas is introduced.
  • the ingot mold 102 has, at its lower end, a peripheral flange 110 by which it is assembled, by means of fixing members not shown, with the interposition of an annular insulating lining 112, with an upper peripheral flange 113 of a chamber cylindrical injection 114 located under the mold 102 and forming part of the injection section C.
  • This injection chamber 114 has an internal volume or bore 115 which passes right through it axially and which extends downwards in the extension of the imprint 105 of the upper ingot mold 102 and which has the same dimensions as the latter.
  • the lower piston 106 is extended, downwards, by a piston rod 106a which extends through the entire intermediate injection section C and through the lower reheating section B, as it appears in FIG. 9.
  • the piston rod 106a is actuated, at its lower end, by means not shown, allowing it to perform an alternating axial movement through sections A, C and B of the machine.
  • the cylindrical wall of the injection chamber 114 are housed heating resistors 117 whose electrical supply wires 118 exit at the lower end of the wall of the chamber 114 passing through an annular chamber 119 disposed under the lower end of the injection chamber 114.
  • this annular chamber 119 there flows a flow of cooling gas, which enters the chamber through an inlet orifice 121 and leaves it through an orifice 122.
  • the chamber intermediate injection 114 is thus maintained at a temperature which is a function of the nature of the alloy to be cast and which is lower than the solidus temperature of the alloy.
  • This mold 124 comprises a fixed female half-mold 124a, formed laterally in the external surface of the wall of the injection chamber 114, and a male half-mold 124b movable horizontally and radially.
  • the movable male half-mold 124b includes heating resistors 125 which keep the mold 124 at substantially the same temperature as the injection chamber 114.
  • the mold also carries ejectors which eject the molded part.
  • the injection chamber 114 is extended downwards by a quartz tube 127 with an internal diameter larger than that of the piston 106 and of the bore 115 and connecting to the latter via a inlet section 128 of the bore 115 which is frustoconical and converges upwards, that is to say towards the bore 115.
  • the quartz tube 127 is surrounded by an external induction heating coil 130.
  • the upper piston 108 is placed above the liquid metal feed chute 104, and the lower piston 106 is in its extreme upper position, in which it is engaged in the lower part of the ingot mold 102.
  • the liquid metal 100 is poured into the ingot mold 102 and it forms a liquid mass which gradually cools, because the wall of the ingot mold 102 is cooled by the circulation of water in the conduits 103.
  • the ingot 14 is ejected from the ingot mold 102 by the upper piston 108 which is then moved downwards, being accompanied in this same movement by the lower piston 106.
  • the ingot 14, still held between the two pistons 106 and 108 is brought down and passed through the whole of the ingot mold 102 then of the injection chamber 114 , to reach the lower heating section B, inside the quartz tube 127 and the induction heating coil 130.
  • the upper piston 108 is separated from the upper surface of the ingot and is placed at the base of the injection chamber 114.
  • the induction heating coil 130 is then supplied with alternating current (FIG.
  • the mold 124 opens, by a horizontal and radial movement of the movable male half-mold 124a outward, and the ejectors ensure the release of the part P thus formed.
  • the mold 124 closes, the movable male half-mold 124b engaging in the fixed female half-mold 124a provided in the wall of the injection chamber 114.
  • the lower piston 106 is moved upwards, so that its insulating ceramic upper pad 107 protrudes a little above the upper surface of the mold 102, which allows to eject the cake constituting the residue of the ingot 14a after casting.
  • the casting A, injection C and heating B sections are provided successively in this order, from top to bottom.
  • the heating section B could be in the intermediate position, just below the upper casting section A and above the injection section C then being in lower position.
  • the molding machine described here has a vertical axis, it could also be provided with an arrangement along a horizontal axis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Claims (13)

  1. Verfahren zum Gießen eines Blocks mit feiner dentritischer Struktur aus einer Metallegierung, dadurch gekennzeichnet, daß es in der Durchführung eines Druckgusses einer schmelzflüssigen Legierung in das Innere eines Formhohlraums (8,48,105) einer Form (10,50,102) besteht, wobei dieser Formhohlraum den ganzen Guß hindurch bei einer etwa konstanten Temperatur gehalten wird, die oberhalb Umgebungstemperatur und unterhalb dar Solidus-Temperatur der Legierung liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach dem Druckguß eine Abkühlung des Gußkörpers oder Blocks (14) auf eine Temperatur nahe der Umgebungstemperatur erfolgt.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Verhältnis der absoluten Solidus-Temperatur der Legierung (Ts) zu der absoluten Temperatur (Tm), bei der der Formhohlraum (8,48,105) der Form (10,50,102) während des Gusses gehalten wird, zwischen 1,5 und 2,5 liegt.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Legierung eine Magnesiumlegierung ist und daß die Temperatur, bei der der Formhohlraum (8,48,105) der Form (10,50,102) während des Gusses des Blocks (14) gehalten wird, in der Größenordnung von 150 C° liegt.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man während des Gusses des Gußkörpers oder Blocks (14) außerhalb des Formhohlraums (8,48) ein Volumen schmelzflüssigen Metalls, das mindestens einem Viertel des Volumens des Blocks (14) entspricht, in mindestens einen Hohlraum (12) abzieht, wobei dieser Hohlraum auf einer Seite der Form (10,50) etwa gegenüber einem Einlaßkanal (4,46) liegt, durch den man die Legierung in die Form injiziert und der in den Formhohlraum (8,48) mündet.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Hohlraum (12) in Verbindung mit der äußeren Umgebung steht durch mindestens einen Kanal (12').
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Volumen schmelzflüssigen Metalls, das außerhalb des Formhohlraums (8) abgezogen wird, in mindestens einen anderen Formhohlraum (16) injiziert wird, in der Weise, daß zur gleichen Zeit wie der Guß des Blocks (14) mindestens ein anderes Stück (16') gegossen wird.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei dem Guß des Gußkörpers oder Blocks (14) die Temperatureinstellung des Formhohlraums (8,48,105) der Form (10,50,102) durch einen vorhergehenden Guß einer Reihe von Gußkörpern (14) vornimmt, und daß man diese Temperatur mittels der durch die Blocks (14) bei ihrem Guß an die Form abgegebenen Wärme aufrechterhält.
  9. Verfahren zum Druckguss einer metallischen Legierung, welches die Herstellung von porenfreien Stücken ermöglicht, unter Verwendung eines Gußkörpers (14), der nach einem Verfahren nach einem der vorangehenden Ansprüche gegossen wurde, dadurch gekennzeichnet, daß es die folgenden Stufen umfasst:
    - Erwärmen des Gußkörpers (14) um zu einer Temperatur zwischen der Solidus- und Liquidus-Temperatur der ihn bildenden Legierung zu gelangen in der Weise, daß ein pastöser Zustand eines thixotropen gallertartigen Type erreicht wird,
    - Injektion unter Druck des genannten Stücks, ausgehend von dem Gußstück im thixotropen Zustand, in mindestens einen Formhohlraum (32', 126), mindestens einer Form (33,124).
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Stufe der Wiedererwärmung des Blocks (14) mittels Induktionsheizung (20) erfolgt.
  11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man auf die genannte Legierung bei mindestens einer der Arbeitsschritte des Verfahrens ein Schutzgas aufbringt.
  12. Vorrichtung zum Druckguß eines metallischen Legierung, die die Herstellung von porenfreien Stücken ermöglicht, dadurch gekennzeichnet, daß sie 3 nebeneinanderliegende Abschnitte aufweist, nämlich eine Gußsektion (A), die eine durch Kreislauf einer Flüssigkeit gekühlte Gießform (102) aufweist, eine Aufheizsektion (B) und eine Injektionssektion (C), wobei diese drei Sektionen (A,B,C) jeweils interne Volumina (105,115,127) aufweisen, die in Längsrichtung nach aufgereiht sind, so daß sie einen Kanal zu kontinuierlichen Behandlung bilden, und wenigstens einen in Längsrichtung beweglichen Kolben (106) in diesem Behandlungskanal (105,115,127), wobei dieser Kolben (106) als Boden für den Formhohlraum (105) der Gießform (102) der Gießsektion (A) dient während seiner Füllung mit dem flüssigen Metall und gegebenenfalls für den Transport des Gießkörpers (14a), der nach Abkühlung gebildet wird, in die Aufheizsektion (B), und in der Injektionssektion (C) zum Druckguß des aufgewärmten Gießkörpers, der in Form einer thixotropen, gallertartigen Masse vorliegt, eingreift.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Injektionssektion (C) zwischen der Gießsektion (A) und der Aufheizsektion (B) liegt und daß eine thermisch isolierende Verbindung (112) zwischen der Abkühlsektion (A) und der Injektionssektion (C) liegt.
EP92905737A 1991-01-30 1992-01-30 Verfahren und vorrichtung zum giessen eines legierungsingots mit feinem dendritischen gefüge Expired - Lifetime EP0569511B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9101059A FR2671992B1 (fr) 1991-01-30 1991-01-30 Procede de coulee sous pression, a chambre froide.
FR9101059 1991-01-30
PCT/FR1992/000083 WO1992013662A1 (fr) 1991-01-30 1992-01-30 Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede

Publications (2)

Publication Number Publication Date
EP0569511A1 EP0569511A1 (de) 1993-11-18
EP0569511B1 true EP0569511B1 (de) 1995-01-25

Family

ID=9409204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92905737A Expired - Lifetime EP0569511B1 (de) 1991-01-30 1992-01-30 Verfahren und vorrichtung zum giessen eines legierungsingots mit feinem dendritischen gefüge

Country Status (6)

Country Link
EP (1) EP0569511B1 (de)
AT (1) ATE117606T1 (de)
AU (1) AU1353092A (de)
DE (1) DE69201301D1 (de)
FR (1) FR2671992B1 (de)
WO (1) WO1992013662A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936010A1 (de) * 1998-02-12 1999-08-18 Didier-Werke Ag Verfahren zum Vergiessen von Metallen unter Druck und Vorrichtung zur Durchführung des Verfahrens
US6502624B1 (en) * 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049648B2 (ja) * 1993-12-13 2000-06-05 日立金属株式会社 加圧成形方法および加圧成形機
FR2715088B1 (fr) * 1994-01-17 1996-02-09 Pechiney Aluminium Procédé de mise en forme de matériaux métalliques à l'état semi-solide.
CH689448A5 (de) * 1995-03-21 1999-04-30 Alusuisse Lonza Services Ag Verfahren und Vorrichtung zur Herstellung von Formteilen aus Metall.
DE69610132T2 (de) * 1995-03-22 2001-01-11 Hitachi Metals Ltd Druckgussverfahren
US5571346A (en) * 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
CA2177455C (en) * 1995-05-29 2007-07-03 Mitsuru Adachi Method and apparatus for shaping semisolid metals
US6769473B1 (en) 1995-05-29 2004-08-03 Ube Industries, Ltd. Method of shaping semisolid metals
JP3817786B2 (ja) * 1995-09-01 2006-09-06 Tkj株式会社 合金製品の製造方法及び装置
FR2748957B1 (fr) * 1996-05-22 1998-07-31 Celes Machine a injecter ou a couler sous pression
WO2013158069A1 (en) * 2012-04-16 2013-10-24 Apple Inc. Injection molding and casting of materials using a vertical injection molding system
US8701742B2 (en) 2012-09-27 2014-04-22 Apple Inc. Counter-gravity casting of hollow shapes
US8813813B2 (en) 2012-09-28 2014-08-26 Apple Inc. Continuous amorphous feedstock skull melting
CN108687323A (zh) * 2018-06-29 2018-10-23 昆明理工大学 一种锡青铜合金半固态连续触变挤压方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE166851C (de) * 1904-11-26
US4771818A (en) * 1979-12-14 1988-09-20 Alumax Inc. Process of shaping a metal alloy product
US4694881A (en) * 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US4505318A (en) * 1982-06-04 1985-03-19 Toyoto Jidosha Kogyo Kabushiki Kaisha Vertical type pressure casting method
FR2665654B1 (fr) * 1990-08-09 1994-06-24 Armines Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIESSEREI Vol. 60, No. 24, DÜSSELDORF pages 773-785; W. RÜEGG: "Jahresübersicht Druckguss (10. Folge)" see page 773, right-hand column, paragraph 4 *
MEMOIRES ET ETUDES SCIENTIFIQUES DE LA REVUE DE METALLURGIE Vol. 80,No. 7/8, 1983, PARIS pages 355 - 365; C. MILLIERE ET. AL.: "Structure, properiété et mise en forme des alliages brassés à l'état semi-solide (suite)" see page 359, paragraph 1 - page 360, line 14; figure 21, see page 5, paragraph 3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936010A1 (de) * 1998-02-12 1999-08-18 Didier-Werke Ag Verfahren zum Vergiessen von Metallen unter Druck und Vorrichtung zur Durchführung des Verfahrens
US6502624B1 (en) * 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process

Also Published As

Publication number Publication date
FR2671992A1 (fr) 1992-07-31
FR2671992B1 (fr) 1997-08-01
EP0569511A1 (de) 1993-11-18
AU1353092A (en) 1992-09-07
ATE117606T1 (de) 1995-02-15
DE69201301D1 (de) 1995-03-09
WO1992013662A1 (fr) 1992-08-20

Similar Documents

Publication Publication Date Title
EP0569511B1 (de) Verfahren und vorrichtung zum giessen eines legierungsingots mit feinem dendritischen gefüge
FR2665654A1 (fr) Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.
JP4693772B2 (ja) 金属ガラスの成形方法
FR2537897A1 (fr) Procede de coulee continue de metal
CA2041682C (fr) Procede de moulage a mousse perdue et sous basse pression de pieces en alliage d'aluminium
EP3134219A1 (de) Form für monokristallines giessen
CA3021395C (fr) Procede et dispositif pour le moulage en coquille d'un alliage metallique
EP0426581B1 (de) Verfahren zum Vollformgiessen von metallischen Gegenständen unter kontrolliertem Druck
EP1717007B1 (de) Verfahren und Vorrichtung zum Pressformen von Kunststoff-Verbundwerkstoffen mit Hilfe von geschmolzenen Metalllegierungen
CA3029438C (fr) Four de refroidissement par solidification dirigee et procede de refroidissement utilisant un tel four
EP0242347A2 (de) Vorrichtung zum Giessen einer flüssig-festen Mischung
BE519656A (de)
FR3143393A1 (fr) Procede de fabrication par moulage, sans noyau, de pieces metalliques creuses
FR2534167A1 (fr) Procede de fabrication en fonderie de pieces moulees en alliages metalliques oxydables
EP0958073B1 (de) Verfahren und anlage stranggiessen von metall
BE666099A (de)
BE1000221A6 (fr) Dispositif pour la coulee d'un metal en phase pateuse.
EP0557154B1 (de) Verfahren zur Herstellung von Sprengstoff-Formkörpern; Vorrichtung zur Ausführung des Verfahrens; Explosifladung und Munition damit hergestellt
FR2658745A1 (fr) Procede et dispositif de moulage d'un alliage metallique.
JP3576498B2 (ja) 還元鋳造方法および還元鋳造装置
LU86395A1 (fr) Dispositif et procede pour la coulee continue de l'acier
BE366574A (de)
FR2571282A1 (fr) Machine a fabriquer des noyaux creux en sable agglomere, cuit, pour la realisation de pieces metalliques par fonderie
FR2644087A2 (fr) Perfectionnement au procede de moulage a mousse perdue de pieces metalliques
FR2647380A1 (fr) Procede et dispositif de moulage de metaux utilisant des modeles gazeifiables et un materiau de moulage sans liant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940323

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950125

Ref country code: GB

Effective date: 19950125

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950125

Ref country code: AT

Effective date: 19950125

REF Corresponds to:

Ref document number: 117606

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69201301

Country of ref document: DE

Date of ref document: 19950309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950426

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TRANSVALOR S.A. TRANSFER- IDRA PRESSE

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020314

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020319

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST