EP0569511B1 - Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede - Google Patents

Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede Download PDF

Info

Publication number
EP0569511B1
EP0569511B1 EP92905737A EP92905737A EP0569511B1 EP 0569511 B1 EP0569511 B1 EP 0569511B1 EP 92905737 A EP92905737 A EP 92905737A EP 92905737 A EP92905737 A EP 92905737A EP 0569511 B1 EP0569511 B1 EP 0569511B1
Authority
EP
European Patent Office
Prior art keywords
ingot
alloy
casting
temperature
impression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92905737A
Other languages
German (de)
English (en)
Other versions
EP0569511A1 (fr
Inventor
Jean Collot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transvalor SA
Original Assignee
Transvalor SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transvalor SA filed Critical Transvalor SA
Publication of EP0569511A1 publication Critical patent/EP0569511A1/fr
Application granted granted Critical
Publication of EP0569511B1 publication Critical patent/EP0569511B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the present invention relates to a method of molding an ingot made of an alloy with a fine dendritic structure (claim 1), as well as to a method of molding metallic parts without porosities from said ingot (claim 9). It also relates to a molding machine enabling the above-mentioned methods to be implemented (claim 12).
  • One of the techniques used to avoid this type of drawback consists in producing, from the molten metal alloy, a thixotropic suspension or jelly, that is to say in the semi-liquid semi-solid state. , and then pour this thixotropic jelly under pressure into a mold.
  • Such a treatment makes it possible to improve, in a notable manner, both the tensile strength and the elongation before rupture of the parts thus produced, but the importance of its duration, and consequently the increase in manufacturing costs that this treatment implies the fact that it is reserved for the manufacture of parts whose quality standards are particularly strict.
  • the object of the present invention is to propose a process for molding metallic alloys without porosities, which can be easily implemented, without requiring the use of specific machines of high dimensions and cost, and which, moreover, allows obtain large molded parts.
  • the object of the present invention is to propose a simple method of manufacturing ingots of alloys which, in order to constitute a thixotropic alloy, capable of supplying by an injection operation metal parts without porosities, require only a simple heating operation at a determined temperature.
  • the present invention also aims to provide a pressure casting process whose speed of implementation allows to achieve significant production rates to reduce, significantly, the cost of the products manufactured.
  • the present invention thus relates to a method of molding an ingot with a fine dendritic structure from a metal alloy, characterized in that it consists in carrying out a pressure casting of the molten alloy inside. an imprint of a mold, this imprint being maintained, throughout the casting, at a substantially constant temperature, higher than ambient temperature and lower than the solidus temperature of the alloy.
  • the Applicant has thus established that the fact of carrying out a pressure casting of a metal alloy in a mold, the walls of which are maintained at a temperature above the ambient temperature and below the solidus temperature of the alloy, allows ingots to be produced with a fine dendritic structure and without porosities such that, when these ingots are then reheated so as to bring them to a temperature between the temperature of solidus and the liquidus temperature of the alloy, so as to bring them to a pasty state of thixotropic jelly type, and which is then injected under pressure from these ingots, the pieces thus obtained have a structure fine globular, free of porosity and with remarkable mechanical qualities.
  • An advantage of the process according to the invention compared to those implemented according to the prior art, is that both the operation of casting the ingots and the operation of injecting the final part from these ingots can be carried out simply, that is to say without the need to resort to complex operations, such as agitation, centrifugation or extrusion, which puts the process within the reach of users not specialized in this type of molding.
  • the method can be implemented with conventional type molding machines, which avoids both the producer of ingots and the user thereof having to invest in specific expensive machines.
  • the ingots produced can, of course, be of dimensions suitable for the final pieces that it is desired to mold so as to avoid the cutting operations of the prior art, which constitute a waste of time and money.
  • the ratio of the absolute temperature T s of the solidus of the alloy to the absolute temperature T m at which the mold imprint is maintained during casting is between 1, 5 and 2.5.
  • the present invention is particularly suitable for the production of pressure-molded parts of magnesium alloy, it can, of course, also be used to carry out the molding of other metal alloys and in particular of base alloys, by example, aluminum or zinc.
  • the present invention also aims to provide means for passing directly from the production of the ingot to the injection of the final part from this ingot.
  • the present invention also relates to a machine for die-casting a metal alloy allowing the manufacture of parts without porosity, characterized in that it comprises three sections arranged one next to the other, namely a casting section, comprising an ingot mold cooled by circulation of a fluid, a reheating section and an injection section, these three sections having respective internal volumes aligned longitudinally to constitute a continuous treatment channel, and at least one piston movable longitudinally in this channel treatment, this piston serving as the bottom for the internal volume of the ingot mold of the casting section, during its filling with the liquid metal, possibly intervening to transport, in the reheating section, the ingot formed after cooling and intervening for the injection under pressure, in the injection section, of the heated ingot presenting itself in the form of thixotropic jelly.
  • the injection section is located between the casting section and the reheating section and a thermally insulating seal is interposed between the casting section and the injection section.
  • the process according to the invention uses a pressure molding machine which is provided with means making it possible to maintain the walls of the mold cavity at a temperature lying between ambient temperature and the solidus temperature of the alloy.
  • This machine essentially consists of an ingot mold 1 consisting of a substantially horizontal tube comprising, at one of its ends, a supply orifice 2 opening into an injection channel 4 in which is movably mounted a piston injection 6, this ingot mold 1 being further provided with heating and temperature regulation means, for example consisting of heating cartridges 3 with temperature regulation.
  • the mold consists of two parts, namely one part anterior 10a and a posterior part 10b.
  • the injection channel 4 opens into a cylindrical cavity 8 hollowed out in the front part 10a, and which constitutes the imprint of the ingot which one wishes to mold.
  • This imprint 8 is of the same diameter as the injection channel 4.
  • the front part 10a of the mold 10 comprises, like the mold 1, heating and temperature regulation means, consisting of heating cartridges 3 with temperature regulation.
  • the rear part 10b of the mold has a series of "washing heels” 12 distributed around the cavity 8, as well as fine channels called “air trails” 12 ', in communication, by one of their ends, with the washing heels 12 and, by their other end, with the outside of the mold, the total volume of the washing heels 12 and the air trails 12're representing approximately a quarter of the volume of the ingot which it is desired to pour .
  • the molten metal is poured, consisting, for example, of a magnesium alloy GA9Z1, (that is to say of a magnesium alloy containing 9% aluminum and 1% zinc) , whose solidus and liquidus temperatures are respectively 468 ° C and 595 ° C, and it is melted at a temperature higher than the liquidus temperature, namely a temperature of the order of 700 ° C, then pour it into the mold 1, using a feed chute, not shown in the drawing.
  • This alloy fills part of the ingot mold 1, depending on the volume which it is desired to give to the ingot.
  • the injection piston 6 is then moved so as to exert with it a pressure P on the molten metal, to inject it inside the cavity 8 of the mold 10.
  • the part of molten metal injected first into the cavity 8 passes through it to be ejected, out of it, in the washing heels 12 and in the streaks of air 12 '.
  • the ejection of the ingot 14 thus formed and its separation from the washing heels 12 it is possible either to let the ingot 14 cool, preferably to room temperature, or immediately proceed to the operation d injection of the final part to be molded.
  • a metallographic study of the ingot 14 thus obtained reveals, as can be seen in FIG. 4, a fine dendritic structure, while the structure of the same alloy obtained by a conventional type molding process shows a structure with porosities, such as that shown in FIG. 3.
  • the ingots thus obtained can therefore be marketed as is .
  • the heating and temperature regulation means may consist of pipes 19 carrying a heat transfer fluid.
  • heating means can be used, for example by Joule effect or of the type of those represented in FIGS. 6 and 7.
  • These include an inductor 20, of longitudinal axis xx ′, substantially horizontal, intended to be traversed for a medium frequency current, inside which is disposed a quartz tube 22 open at one of its ends, and which is intended to receive the ingot 14 to be heated.
  • the opposite closed part of the tube 22 has, at its lower part, a window 23 which opens on an inclined plane 24, opening into an intake opening 26 provided at the upper part of an injection tube 28.
  • a push piston 36 with a diameter less than the internal diameter of the quartz tube 22, is mounted movable in translation therein.
  • the injection tube 28 opens, as shown in FIG. 7, into a cavity 32 of a mold 33 in two parts, namely a front part 33a and a rear part 33b.
  • the injection piston 38 is slidably mounted in the injection tube 28 and in the cavity 32.
  • the ingot 14 is introduced into the quartz tube 22, then the coil of the inductor 20 is supplied with alternating current, so as to cause the ingot 14 to heat up and bring it to a temperature comprised between its solidus temperature T s and its liquidus temperature T l , and preferably close to the latter, namely in the case of the magnesium alloy GA9Z1 a temperature of approximately 530 ° C to 560 ° C, so that the ingot 14 is brought to a state of thixotropic jelly.
  • a pasty state of the ingot 14 allows it to lend itself particularly well to injection under pressure.
  • the ingot 14 After the ingot 14 has warmed up, it is moved longitudinally, by means of the piston 36, to present it facing the window 23, in line with the inclined plane 24, on which it slides to penetrate into the injection tube 28, by admission opening 26.
  • the first alloy is an AS9U3, that is to say an aluminum alloy with 9% silicon and 3% copper. It is noted that the method according to the invention makes it possible to improve both the tensile strength and the elongation before rupture of such an alloy.
  • the second alloy is a ZA27, that is to say a zinc alloy containing 27% aluminum. It has been found that such an alloy has good tensile strength characteristics and an average elongation resistance.
  • the process according to the invention retains the satisfactory tensile strength of the alloy and multiplies by more than two the elongation characteristic before it breaks.
  • the third alloy is GA9Z1, that is to say a magnesium alloy containing 9% aluminum and 1% zinc. It can be seen that the process according to the invention significantly improves the tensile strength and multiplies the elongation characteristic by more than 2. It is also known that the mechanical characteristics of breaking strength and elongation of such an alloy can be improved by a heat treatment of the T6 type, the various phases of which have been explained above. We have thus included in the previous table the characteristics of the alloy GA9Z1 molded by gravity and after heat treatment T6, in order to compare it with the process according to the invention.
  • an average processing time of the T6 process is of the order of forty hours, while the process according to the invention requires only the times for casting the ingot, for reheating the latter, and injection of the final part, which represents only a few tens of seconds.
  • the ingot casting operation 14 can be carried out by means of an ingot mold consisting of a vertical tube 40 inside which two pistons are movably mounted, namely an upper piston 42 and a lower piston 44 between which the molten alloy is brought, the latter being injected, by downward movement of the upper piston 42, through a lateral injection nozzle 46 provided in the wall of the mold 40, in an imprint 48 of a mold 50.
  • ejectors 52 pass through the wall of the mold and ensure, from the opening of the latter, the ejection of the ingot.
  • the use of an injection nozzle 46 of reduced section improves the fineness of the structure of the ingot by producing a "shear" of the alloy.
  • the ingot casting operations and the injection of the part to be molded can be carried out, one after the other, by a single molding machine, of the type shown in FIGS. 9 to 14.
  • This molding machine is of the vertical type and successively comprises, from top to bottom, a section upper A for casting a liquid alloy 100 poured into this section, an intermediate injection section C and a lower reheating section B.
  • the upper casting section A comprises a mold 102 into which the liquid alloy 100 is poured.
  • the wall of the mold 102 contains channels 103 through which a cooling fluid, such as cold water, passes.
  • the liquid metal 100 is poured from a feed chute 104 and it fills the internal volume, or imprint 105, of the mold 102, forming a bath of liquid alloy.
  • the liquid metal in the ingot mold 102 is held down by a lower piston 106, sliding vertically in the cavity 105 of the ingot mold 102 and the upper surface of which is coated with a wafer 107 made of a material resistant to heat, such as a ceramic cake.
  • a lower piston 106 sliding vertically in the cavity 105 of the ingot mold 102 and the upper surface of which is coated with a wafer 107 made of a material resistant to heat, such as a ceramic cake.
  • the outlet orifice of the chute 104 for supplying liquid metal 100 and the piston 108 are housed inside an enclosure 109 into which a suitable protective gas or mixture of protective gas is introduced.
  • the ingot mold 102 has, at its lower end, a peripheral flange 110 by which it is assembled, by means of fixing members not shown, with the interposition of an annular insulating lining 112, with an upper peripheral flange 113 of a chamber cylindrical injection 114 located under the mold 102 and forming part of the injection section C.
  • This injection chamber 114 has an internal volume or bore 115 which passes right through it axially and which extends downwards in the extension of the imprint 105 of the upper ingot mold 102 and which has the same dimensions as the latter.
  • the lower piston 106 is extended, downwards, by a piston rod 106a which extends through the entire intermediate injection section C and through the lower reheating section B, as it appears in FIG. 9.
  • the piston rod 106a is actuated, at its lower end, by means not shown, allowing it to perform an alternating axial movement through sections A, C and B of the machine.
  • the cylindrical wall of the injection chamber 114 are housed heating resistors 117 whose electrical supply wires 118 exit at the lower end of the wall of the chamber 114 passing through an annular chamber 119 disposed under the lower end of the injection chamber 114.
  • this annular chamber 119 there flows a flow of cooling gas, which enters the chamber through an inlet orifice 121 and leaves it through an orifice 122.
  • the chamber intermediate injection 114 is thus maintained at a temperature which is a function of the nature of the alloy to be cast and which is lower than the solidus temperature of the alloy.
  • This mold 124 comprises a fixed female half-mold 124a, formed laterally in the external surface of the wall of the injection chamber 114, and a male half-mold 124b movable horizontally and radially.
  • the movable male half-mold 124b includes heating resistors 125 which keep the mold 124 at substantially the same temperature as the injection chamber 114.
  • the mold also carries ejectors which eject the molded part.
  • the injection chamber 114 is extended downwards by a quartz tube 127 with an internal diameter larger than that of the piston 106 and of the bore 115 and connecting to the latter via a inlet section 128 of the bore 115 which is frustoconical and converges upwards, that is to say towards the bore 115.
  • the quartz tube 127 is surrounded by an external induction heating coil 130.
  • the upper piston 108 is placed above the liquid metal feed chute 104, and the lower piston 106 is in its extreme upper position, in which it is engaged in the lower part of the ingot mold 102.
  • the liquid metal 100 is poured into the ingot mold 102 and it forms a liquid mass which gradually cools, because the wall of the ingot mold 102 is cooled by the circulation of water in the conduits 103.
  • the ingot 14 is ejected from the ingot mold 102 by the upper piston 108 which is then moved downwards, being accompanied in this same movement by the lower piston 106.
  • the ingot 14, still held between the two pistons 106 and 108 is brought down and passed through the whole of the ingot mold 102 then of the injection chamber 114 , to reach the lower heating section B, inside the quartz tube 127 and the induction heating coil 130.
  • the upper piston 108 is separated from the upper surface of the ingot and is placed at the base of the injection chamber 114.
  • the induction heating coil 130 is then supplied with alternating current (FIG.
  • the mold 124 opens, by a horizontal and radial movement of the movable male half-mold 124a outward, and the ejectors ensure the release of the part P thus formed.
  • the mold 124 closes, the movable male half-mold 124b engaging in the fixed female half-mold 124a provided in the wall of the injection chamber 114.
  • the lower piston 106 is moved upwards, so that its insulating ceramic upper pad 107 protrudes a little above the upper surface of the mold 102, which allows to eject the cake constituting the residue of the ingot 14a after casting.
  • the casting A, injection C and heating B sections are provided successively in this order, from top to bottom.
  • the heating section B could be in the intermediate position, just below the upper casting section A and above the injection section C then being in lower position.
  • the molding machine described here has a vertical axis, it could also be provided with an arrangement along a horizontal axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention concerne un procédé de moulage d'un lingot constitué d'un alliage à structure dendritique fine (revendication 1), ainsi qu'un procédé de moulage de pièces métalliques sans porosités à partir dudit lingot (revendication 9). Elle concerne également une machine de moulage permettant de mettre en oeuvre les susdits procédés (revendication 12).
  • Les préambules des revendications 1, 9 et 12 sont basées sur US-A-771818.
  • On sait qu'au cours d'une opération de coulée par gravité d'un alliage, lorsque l'alliage liquide passe à l'état solide, il apparaît, dans celui-ci, un retrait qui provoque des porosités, des retassures et des fissurations de la pièce moulée.
  • On sait également que dans les techniques de moulage sous pression, les turbulences crées dans le métal en fusion, lors de l'entrée de celui-ci dans le moule, créent des microbulles se traduisant, après solidification, par des porosités.
  • L'une des techniques utilisées pour éviter ce type d'inconvénient consiste à réaliser, à partir de l'alliage métallique en fusion, une supension ou gelée thixotrope, c'est-à-dire à l'état mi-liquide mi-solide, et à couler ensuite sous pression cette gelée thixotrope dans un moule.
  • On a également proposé, dans le brevet FR-A-2 658 745, de réaliser ladite gelée thixotrope dans un moule constitué d'un creuset d'une machine de centrifugation, de façon à réaliser l'opération de moulage en cours de rotation de la machine de centrifugation.
  • Si un tel procédé de moulage donne toute satisfaction quant aux qualités métallographiques et mécaniques des alliages ainsi obtenus, il présente de notables inconvénients lorsqu'il s'agit de réaliser des pièces de dimensions relativement importantes, qui impliquent la mise en oeuvre de centrifugeuses de dimensions correspondantes et qui sont donc d'un prix de revient très élevé. Un tel procédé est en conséquence ainsi réservé, de préférence, à la réalisation de pièces mécaniques de faible volume devant posséder des qualités mécaniques élevées.
  • On a proposé également, dans le brevet FR-A-2 266 749, de réaliser des pièces en alliage métallique sans porosités en chauffant lesdits alliages à une température comprise entre leurs températures de solidus et de liquidus, de façon à amener a l'état liquide une proportion pondérale déterminée de l'alliage, et en les maintenant à ladite température pendant une durée comprise entre quelques minutes et quelques heures. Si cette technique permet de passer d'un réseau dendritique à une structure globulaire de forme et de répartition régulières, elle est cependant d'une durée de mise en oeuvre particulièrement longue, ce qui est de nature à augmenter, de façon importante, le prix de revient des pièces ainsi fabriquées.
  • D'autres techniques sont également utilisées, notamment dans le domaine du moulage de l'aluminium et du magnésium, pour améliorer, malgré les porosités et les retassures, les caractéristiques de l'alliage. On a ainsi proprosé de soumettre des alliages de type GA9Z1, c'est-à-dire des alliages de magnésium comportant 9% d'aluminium et 1% de zinc, à un traitement thermique, dit de type T6, consistant à porter et à maintenir la pièce moulée à une température de l'ordre de 420°C pendant 24 heures, puis à la laisser se refroidir à l'air, et enfin à la porter et à la maintenir à une température de 190°C durant 16 heures. Un tel traitement permet d'améliorer, de façon notable, à la fois la résistance à la traction et l'allongement avant rupture des pièces ainsi fabriquées, mais l'importance de sa durée, et en conséquence l'augmentation des coûts de fabrication que ce traitement implique, le fait réserver à la fabrication de pièces dont les normes de qualité sont particulièrement sévères.
  • La présente invention a pour but de proposer un procédé de moulage d'alliages métalliques sans porosités, qui peut être facilement mis en oeuvre, sans nécessiter de faire appel à des machines spécifiques de dimensions et de coût élevés, et qui, de plus, permet d'obtenir des pièces moulées de grandes dimensions.
  • Plus précisément, la présente invention a pour but de proposer un procédé de fabrication simple de lingots d'alliages qui, pour constituer un alliage thixotrope, apte à fournir par une opération d'injection des pièces métalliques sans porosités, ne nécessitent qu'une simple opération de chauffage à une température déterminée.
  • La présente invention a également pour but de proposer un procédé de coulée sous pression dont la rapidité de la mise en oeuvre permet d'atteindre des cadences de fabrication importantes permettant de diminuer, de façon notable, le prix de revient des produits fabriqués.
  • La présente invention a ainsi pour objet un procédé de moulage d'un lingot à structure dendritique fine à partir d'un alliage métallique, caractérisé en ce qu'il consiste à réaliser une coulée sous pression de l'alliage en fusion à l'intérieur d'une empreinte d'un moule, cette empreinte étant maintenue, tout au long de la coulée, à une température sensiblement constante, supérieure à la température ambiante et inférieure à la température de solidus de l'alliage.
  • La demanderesse a ainsi établi que le fait de réaliser une coulée sous pression d'un alliage métallique dans un moule, dont les parois sont maintenues à une température supérieure à la température ambiante et inférieure à la température de solidus de l'alliage, permet de réaliser des lingots à structure dendritique fine et sans porosités tels que, lorsque l'on réchauffe ensuite ces lingots de façon à les porter à une température comprise entre la température de solidus et la température de liquidus de l'alliage, de façon à les amener à un état pâteux de type gelée thixotrope, et que l'on procéde ensuite à une injection sous pression à partir de ces lingots, les pièces ainsi obtenues possédent une structure fine globulaire, exempte de porosités et comportant des qualités mécaniques remarquables.
  • Un avantage du procédé suivant l'invention, par rapport à ceux mis en oeuvre suivant la technique antérieure, est qu'aussi bien l'opération de coulée des lingots que l'opération d'injection de la pièce définitive à partir de ces lingots peuvent être réalisées simplement, c'est-à-dire sans qu'il soit nécessaire de faire appel à des opérations complexes, telles qu'agitation centrifugation ou extrusion, ce qui met le procédé à la portée d'utilisateurs non spécialisés dans ce type de moulage. De plus le procédé peut être mis en oeuvre avec des machines à mouler de type classique, ce qui évite aussi bien au producteur de lingots qu'à l'utilisateur de ceux-ci d'avoir à investir dans des machines spécifiques onéreuses.
  • Bien entendu l'injection de la pièce à mouler à partir des lingots peut être réalisée immédiatement après la coulée de ceux-ci. Il est même possible de procéder, moyennant le remplacement de quelques accessoires annexes, à la mise en oeuvre de ces deux étapes de fabrication de façon successive sur une même machine.
  • Les lingots fabriqués peuvent, bien entendu, être de dimensions appropriées aux pièces définitives que l'on souhaite mouler de façon à éviter les opérations de tronçonnage de l'art antérieur, qui constituent une perte de temps et d'argent.
  • Dans un mode de mise en oeuvre intéressant de l'invention le rapport de la température absolue Ts du solidus de l'alliage sur la température absolue Tm à laquelle on maintient l'empreinte du moule pendant la coulée, est compris entre 1,5 et 2,5.
  • Bien que la présente invention soit particulièrement adaptée à la réalisation de pièces moulées sous pression en alliage de magnésium, elle peut, bien entendu, également être mise en oeuvre pour réaliser le moulage d'autres alliages métalliques et notamment d'alliages à base, par exemple, d'aluminium ou de zinc.
  • La présente invention a également pour but de proposer des moyens permettant de passer directement de l'élaboration du lingot à l'injection de la pièce définitive à partir de ce lingot.
  • La présente invention a également pour objet une machine de moulage sous pression d'un alliage métallique permettant la fabrication de pièces sans porosités caractérisée en ce qu'elle comprend trois sections disposées les une à côtés des autres, à savoir une section de coulée, comprenant une lingotière refroidie par circulation d'un fluide, une section de réchauffage et une section d'injection, ces trois sections présentant des volumes internes respectifs alignés longitudinalement pour constituer un canal de traitement continu, et au moins un piston mobile longitudinalement dans ce canal de traitement, ce piston servant de fond pour le volume interne de la lingotière de la section de coulée, pendant son remplissage avec le métal liquide, intervenant éventuellement pour transporter, dans la section de réchauffage, le lingot formé après refroidissement et intervenant pour l'injection sous pression, dans la section d'injection, du lingot réchauffé se présentant sous la forme de gelée thixotrope.
  • Dans un mode de mise en oeuvre de la machine suivant l'invention la section d'injection est située entre la section de coulée et la section de réchauffage et un joint isolant thermiquement est interposé entre la section de coulée et la section d'injection.
  • On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention, en référence au dessin annexé sur lequel :
    • La figure 1 est une vue schématique en coupe verticale d'une première forme d'un dispositif destiné à la mise en oeuvre du procédé suivant l'invention.
    • La figure 2 est une vue schématique en coupe verticale d'une variante d'un dispositif destiné à la mise en oeuvre du procédé suivant l'invention.
    • La figure 3 est une microphotographie, à un grossissement de 60, d'une coupe d'un alliage de magnésium moulé sous pression suivant la technique de l'art antérieur.
    • La figure 4 est une microphotographie, à un grossissement de 60, d'une coupe d'un lingot du même alliage de magnésium moulé suivant le procédé de l'invention.
    • La figure 5 est une microphotographie, à un grossissement de 60, d'une coupe d'une pièce du même alliage obtenue par le procédé suivant l'invention.
    • La figure 6 est une vue partielle en perspective d'un dispositif destiné à assurer le réchauffage des lingots avant l'injection des pièces à partir desdits lingots.
    • La figure 7 est une vue schématique en coupe verticale d'un dispositif destiné à assurer l'injection sous pression des pièces.
    • La figure 8 est une vue schématique en coupe verticale d'une variante de mise en oeuvre de l'opération de coulée du lingot.
    • La figure 9 est une vue en coupe axiale et verticale d'une machine de moulage sous pression, permettant de mettre en oeuvre les procédés suivant l'invention, dont les divers éléments constitutifs sont représentés lors de l'opération de coulée du lingot.
    • Les figures 10 à 14 sont des vues en coupe axiale et verticale simplifiées, illustrant les positions des divers éléments constitutifs de la machine, au cours de l'opération d'injection d'une pièce métallique à partir d'un lingot.
  • Le procédé suivant l'invention met en oeuvre une machine de moulage sous pression qui est pourvue de moyens permettant de maintenir les parois de l'empreinte du moule à une température se situant entre la température ambiante et la température de solidus de l'alliage.
  • Cette machine se compose essentiellement d'une lingotière 1 constituée d'un tube sensiblement horizontal comportant, à l'une de ses extrémités, un orifice d'alimentation 2 débouchant dans un canal d'injection 4 dans lequel est monté mobile un piston d'injection 6, cette lingotière 1 étant en outre pourvue de moyens de chauffage et de régulation de température, constitués par exemple de cartouches de chauffage 3 à régulation de température. Le moule est constitué de deux parties à savoir une partie antérieure 10a et une partie postérieure 10b. Le canal d'injection 4 débouche dans une cavité cylindrique 8 creusée dans la partie antérieure 10a, et qui constitue l'empreinte du lingot que l'on souhaite mouler. Cette empreinte 8 est de même diamètre que le canal d'injection 4.
  • La partie antérieure 10a du moule 10 comporte, comme la lingotière 1, des moyens de chauffage et de régulation de température, constitués de cartouches de chauffage 3 à régulation de température. La partie postérieure 10b du moule possède une série de "talons de lavage" 12 répartis autour de l'empreinte 8, ainsi que des canaux fins dits "trainées d'air" 12', en communication, par l'une de leurs extrémités, avec les talons de lavage 12 et, par leur autre extrémité, avec l'extérieur du moule, le volume total des talons de lavage 12 et des trainées d'air 12'représentant environ le quart du volume du lingot que l'on souhaite couler.
  • Pour couler le lingot on verse le métal en fusion, constitué, par exemple, d'un alliage de magnésium GA9Z1, (c'est-à-dire d'un alliage de magnésium contenant 9% d'aluminium et 1% de zinc), dont les températures de solidus et de liquidus sont respectivement de 468°C et de 595°C, et on le fond à une température supérieure à la température de liquidus, à savoir une température de l'ordre de 700°C, puis on le verse dans la lingotière 1, à l'aide d'une goulotte d'alimentation, non représentée sur le dessin. Cet alliage remplit une partie de la lingotière 1, fonction du volume que l'on souhaite donner au lingot.
  • On déplace ensuite le piston d'injection 6 de façon à exercer avec celui-ci une pression P sur le métal en fusion, pour l'injecter à l'intérieur de l'empreinte 8 du moule 10. Les moyens de régulation de température 3 maintiennent la température de l'empreinte 8 du moule 10 à une température absolue Tm telle que le rapport de la température absolue du solidus Ts (741°K dans le présent exemple) sur cette température absolue Tm soit compris entre 1,5 et 2,5 et soit spécifiquement ici de 1,75, ce qui correspond à une température absolue de l'empreinte 8 Tm = 423°K soit 150°C. Au cours de cette opération de coulée sous pression, la partie de métal en fusion injectée en premier dans l'empreinte 8 traverse celle-ci pour être éjectée, hors de celle-ci, dans les talons de lavage 12 et dans les trainées d'air 12'.
  • Après l'ouverture du moule 10, l'éjection du lingot 14 ainsi formé et sa séparation des talons de lavage 12, on peut soit laisser le lingot 14 se refroidir, de préférence à la température ambiante, soit procéder immédiatement à l'opération d'injection de la pièce définitive à mouler.
  • Une étude métallographique du lingot 14 ainsi obtenu révèle, comme on peut le voir sur la figure 4, une structure dendritique fine, alors que la structure d'un même alliage obtenu par un procédé de moulage de type classique montre une structure à porosités, telle que celle représentée sur la figure 3. Les lingots ainsi obtenus peuvent donc être commercialisés en l'état.
  • Bien entendu on pourrait, comme représenté sur la figure 2, utiliser le métal en fusion, éjecté de l'empreinte 8 dans les talons de lavage 12, pour réaliser, en aval, l'injection de celui-ci dans une seconde empreinte 16 de façon à mouler une pièce 16' ne nécessitant pas des qualités mécaniques du même ordre que celles destinées à être fabriquées par le procédé suivant l'invention. De même, comme représenté sur la figure 2, les moyens de chauffage et de régulation de température peuvent être constitués de canalisations 19 véhiculant un fluide caloporteur.
  • On pourrait également assurer, lors de l'opération de coulée du lingot 14, la mise en température et le maintien en température de l'empreinte 8 du moule 10 par une coulée préalable d'une série de lingots 14, la température requise par le moule étant alors entretenue par la chaleur fournie à celui-ci par les lingots 14 au cours de la coulée.
  • Pour mettre en oeuvre l'opération d'injection de la pièce à mouler à partir du lingot 14, on peut faire appel à des moyens de chauffage par exemple par effet Joule ou du type de ceux représentés sur les figures 6 et 7. Ceux-ci comprennent un inducteur 20, d'axe longitudinal xx', sensiblement horizontal, destiné a être parcouru pour un courant moyenne fréquence, à l'intérieur duquel est disposé un tube de quartz 22 ouvert à l'une de ses extrémités, et qui est destiné à recevoir le lingot 14 à réchauffer. La partie opposée fermée du tube 22 comporte, à sa partie inférieure, une fenêtre 23 qui s'ouvre sur un plan incliné 24, débouchant dans une ouverture d'admission 26 prévue à la partie supérieure d'un tube d'injection 28.
  • Un piston poussoir 36, d'un diamètre inférieur au diamètre interne du tube de quartz 22, est monté mobile en translation dans celui-ci. Un tube 37, débouchant entre la surface latérale du piston poussoir 36 et la paroi interne du tube de quartz 22, permet, éventuellement, d'envoyer dans ce dernier un gaz protecteur permettant de diminuer les risques d'inflammation de l'alliage, tel qu'un mélange d'air et d'hexafluorure de soufre, dans le cas particulier d'un alliage de magnésium.
  • Le tube d'injection 28 débouche, comme représenté sur la figure 7, dans une cavité 32 d'un moule 33 en deux parties, à savoir une partie antérieure 33a et une partie postérieure 33b. Un conduit 31, prévu à la surface de séparation de ces deux parties, débouche dans une cavité formant l'empreinte 32' de la pièce à réaliser et qui est formée dans la partie postérieure 33b du moule 33. Le piston d'injection 38 est monté coulissant dans le tube d'injection 28 et dans la cavité 32.
  • Pour réaliser l'opération d'injection on introduit le lingot 14 dans le tube de quartz 22, puis la bobine de l'inducteur 20 est alimentée en courant alternatif, de manière à provoquer un échauffement du lingot 14 et le porter à une température comprise entre sa température de solidus Ts et sa température de liquidus Tl, et de préférence voisine de cette dernière, à savoir dans le cas de l'alliage de magnésium GA9Z1 une température d'environ 530°C à 560°C, de façon que le lingot 14 soit amené à un état de gelée thixotrope. Un tel état pâteux du lingot 14 lui permet de se prêter particulièrement bien à une injection sous pression.
  • Après le réchauffage du lingot 14 on déplace celui-ci longitudinalement, au moyen du piston 36, pour le présenter face à la fenêtre 23, au droit du plan incliné 24, sur lequel il glisse pour pénètrer dans le tube d'injection 28, par l'ouverture d'admission 26.
  • On procède alors à la dernière étape, ou étape d'injection proprement dite, en déplaçant longitudinalement le lingot 14, à l'état de gelée thixotropique, au moyen du piston d'injection 38, en direction de la cavité 32 du moule 33 dans laquelle l'alliage métallique pénètre d'abord, avant d'être injecté, en passant par le canal 31, dans l'empreinte 32' du moule 33.
  • Après refroidissement et démoulage on obtient ainsi une pièce reproduisant l'empreinte du moule 32' et possédant une structure globulaire fine sans porosités, telle que celle représentée sur la microphotographie de la figure 5, (grossissement d'environ 60) et qui confère à l'alliage des qualités de résistance, notamment de résistance à la traction, ainsi que des qualités d'allongement avant rupture, remarquables.
  • A titre d'exemple comparatif on a représenté dans le tableau ci-après la résistance à la rupture RT (en MPa) et l'allongement avant rupture Δ1/1 (en %) de trois alliages moulés obtenus suivant un procédé de moulage suivant respectivement l'état de la technique antérieure, un procédé de moulage par gravité suivi d'un traitement dit T6, et le procédé suivant l'invention.
    Moulage classique sous pression Moulage + traitement T6 Moulage suivant l'invention
    RT (MPa) Δ1/1 (%) RT (MPa) Δ1/1 (%) RT (MPa) Δ1/1 (%)
    AS9U3 200 0,5 - 1,5 --- --- 230 2
    ZA27 430-500 0,5 - 3 --- --- 480 8
    GA9Z1 180 2 360 3-6 280 5,5
  • Sur ce tableau le premier alliage est un AS9U3, c'est-à-dire un alliage d'aluminium à 9% de silicium et 3% de cuivre. On remarque que le procédé suivant l'invention permet d'améliorer à la fois la résistance à la traction et l'allongement avant rupture d'un tel alliage.
  • Le second alliage est un ZA27, c'est-à-dire un alliage de zinc contenant 27% d'aluminium. On a constaté qu'un tel alliage posséde de bonnes caractéristiques de résistance à la traction et une résistance à l'allongement moyenne. Le procédé suivant l'invention conserve la résistance à la traction satisfaisante de l'alliage et multiplie par plus de deux la caractéristique d'allongement avant rupture de celui-ci.
  • Le troisième alliage est un GA9Z1, c'est-à-dire un alliage de magnésium contenant 9% d'aluminium et 1% de zinc. On constate que le procédé suivant l'invention améliore, de façon notable, la résistance à la rupture et multiplie par plus de 2 la caractéristique d'allongement. On sait d'autre part que les caractéristiques mécaniques de résistance à la rupture et d'allongement d'un tel alliage peuvent être améliorées par un traitement thermique de type T6, dont on a exposé précédemment les diverses phases. On a ainsi fait figurer dans le tableau précédent les caractéristiques de l'alliage GA9Z1 moulé par gravité et après traitement thermique T6, afin de le comparer au procédé suivant l'invention. On constate ainsi que, si le traitement T6 multiplie par des coefficients respectifs de 2 et 3 la résistance à la rupture et l'allongement avant rupture de l'alliage GA9Z1, le procédé suivant l'invention multiplie ces mêmes caractéristiques par des coefficients respectifs de 1,5 et 2,8.
  • Cependant, bien que les caractéristiques mécaniques dues au procédé suivant l'invention se situent légèrement en retrait de celles obtenues par le traitement T6, le procédé suivant l'invention permet néanmoins d'obtenir des résultats très voisins de ce dernier et ce pour des temps de mise en oeuvre incomparablement inférieurs. En effet, comme indiqué précédemment, un temps de traitement moyen du procédé T6 est de l'ordre de quarante heures, alors que le procédé suivant l'invention ne requiert que les temps de coulée du lingot, de réchauffage de celui-ci, et d'injection de la pièce définitive, ce qui ne représente que quelques dizaines de secondes.
  • Bien entendu les opérations de coulée du lingot 14, de réchauffage de celui-ci et d'injection peuvent être réalisées par tout autre dispositif que ceux décrits précédemment.
  • Ainsi, comme montré sur la figure 8, l'opération de coulée du lingot 14 peut être réalisée au moyen d'une lingotière constituée d'un tube vertical 40 à l'intérieur duquel sont montés mobiles deux pistons, à savoir un piston supérieur 42 et un piston inférieur 44 entre lesquels on amène l'alliage en fusion, ce dernier étant injecté, par déplacement vers le bas du piston supérieur 42, au travers d'une buse d'injection latérale 46 prévue dans la paroi de la lingotière 40, dans une empreinte 48 d'un moule 50. Comme précédemment, des talons de lavage 12 et des trainées d'air 12' sont prévus dans la paroi du moule 50 opposée à la buse d'injection 46 pour évacuer, au cours de la coulée du lingot 14, une quantité d'alliage égale à au moins le quart du volume du lingot 14. De façon connue des éjecteurs 52 traversent la paroi du moule et assurent, dès l'ouverture de celui-ci, l'éjection du lingot.
  • Comme illustré sur la figure 8, l'utilisation d'une buse d'injection 46 de section réduite améliore la finesse de la structure du lingot en réalisant un "cisaillement" de l'alliage.
  • Les opérations de coulée du lingot et d'injection de la pièce à mouler peuvent être réalisées, à la suite l'une de l'autre, par une machine de moulage unique, du type de celle représentée sur les figures 9 à 14.
  • Cette machine de moulage est du type vertical et comprend successivement, de haut en bas, une section supérieure A de coulée d'un alliage liquide 100 déversé dans cette section, une section intermédiaire d'injection C et une section inférieure de réchauffage B. La section supérieure de coulée A comprend une lingotière 102 dans laquelle est déversé l'alliage liquide 100. La paroi de la lingotière 102 contient des canaux 103 parcourus par un fluide de refroidissement, tel que de l'eau froide. Le métal liquide 100 est déversé à partir d'une goulotte d'alimentation 104 et il remplit le volume interne, ou empreinte 105, de la lingotière 102, en formant un bain d'alliage liquide.
  • Le métal liquide se trouvant dans la lingotière 102 est retenu, vers le bas, par un piston inférieur 106, coulissant verticalement dans l'empreinte 105 de la lingotière 102 et dont la surface supérieure est revêtue d'une galette 107 en un matériau résistant à la chaleur, telle qu'une galette de céramique. Au-dessus de la lingotière 102 et dans l'axe de celle-ci, se trouve un piston supérieur 108 qui est solidaire d'une tige de piston verticale 108a, s'étendant vers le haut et mobile verticalement, et dont les dimensions transversales correspondent à celles de l'empreinte 105 de la lingotière 102, de telle façon que le piston supérieur 108 puisse coulisser étroitement dans cette empreinte. De préférence, l'orifice de sortie de la goulotte 104 d'alimentation en métal liquide 100 et le piston 108 sont logés à l'intérieur d'une enceinte 109 dans laquelle est introduit un gaz protecteur ou un mélange de gaz protecteur approprié.
  • La lingotière 102 présente, à son extrémité inférieure, une bride périphérique 110 par laquelle elle est assemblée, au moyen d'organes de fixation non représentés, avec interposition d'une garniture isolante annulaire 112, avec une bride périphérique supérieure 113 d'une chambre d'injection cylindrique 114 située sous la lingotière 102 et faisant partie de la section d'injection C. Cette chambre d'injection 114 présente un volume interne ou alésage 115 qui la traverse de part en part axialement et qui s'étend vers le bas dans le prolongement de l'empreinte 105 de la lingotière supérieure 102 et qui a les mêmes dimensions que celle-ci. Le piston inférieur 106 est prolongé, vers le bas, par une tige de piston 106a qui s'étend à travers toute la section intermédiaire d'injection C et à travers la section inférieure de réchauffage B, comme il apparaît sur la figure 9. La tige de piston 106a est actionnée, à son extrémité inférieure, par des moyens non représentés, lui permettant d'effectuer un mouvement axial alternatif à travers les sections A,C et B de la machine. Dans la paroi cylindrique de la chambre d'injection 114 sont logées des résistances chauffantes 117 dont les fils d'alimentation électrique 118 sortent à l'extrémité inférieure de la paroi de la chambre 114 en passant à travers une chambre annulaire 119 disposée sous l'extrémité inférieure de la chambre d'injection 114. Dans cette chambre annulaire 119 circule un flux de gaz de refroidissement, lequel pénètre dans la chambre par un orifice d'entrée 121 et en sort par un orifice 122. La chambre d'injection intermédiaire 114 est ainsi maintenue à une température qui est fonction de la nature de l'alliage devant être coulé et qui inférieure à la température de solidus de l'alliage.
  • Dans la partie inférieure de la paroi latérale de la chambre d'injection 114 est logée une buse d'injection 123 débouchant dans l'alésage 115 de la chambre d'injection 114 et communiquant avec l'empreinte 126 d'un moule en deux parties 124. Ce moule 124 comprend un demi-moule fixe femelle 124a, formé latéralement dans la surface externe de la paroi de la chambre d'injection 114, et un demi-moule mâle 124b mobile horizontalement et radialement. Le demi-moule mâle mobile 124b comporte des résistances chauffantes 125 qui maintiennent le moule 124 sensiblement à la même température que la chambre d'injection 114. Le moule porte également des éjecteurs qui assurent l'éjection de la pièce moulée.
  • La chambre d'injection 114 est prolongée, vers le bas, par un tube de quartz 127 de diamètre interne plus grand que celui du piston 106 et de l'alésage 115 et se raccordant à celui-ci par l'intermédiaire d'une section d'entrée 128 de l'alésage 115 qui est tronconique et convergente vers le haut, c'est-à-dire vers l'alésage 115.
  • A l'endroit de la section inférieure de réchauffage B le tube de quartz 127 est entouré par une bobine externe de chauffage par induction 130.
  • Dans la position de départ, le piston supérieur 108 est placé au-dessus de la goulotte 104 d'alimentation en métal liquide 100, et le piston inférieur 106 se trouve dans sa position extrême supérieure, dans laquelle il est engagé dans la partie inférieure de la lingotière 102. Le métal liquide 100 est déversé dans la lingotière 102 et il forme une masse liquide qui se refroidit progressivement, du fait que la paroi de la lingotière 102 est refroidie par la circulation d'eau dans les conduits 103.
  • Lorsque la masse de métal liquide désirée a été déversée dans la lingotière 102, on fait descendre le piston supérieur 108 pour comprimer le métal liquide, au cours de son refroidissement jusqu'à une température Tm supérieure à l'ambiante et inférieure à la température de solidus de l'alliage, ainsi qu'exposé précédemment. On obtient ainsi un lingot 14 à structure dendritique fine.(Figure 10)
  • Une fois que le lingot 14 a été solidifié, il est éjecté de la lingotière 102 par le piston supérieur 108 qui est alors déplacé vers le bas, en étant accompagné dans ce même mouvement par le piston inférieur 106. Autrement dit le lingot 14, toujours maintenu entre les deux pistons 106 et 108, est amené à descendre et à passer à travers la totalité de la lingotière 102 puis de la chambre d'injection 114, pour arriver dans la section inférieure de réchauffage B, à l'intérieur du tube de quartz 127 et de la bobine de chauffage par induction 130. Ensuite le piston supérieur 108 est séparé de la surface supérieure du lingot et est placé à la base de la chambre d'injection 114. La bobine de chauffage par induction 130 est alors alimentée en courant alternatif (figure 11) de manière à provoquer un réchauffement du lingot 14 à une température comprise entre les températures de solidus Ts et de liquidus Tl de l'alliage, si bien que le lingot ainsi réchauffé 14a se trouve mis dans un état de gelée thixotrope de structure semi-solide, d'aspect globulaire.
  • Au cours de l'étape suivante (figure 12), le piston inférieur 106, équipé de la galette isolante en céramique 107, remonte rapidement (à une vitesse de l'ordre de 1 à 2 mètres par seconde) et fait remonter ainsi le lingot 14a pour le placer à l'intérieur de la chambre d'injection 114.
  • Au cours de l'étape suivante (figure 13), le piston supérieur 108 est abaissé, alors que le piston inférieur 106 est maintenu fixe, si bien que le lingot 14a, à l'état de gelée thixotrope, est comprimé dans l'alésage 115 de la chambre d'injection 114. Le métal pâteux constituant le lingot 14a est alors injecté, à travers la buse 123, dans l'empreinte 126 du moule 124.
  • Au cours de la dernière étape (figure 14) le moule 124 s'ouvre, par un mouvement horizontal et radial du demi-moule mâle mobile 124a vers l'extérieur, et les éjecteurs assurent le démoulage de la pièce P ainsi formée. Après l'éjection et l'évacuation de cette pièce P, le moule 124 se referme, le demi-moule mâle mobile 124b s'engageant dans le demi-moule femelle fixe 124a prévu dans la paroi de la chambre d'injection 114. Parallèlement, après la fin de l'opération d'injection, le piston inférieur 106 est déplacé vers le haut, de manière que sa galette isolante en céramique supérieure 107 fasse un peu saillie au-dessus de la surface supérieure de la lingotière 102, ce qui permet d'éjecter la galette constituant le résidu du lingot 14a après coulée.
  • Dans la machine de coulée sous pression qui a été décrite, les sections de coulée A, d'injection C et de réchauffage B sont prévues successivement dans cet ordre, de haut en bas. Toutefois une telle disposition n'est pas limitative et la section de réchauffage B pourrait se trouver en position intermédiaire, juste en-dessous de la section de coulée supérieure A et au-dessus de la section d'injection C se trouvant alors en position inférieure.
  • Bien entendu, bien que la machine de moulage ici décrite soit à axe vertical, on pourrait également prévoir celle-ci avec une disposition suivant un axe horizontal.

Claims (13)

  1. Procédé de moulage d'un lingot à structure dendritique fine à partir d'un alliage métallique, caractérisé en ce qu'il consiste à réaliser une coulée sous pression de l'alliage en fusion à l'intérieur d'une empreinte (8,48,105) d'un moule (10,50,102), cette empreinte étant maintenue, tout au long de la coulée, à une température sensiblement constante, supérieure à la température ambiante et inférieure à la température de solidus de l'alliage.
  2. Procédé suivant la revendication 1 caractérisé en ce que la coulée sous pression est suivie d'un refroidissement du lingot (14) à une température proche de la température ambiante.
  3. Procédé suivant l'une des revendications précédentes caractérisé en ce que le rapport de la température absolue du solidus (Ts) de l'alliage sur la température absolue (Tm) à laquelle on maintient l'empreinte (8,48,105) du moule (10,50,102) pendant la coulée, est compris entre 1,5 et 2,5.
  4. Procédé suivant l'une quelconque des revendications précédentes caractérisé en ce que l'alliage est un alliage de magnésium et la température à laquelle est maintenue l'empreinte (8,48,105) du moule (10,50,102) au cours de la coulée du lingot (14) est de l'ordre de 150°C.
  5. Procédé suivant l'une quelconque des revendications précédentes caractérisé en ce qu'au cours de la coulée du lingot (14) on évacue hors de l'empreinte (8,48) un volume de métal en fusion égal au moins au quart du volume du lingot (14), dans au moins une cavité (12), cette cavité étant disposée sur une partie du moule (10,50) sensiblement opposée à un canal d'injection (4,46) par lequel on injecte l'alliage dans celle-ci et qui débouche dans l'empreinte (8,48).
  6. Procédé suivant la revendication 5 caractérisé en ce que la cavité (12) est en communication avec l'extérieur par au moins un canal (12').
  7. Procédé suivant la revendication 5 caractérisé en ce que le volume de métal en fusion évacué hors de l'empreinte (8) est injecté dans au moins une autre empreinte (16) de façon à couler, en même temps que la coulée du lingot (14), au moins une autre pièce (16').
  8. Procédé suivant la revendication 1 caractérisé en ce qu'on assure, lors de la coulée du lingot (14), la mise en température de l'empreinte (8,48,105) du moule (10,50,102) par une coulée préalable d'une série de lingots (14), et en ce que l'on maintient cette température par la chaleur fournie au moule par les lingots (14) au cours de leur coulée.
  9. Procédé de moulage sous pression d'un alliage métallique permettant la fabrication de pièces sans porosités, en utilisant un lingot (14) moulé par un procédé suivant l'une des revendications précédentes, caractérisé en ce qu'il comporte les étapes consistant à :
    - réchauffer ledit lingot (14) pour l'amener à une température comprise entre les températures de solidus et de liquidus de l'alliage qui le constitue, de façon à l'amener à un état pâteux de type gelée thixotrope,
    - réaliser l'injection sous pression de ladite pièce, à partir du lingot à l'état thixotrope, dans au moins une empreinte (32',126) d'au moins un moule (33,124).
  10. Procédé suivant la revendication 9 caractérisé en ce que l'étape de réchauffage du lingot (14) est assurée par des moyens de chauffage par induction (20).
  11. Procédé suivant l'une quelconque des revendications précédentes caractérisé en ce que l'on injecte sur ledit alliage, au moins au cours de l'une des étape de mise en oeuvre du procédé, un gaz protecteur.
  12. Machine de moulage sous pression d'un alliage métallique, permettant la fabrication de pièces sans porosités, caractérisée en ce qu'elle comprend trois sections disposées les une à côtés des autres, à savoir une section de coulée (A), comprenant une lingotière (102) refroidie par circulation d'un fluide, une section de réchauffage (B) et une section d'injection (C), ces trois sections (A,B,C) présentant des volumes internes respectifs (105,115,127) alignés longitudinalement pour constituer un canal de traitement continu, et au moins un piston (106) mobile longitudinalement dans ce canal de traitement (105,115,127), ce piston (106) servant de fond pour l'empreinte (105) de la lingotière (102) de la section de coulée (A), pendant son remplissage avec le métal liquide, intervenant éventuellement pour transporter, dans la section de réchauffage (B), le lingot (14a) formé après refroidissement et intervenant pour la coulée sous pression, dans la section d'injection (C), du lingot réchauffé se présentant sous la forme de gelée thixotrope.
  13. Machine suivant la revendication 12 caractérisée en ce que la section d'injection (C) est située entre la section de coulée (A) et la section de réchauffage (B) et un joint isolant thermiquement (112) est interposé entre la section de refroidissement (A) et la section d'injection (C).
EP92905737A 1991-01-30 1992-01-30 Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede Expired - Lifetime EP0569511B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9101059A FR2671992B1 (fr) 1991-01-30 1991-01-30 Procede de coulee sous pression, a chambre froide.
FR9101059 1991-01-30
PCT/FR1992/000083 WO1992013662A1 (fr) 1991-01-30 1992-01-30 Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede

Publications (2)

Publication Number Publication Date
EP0569511A1 EP0569511A1 (fr) 1993-11-18
EP0569511B1 true EP0569511B1 (fr) 1995-01-25

Family

ID=9409204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92905737A Expired - Lifetime EP0569511B1 (fr) 1991-01-30 1992-01-30 Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede

Country Status (6)

Country Link
EP (1) EP0569511B1 (fr)
AT (1) ATE117606T1 (fr)
AU (1) AU1353092A (fr)
DE (1) DE69201301D1 (fr)
FR (1) FR2671992B1 (fr)
WO (1) WO1992013662A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936010A1 (fr) * 1998-02-12 1999-08-18 Didier-Werke Ag Procédé et dispositif pour couler sous pression des métaux
US6502624B1 (en) * 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049648B2 (ja) * 1993-12-13 2000-06-05 日立金属株式会社 加圧成形方法および加圧成形機
FR2715088B1 (fr) * 1994-01-17 1996-02-09 Pechiney Aluminium Procédé de mise en forme de matériaux métalliques à l'état semi-solide.
CH689448A5 (de) * 1995-03-21 1999-04-30 Alusuisse Lonza Services Ag Verfahren und Vorrichtung zur Herstellung von Formteilen aus Metall.
DE69610132T2 (de) * 1995-03-22 2001-01-11 Hitachi Metals Ltd Druckgussverfahren
US5571346A (en) * 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
CA2177455C (fr) * 1995-05-29 2007-07-03 Mitsuru Adachi Methode et dispositif pour le faconnage de metaux a l'etat semi-solide
US6769473B1 (en) 1995-05-29 2004-08-03 Ube Industries, Ltd. Method of shaping semisolid metals
JP3817786B2 (ja) * 1995-09-01 2006-09-06 Tkj株式会社 合金製品の製造方法及び装置
FR2748957B1 (fr) * 1996-05-22 1998-07-31 Celes Machine a injecter ou a couler sous pression
WO2013158069A1 (fr) * 2012-04-16 2013-10-24 Apple Inc. Moulage par injection et coulée de matériau à l'aide d'un système de moulage par injection verticale
US8701742B2 (en) 2012-09-27 2014-04-22 Apple Inc. Counter-gravity casting of hollow shapes
US8813813B2 (en) 2012-09-28 2014-08-26 Apple Inc. Continuous amorphous feedstock skull melting
CN108687323A (zh) * 2018-06-29 2018-10-23 昆明理工大学 一种锡青铜合金半固态连续触变挤压方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE166851C (fr) * 1904-11-26
US4771818A (en) * 1979-12-14 1988-09-20 Alumax Inc. Process of shaping a metal alloy product
US4694881A (en) * 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US4505318A (en) * 1982-06-04 1985-03-19 Toyoto Jidosha Kogyo Kabushiki Kaisha Vertical type pressure casting method
FR2665654B1 (fr) * 1990-08-09 1994-06-24 Armines Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIESSEREI Vol. 60, No. 24, DÜSSELDORF pages 773-785; W. RÜEGG: "Jahresübersicht Druckguss (10. Folge)" see page 773, right-hand column, paragraph 4 *
MEMOIRES ET ETUDES SCIENTIFIQUES DE LA REVUE DE METALLURGIE Vol. 80,No. 7/8, 1983, PARIS pages 355 - 365; C. MILLIERE ET. AL.: "Structure, properiété et mise en forme des alliages brassés à l'état semi-solide (suite)" see page 359, paragraph 1 - page 360, line 14; figure 21, see page 5, paragraph 3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936010A1 (fr) * 1998-02-12 1999-08-18 Didier-Werke Ag Procédé et dispositif pour couler sous pression des métaux
US6502624B1 (en) * 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process

Also Published As

Publication number Publication date
FR2671992B1 (fr) 1997-08-01
AU1353092A (en) 1992-09-07
ATE117606T1 (de) 1995-02-15
FR2671992A1 (fr) 1992-07-31
EP0569511A1 (fr) 1993-11-18
DE69201301D1 (de) 1995-03-09
WO1992013662A1 (fr) 1992-08-20

Similar Documents

Publication Publication Date Title
EP0569511B1 (fr) Procede de moulage d'un lingot d'alliage a structure dendritique fine et machine de moulage suivant ce procede
FR2665654A1 (fr) Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.
JP4693772B2 (ja) 金属ガラスの成形方法
FR2521465A1 (fr) Procede et appareillage pour le moulage d'alliages metalliques a l'etat thixotropique
FR2537897A1 (fr) Procede de coulee continue de metal
EP3134219B1 (fr) Moule pour fonderie monocristalline
EP3448599B1 (fr) Dispositif pour le moulage en coquille d'un alliage métallique
EP0426581B1 (fr) Perfectionnement au procédé de moulage à mousse perdue et sous pression contrôlée de pièces métalliques
EP1717007B1 (fr) Procédé et installation de moulage par compression de matériaux composites en utilisant un alliage métallique en fusion
EP0242347A2 (fr) Dispositif pour la coulée d'un métal en phase pâteuse
EP0100272B1 (fr) Procédé de fabrication de pièces moulées, dispositif comportant application de ce procédé et pièces moulées ainsi obtenues
FR2534167A1 (fr) Procede de fabrication en fonderie de pieces moulees en alliages metalliques oxydables
CA3029438A1 (fr) Four de refroidissement par solidification dirigee et procede de refroidissement utilisant un tel four
EP0958073B1 (fr) Procede et installation de coulee continue des metaux
BE666099A (fr)
BE1000221A6 (fr) Dispositif pour la coulee d'un metal en phase pateuse.
EP0557154B1 (fr) Procédé de fabrication d'une charge explosive moulée; dispositif pour sa mise en oeuvre; charge explosive et munition ainsi obtenue
EP0021981A1 (fr) Procédé et dispositif de moulage de pièces en matière céramique fondue
FR2658745A1 (fr) Procede et dispositif de moulage d'un alliage metallique.
JP3576498B2 (ja) 還元鋳造方法および還元鋳造装置
LU86395A1 (fr) Dispositif et procede pour la coulee continue de l'acier
BE906039A (fr) Dispositif et procede pour la coulee d'un metal en phase pateuse.
WO2017198500A1 (fr) Moule de coulée semi-continue verticale comportant un dispositif de refroidissement
BE366574A (fr)
FR2571282A1 (fr) Machine a fabriquer des noyaux creux en sable agglomere, cuit, pour la realisation de pieces metalliques par fonderie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940323

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950125

Ref country code: GB

Effective date: 19950125

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950125

Ref country code: AT

Effective date: 19950125

REF Corresponds to:

Ref document number: 117606

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69201301

Country of ref document: DE

Date of ref document: 19950309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950426

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TRANSVALOR S.A. TRANSFER- IDRA PRESSE

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020314

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020319

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST