EP0560221A1 - Rückschlagventil - Google Patents
Rückschlagventil Download PDFInfo
- Publication number
- EP0560221A1 EP0560221A1 EP93103540A EP93103540A EP0560221A1 EP 0560221 A1 EP0560221 A1 EP 0560221A1 EP 93103540 A EP93103540 A EP 93103540A EP 93103540 A EP93103540 A EP 93103540A EP 0560221 A1 EP0560221 A1 EP 0560221A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- check valve
- valve according
- closure body
- funnel
- sealing edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/148—Check valves with flexible valve members the closure elements being fixed in their centre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
- F16K15/021—Check valves with guided rigid valve members the valve member being a movable body around which the medium flows when the valve is open
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/3367—Larner-Johnson type valves; i.e., telescoping internal valve in expanded flow line section
- Y10T137/3421—Line condition change responsive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7908—Weight biased
- Y10T137/7909—Valve body is the weight
- Y10T137/7913—Guided head
- Y10T137/7915—Guide stem
- Y10T137/7918—Head slidable on guide rod
Definitions
- the invention relates to a check valve as described in claim 1.
- Such valves are used, for example, in servo units for brake assistance in vehicles and are installed there, for example, between the intake manifold and the servo unit. Their task is to open the connection between the suction pipe and the vacuum vessel as soon as the pressure in the vacuum vessel is higher than in the suction tube.
- valve should be tight when the pressure in the suction pipe is higher than that in the vacuum vessel. Since modern vehicles have a pronounced braking force support through the servo unit mentioned, its safe function is of great importance, even if the brake does not fail completely if the support fails.
- a check valve is either switched in the connecting line from the intake manifold to the vacuum container or attached directly to the container.
- Safe function must be guaranteed, especially under unfavorable conditions, such as those that occur in the vehicle. For example, if fuel in the intake system accumulates in the valve and causes the closure member to swell. It is also important that the valve always locks and / or opens smoothly in every conceivable position and / or position of the part producing the blocking effect, that it has a good blocking effect even with only small pressure differences and that there is no unintentional breakdown of the vacuum in the servo container can.
- the previously known valves generally have components that support or promote the movement of the component producing the locking effect. Most of these components are springs or elements with a similar effect. It is also known to deform the part producing the blocking effect of the valves due to structural designs of the inner housing of the valves in order to promote the return movement in the blocking position. Additionally or alternatively, rubber parts are often provided in the previously known valves, which produce the sealing effect in the blocking position. Other Valves are provided with membrane parts that create the valve's opening or blocking position.
- a common disadvantage of the previously known valves is the relatively large number of components used, the respective functionality of which is necessary in order to ensure the action of the valve. However, the greater the number of individual components of a valve, the greater the risk of failure of one or the other component.
- the known valves have a variety of materials due to the different components, which is also disadvantageous. Certain materials, such as springs, can be negatively affected in their functionality by the medium flowing through the valve, at least in terms of their viability. Furthermore, there are problems with the previously known valves with regard to recyclability due to the different materials of the individual components.
- a basic advantage of the proposed check valve is that no diaphragm or springs are required for its functionality. It is also not necessary to use rubber parts to achieve the desired locking effect. Also, the component causing the locking effect, namely the closure body, is free of any external and internal forces, i.e. no components or structural configurations are required to move the closure body inside the valve, be it in the open position or in the lock position or in an intermediate position. External attack on the closure body Forces can be in the form of a spring, for example, which is not required in the proposed check valve.
- a force generated in the interior of the closure body, which supports or even effects its change in position can be caused, for example, by a deformation of the closure body, which is forced on the closure body, for example in an open position of the valve, in order to then support or even effect the locking position of the closure body .
- this can be a deformation energy generated in the closure body, which can also be completely dispensed with in the context of the proposed valve.
- the influence of an external force is also understood to mean the force of gravity per se, which is required in some valves in order to be able to reach one or the other position of the closure body at all.
- the feature which characterizes the check valve according to the invention in particular is that the closure body is de-energized in any position of the closure body and in any position of the valve. It is understood that such a design of a check valve on the one hand can reduce the number of components of the valve to the minimum possible number at all. On the other hand, the functional reliability of the check valve is always guaranteed, even, for example, in the event of a rollover of a motor vehicle in which a check valve installed in the motor vehicle could assume any conceivable position. The movement of the closure body in the proposed check valve is therefore caused solely by the prevailing pressure differences on one or the other side of the closure body and the flow caused thereby.
- the proposed construction of the check valve enables, among other things, all components of the check valve to be the same or similar Manufacture material in order to achieve full recyclability of the valve.
- the proposed closure body is mounted so that it can move axially in the check valve, as a result of which the closure element does not itself have to be deformed in order to block the check valve, as is the case, for example, when using membranes.
- the check valve will preferably be circular in cross-section, so that the sealing edge results as a ring-shaped stop surface or stop ring, against which the closure body can make a sealing contact due to its movable mounting.
- Another advantage of the proposed check valve is that it does not have any parts made of rubber or similar material.
- the new fuels are increasingly alloyed with very aggressive MTBE, a combustion-equalizing methyl tertiary butyl ether, which attacks rubber in particular, and thus contributes to the accelerated aging of non-return valves that use a membrane made of rubber. With the proposed check valve, the new fuels can no longer cause damage.
- the closure body can advantageously be arranged either on the outlet housing or on the inlet housing of the check valve.
- the mobility of the closure element is ensured for both cases, the movement of which is caused by the different pressure conditions in the outlet housing on the one hand and in the inlet housing on the other hand.
- a cantilevered pin preferably arranged in the longitudinal axis of the housing, can be provided on the outlet housing or on the inlet housing.
- the pin represents the position securing of the closure element perpendicular to the longitudinal axis of the housing and thereby allows the desired movement of the closure body in the longitudinal axis direction of the housing to open or to lock the check valve.
- the closure body is preferably funnel-shaped, the funnel-shaped part closing the check valve by abutment against the sealing edge and the tubular funnel end being closed.
- the funnel-shaped part can be moved toward the sealing edge in order to close the check valve, or can also be moved away from the sealing edge in order to open the check valve due to the corresponding pressure conditions.
- the tubular funnel end is designed to be closed in order to ensure the desired seal when the sealing body lies against the sealing edge. It is expedient to design the housing and the closure body symmetrically to the longitudinal axis of the housing, so that the tubular part is arranged in the center of the funnel-shaped body.
- the funnel-shaped configuration of the closure body also has the advantage that it has a resistance which is dependent on the flow direction, so that the reliable function, i.e. the movement of the closure element in the longitudinal axis direction of the housing is supported.
- the funnel-shaped part has the additional advantage that, in contrast to flat membranes, any swelling only leads to a change in the funnel angle, but not to warping in the plane of the sealing line, i.e. the line on which the funnel-shaped part lies against the sealing edge.
- a possible change in the funnel angle can be compensated for, for example, by a sufficient play between the support of the funnel-shaped part and the closure body, whereas warping in the plane of the sealing line could lead to a leak in the blocking direction.
- the proposed design of the closure body which generally has only a small diameter, enables better centering than is possible, for example, with closure bodies mounted on the outer circumference.
- the tubular funnel end is advantageously arranged on the pin.
- the tubular funnel end can be easily pushed onto the spigot, the length of the tubular funnel end and that of the spigot thus one on the other are coordinated so that the closure body can move freely into the desired positions.
- the inner diameter of the tubular funnel end corresponds essentially to the outer diameter of the free pin, so that the desired movement of the closure body is in no way hindered. Should liquids, eg fuel, get inside the check valve and the closure body swell as a result, another particular advantage of the proposed arrangement is shown. The expansion of the inner diameter of the tubular funnel end caused by a possible swelling does not hinder the movement of the closing valve.
- the free spigot may not increase in diameter due to a possible swelling than the expansion of the inside diameter of the tubular funnel end caused by a possible swelling, which can be ensured in a simple manner by appropriate choice of material and / or dimensioning.
- the area next to the sealing edge is expediently designed as a guiding device.
- the guide device serves to deflect a medium flowing into the inlet housing, whereby the movement of the closure body in the blocking direction can be supported.
- the check valve would close reliably even without this additional training in the area of the sealing edge, since the closure body would be moved into the closed position due to the pressure differences and its movable arrangement, and in addition the funnel-shaped part is inclined against the direction of flow when the medium enters the inlet housing.
- This area is designed in such a way that a deflection of the medium around the outer edge of the closure body results in fluidic terms such that the flow resistance in the direction of flow, ie in the direction of the outlet housing, is smaller than in the blocking direction, ie in the direction of the inlet housing.
- a deflection of the medium that is dependent on the flow direction is effected. If the medium flows in the blocking direction, it is deflected in the opposite direction, so that there is an increase in pressure or the build-up of a pressure difference in this area.
- the free end region of the funnel-shaped part of the closure body preferably protrudes into this region in order to let the pressure difference resulting from the guide device act in an advantageous manner on the closure body, which supports it towards the sealing edge in order to block the check valve.
- a pressure is built up on the inside of the funnel, which supports the closing body in the blocking direction. If, on the other hand, the flow runs in the forward direction, the flow resistance should advantageously not be influenced at all by the guide device, in any case only slightly influenced, ie increased.
- a practical design of the area next to the sealing edge as a guiding device can take place through a chamber formed next to the sealing edge, which deflects the medium flowing in this area in the direction of the inlet housing by approximately 180 before it can flow past the sealing edge into the interior of the inlet housing.
- the deflection of the medium generates the desired pressure increase or the desired pressure difference.
- the chamber is expediently arranged between the sealing edge and the outer end of the inlet housing and, in the case of an inlet housing which is circular in cross section, is designed as an annular trough or bead.
- the open area of the chamber or trough is directed towards the outlet housing and thus towards the medium entering in the blocking direction. If the medium flows in the forward direction, this configuration merely sets the medium in rotation in this chamber, which creates an air roller that rotates in the direction of flow and hardly increases the flow resistance.
- the chamber in such a way that medium flowing in the direction of the outlet housing can flow out of the outlet housing largely unhindered.
- This can e.g. can be achieved in that the sealing edge itself forms part of the chamber and, viewed in the direction of the outlet housing, protrudes beyond the chamber floor, so that medium emerging from the inlet housing cannot get caught in the chamber, increasing the flow resistance.
- the sealing edge is preferably designed as an annular contact edge for the funnel-shaped part.
- This annular design forms an annular seat for the funnel-shaped part as soon as the closure body is in the locked position.
- the annular contact edge is preferably designed in such a way that there is a linear contact between the funnel-shaped part and the sealing edge.
- the outer diameter of the free edge of the funnel-shaped part is expediently designed to be larger than the diameter of the sealing edge designed as an annular contact edge.
- the diameter of the free edge of the funnel-shaped part must at least correspond to that of the annular contact edge.
- the diameter of the free edge of the funnel-shaped part obviously cannot correspond to the inside diameter of the inlet housing or the outlet housing, since otherwise flow through the check valve in one direction or the other would no longer be possible.
- devices are advantageously arranged on the outlet housing and on the inlet housing for contacting the funnel-shaped part.
- the devices expediently consist of webs which extend radially from the center of the housing and are spaced apart from one another. Through the use of webs for the abutment of the closure body or its funnel-shaped part, it is nevertheless ensured in both flow directions that a sufficiently large cross section remains free for the passage of the medium in both flow directions.
- the free edges of the webs which serve as support edges and face the funnel-shaped part, are expediently inclined to the longitudinal axis of the housing, the inclination of the free edges essentially corresponding to that of the funnel-shaped part.
- the contact edges of the webs of the outlet housing and the inlet housing are thus inclined towards the outlet housing. Since their inclination corresponds to that of the funnel-shaped part, there is a favorable contact between the closure body and the webs, which does not deform the closure body.
- care must be taken to ensure that the sealing system on the sealing edge is not hindered by the funnel-shaped part bearing against its webs.
- Another significant advantage of the proposed check valve is its complete traceability, since its components can consist of one and the same type of material, preferably through the exclusive use of polymers for the components of the check valve. Since thermoplastic polymers are increasingly being used for the lines between, for example, the intake manifold and the vacuum brake booster, if the components of the proposed check valve consist of the same family of polymers, the line can be returned together with the check valve. With conventional pipes and conventional check valves, this is not possible because, on the one hand, separation can only take place with considerable effort and, on the other hand, disassembling the valves to remove rubber parts or metal springs is completely uneconomical.
- the proposed structure of the check valve is unnecessary in a particularly advantageous manner the arrangement of a spring and / or the use of a membrane material with elastic resilience, which was previously necessary for the function of a large part of the known check valves.
- the polymer material of all parts of the check valve advantageously consists of the same thermoplastic polymer family, which has a favorable influence on the traceability and is advantageous for the production.
- Thermoplastic polymers are only really elastic in a small area of the deformation, which is sufficient for the proposed check valve. This can be tolerated, since it is sufficient if the closure body only compensates for the small unevenness of the ring or seal seat, that is to say the region of the sealing edge.
- the same polymers can be used as for the feed lines to the check valve, which additionally promotes recycling or recyclability.
- the inlet housing, the outlet housing and the closure body can expediently consist at least partially of a rigid polymer, it being expedient in this case to form the sealing edge, which must seal by contact of the closure body, from an elastic polymer. Dimensional fluctuations can thus be suppressed by swelling.
- a peripheral ring part of the closure body can consist of elastic polymer and the other parts of the closure element and the other components of the check valve can be made of rigid polymer.
- an elastic lip can be applied to the free end of the sealing edge, for example, by composite injection molding.
- a closure body made of a rigid polymer material is insensitive to swelling.
- the area of the closure body, which ultimately serves for sealing can be injection molded onto the rigid valves by means of composite injection molding from an elastic polymer.
- thermoplastic polymers All commercially available polyamide, polyester and polyolefin types, their blends and the types modified with additives as required can be used as thermoplastic polymers.
- Polyamides from the group PA6, PA6.6, PA6.9, PA6.10, PA11, PA12, PA12.12 and polyester of the type PET and PBT are particularly preferred.
- FIG. 2 shows the closure body 30 in the blocking position, in which no flow can take place between the flow outlet 10 and the flow inlet 40.
- the outside of the funnel-shaped part 31 lies against the inner circumference of the inlet housing 41 and there against a sealing edge 51.
- the sealing edge 51 can be seen in particular from FIG. 5.
- the sealing edge 51 is arranged in the vicinity of its free end region.
- the outer diameter of the funnel-shaped part 31 is preferably designed such that it projects beyond the sealing edge 51.
- the latter is in turn supported on its outside by webs 42 arranged on the inlet housing 41.
- the webs 42 are designed essentially like the webs 12 and for this purpose in particular have free edges adapted to the inclination of the funnel-shaped part 31 as support edges 43 and are spaced apart.
- the abutment of the funnel-shaped part 31 on the sealing edge 51 ensures that, for example, an excess pressure prevailing at the flow outlet 10 cannot reach the flow inlet 40 if a negative pressure or a vacuum prevails in its area.
- FIGS. 3 to 5 each individually show the structure of the outlet housing 11, the closure body 30 and the inlet housing 41, while FIGS. 6 and 7 show plan views of the interior of the inlet housing 41 on the one hand and of the outlet housing 11 on the other hand.
- the check valve is expediently circular in cross section to its longitudinal axis 17, as can be seen in particular from FIGS. 6 and 7.
- FIG. 3 shows the webs 12 of the outlet housing 11 arranged on the pin 14 designed as a cantilever element and their obliquely running free end regions serving as support edges 13.
- the housing 11 is designed in such a way that it can be produced in an injection molding process using a simple tool in one process step.
- the stepped butt joint 15 is designed such that it can be connected gas-tight to the inlet housing 41 by means of rotary or ultrasonic welding or another suitable method.
- FIG. 4 shows the closure body 30 with its funnel-shaped part 31 and the tubular funnel end 32 arranged thereon in one piece, which is closed at its free end 33.
- the funnel-shaped part 31 is pushed onto the pin 14, the inside 34 of the funnel-shaped part 31 lying tight against the contact edges 13 of the webs 12 in the maximum opening position.
- In the outer edge region of the funnel-shaped part 31 there is a circumferential seal contact line 36 which, in the blocking position of the closure body 30, represents the contact region of the outside 35 of the funnel-shaped part 31 on the sealing edge 51 and is designed to be ring-shaped in this respect.
- the outer side 35 of the funnel-shaped part 31 bears in a corresponding manner on the contact edges 43 of the webs 42 of the inlet housing 41.
- the support edges 43 of the webs 42 lie, as seen in the direction of the longitudinal axis 17, below the sealing edge 51 and additionally support the funnel-shaped part 31 when a large amount of pressure is applied.
- FIG. 5 shows the inlet housing 41 with the webs 42 and their support edges 43.
- the sealing edge 51 is designed as an annular contact edge for the funnel-shaped part 31 and thus represents a kind of ring seat for the closure body 30.
- the diameter of the sealing edge 51 designed as an annular contact edge is smaller than the outer diameter of the funnel-shaped part. Consequently, the sealing contact line 36 is located on the funnel-shaped part 31 somewhat away from its free edge 37 on the outside 35.
- the sealing edge 51 is arranged in relation to the contact edges 43 in such a way that the sealing contact line 36 initially lies securely on the sealing edge 51, before the outside 35 bears against the contact edges 43.
- the sealing edge 51 is adjoined by a chamber 52, which is curved and initially springs back from the sealing edge 51 to form a kind of annular bead.
- the sealing edge 51 forms together with the chamber 52 a stator for deflecting a flow directed towards the inlet housing 41.
- the flow conditions resulting in this area will be explained in more detail later with reference to FIGS. 8 to 10.
- the inlet housing 41 is also designed such that it can be produced in one process step using the injection molding process, the butt joint 45 of which is designed to assemble the inlet housing 41 with the outlet housing 11 in accordance with the butt joint 15.
- FIG. 6 shows a top view of the spacing of the webs 42 from one another on the inside of the inlet housing 41.
- a flow emerging from the inlet housing 41 can pass through the spaces 46 left free between the webs 42 past the closure body 30 to the outlet housing 11.
- the inner edges 44 of the webs 42 are from the longitudinal axis 17 spaced so that the pin 14 with the tubular part 32 can protrude freely into this area.
- FIG. 7 shows the top view of the inside of the outlet housing 11, with spaces 16 also remaining free here due to the spacing of the webs 12 from one another.
- the free edge 37 of the funnel-shaped part 31 will abut approximately in the region of the free ends of the webs 12, with a flow emerging from the inlet housing 41 passing the funnel-shaped part 31 through the spacing of the housing inner wall from the free ends of the webs 12 can enter the outlet housing 11 through the spaces 16.
- FIG. 8 shows the course of the flow 60 directed in the passage direction to the outlet housing 11 in the region of the chamber 52 and the free edge 37 of the funnel-shaped part 31 , whereby the medium located in the chamber 52 is only circulated, as indicated by the flow arrows 61.
- FIG. 9 shows the area corresponding to FIG. 8 with a flow 62 running in the blocking direction at the moment when the closure body 30 is still in the open position, ie the funnel-shaped part 31 does not yet bear sealingly against the sealing edge 51.
- the flow 62 enters the chamber 52 and is deflected there by about 180 on the inner wall 55 of the chamber 52, as is indicated by the flow 57.
- This stator effect of the chamber 52 creates a pressure difference in this area, which affects the free edge 37 of the funnel-shaped part 31, since the free edge area of the funnel-shaped part 31 projects into the flow area of the chamber 52.
- the pressure difference creates a pressure gradient between the inside 34 and the outside 35 of the funnel-shaped part 31, as a result of which the latter is moved in the direction of the pressure gradient towards the lower pressure, ie towards the inlet housing 41, as indicated by arrow 64.
- the chamber 52 that enters with its open end Flow 62 is directed in the blocking direction, thus supports the closing movement of the closure body 30 by the stator effect of the chamber 52.
- FIG. 10 again shows the area corresponding to FIGS. 8 and 9, the closure body 30 or the funnel-shaped part 31 being in sealing contact with the sealing edge 51.
- the pressure difference between the inside 34 on the outlet housing side and the outside 35 of the closure body 30 on the inlet housing side generates a force component directed towards the inlet housing 41, which is indicated by the arrows 63 and holds the closure body 30 in the locked position.
- FIG. 11 shows in cross section another embodiment of the check valve according to the invention, specifically in the area of the chamber 52.
- the closure body 74 shown here is made of a rigid, non-elastomeric material.
- the corresponding sealing edge 71 on the other hand, consists of an elastic material different from the material of the inlet housing 41.
- the elastic sealing edge 71 is inserted into a groove 72 of the inlet housing 41 and, when the closure body 74 abuts against it, ensures the desired sealing effect in the locked position of the closure body 74.
- Methods are known with which the sealing edge 71 can be attached in an injection molding process together with the production of the inlet housing 41 without additional handling.
- the groove 72 increases the contact area of the materials of the elastic sealing edge 71 and the inlet housing 41 and also results in a positive fit.
- FIG. 12 shows a further variant of the check valve according to the invention.
- the check valve according to FIG. 12 essentially corresponds to the check valve shown in FIGS. 1 to 10.
- the pin 84 is not arranged on the outlet housing 11, but on the inlet housing 41.
- the closed end 83 of the tubular funnel end 82 of the closure body 80 is directed toward the outlet housing 11 in order to to be placed with its open end on the pin 84.
- the closure body 80 is no longer funnel-shaped in cross section - as is the case with the closure body 30 - but as a mushroom-shaped body.
- the functioning of the check valve according to FIG. 12 corresponds to that of the check valve shown in FIGS. 1 to 10, with the chamber 52 producing a stator effect also being provided here.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Check Valves (AREA)
Abstract
Description
- Die Erfindung betrifft ein Rückschlagventil wie es im Anspruch 1 beschrieben ist. Solche Ventile werden beispielsweise in Servoaggregaten zur Bremsunterstützung in Fahrzeugen verwendet und dort zum Beispiel zwischen Ansaugrohr und Servoaggregat eingebaut. Sie haben die Aufgabe, die Verbindung zwischen Saugrohr und Vakuumgefäss zu öffnen, sobald der Druck im Vakuumgefäss höher ist als im Saugrohr.
- Andererseits soll das Ventil dicht anschliessen, wenn der Druck im Saugrohr höher ist als jener im Vakuumgefäss. Da moderne Fahrzeuge eine ausgeprägte Bremskraftunterstützung durch das genannte Servoaggregat haben, kommt dessen sicherer Funktion grosse Bedeutung zu, auch wenn die Bremse bei einem Ausfall der Unterstützung nicht vollständig versagt. Im Fahrzeug wird ein Rückschlagventil entweder in der Verbindungsleitung vom Saugrohr zum Vakuumbehälter geschaltet oder direkt an den Behälter angebaut.
- Die sichere Funktion muss besonders unter ungünstigen Bedingungen, wie sie im Fahrzeug auftreten, gewährleistet sein. So zum Beispiel, wenn sich im Ansaugsystem vorhandener Kraftstoff im Ventil ansammelt und zu einer Quellung des Verschlussorgans führt. Ebenso ist es wichtig, dass das Ventil in jeder erdenklichen Lage und/oder Stellung des die Sperrwirkung erzeugenden Teils stets leichtgängig sperrt und/oder öffnet, dass es auch unter nur geringen Druckdifferenzen eine gute Sperrwirkung hat und dass kein unbeabsichtigter Abbau des Vakuum im Servobehälter eintreten kann.
- Die bislang bekannten Ventile weisen im Regelfall Bauteile auf, die die Bewegung des die Sperrwirkung erzeugenden Bauteils unterstützen oder fördern. Meistens handelt es sich bei diesen Bauteilen um Federn oder ähnlich wirkende Elemente. Auch ist es bekannt, aufgrund baulicher Ausgestaltungen des Innengehäuses der Ventile das die Sperrwirkung der Ventile erzeugende Teil zu verformen, um die Rückstellbewegung in Sperrstellung zu förden. Zusätzlich oder auch alternativ sind bei den bislang bekannten Ventilen häufig Gummiteile vorgesehen, die die Dichtwirkung in Sperrstellung erzeugen. Andere Ventile sind mit Membranteilen versehen, die die Oeffnungs- bzw. Sperrstellung des Ventils erzeugen. Ein gemeinsamer Nachteil der bislang bekannten Ventile besteht in der relativ grossen Anzahl der verwendeten Bauteile, deren jeweilige Funktionsfähigkeit notwendig ist, um die Wirkung des Ventils zu gewährleisten. Je grösser aber die Anzahl der einzelnen Bauteile eines Ventils ist, desto grösser ist die Gefahr des Ausfalls des einen oder anderen Bauteils. Daneben weisen die bekannten Ventile aufgrund der unterschiedlichen Bauteile eine Materialvielfalt auf, die ebenfalls nachteilig ist. Bestimmte Materialien, z.B. Federn, können in ihrer Funktionsfähigkeit durch das, das Ventil durchströmende Medium zumindest im Hinblick auf ihre Lebensfähigkeit negativ beeinflusst werden. Ferner ergeben sich bei den bislang bekannten Ventilen Probleme im Hinblick auf die Recylefähigkeit und zwar aufgrund der unterschiedlichen Materialien der einzelnen Bauteile.
- Es ist Aufgabe der vorliegenden Erfindung, ein Rückschlagventil vorzuschlagen, dessen Herstellung günstig und dessen Funktionssicherheit in jeder Lage des Ventils und/oder Stellung des die Sperrwirkung erzeugenden Bauteils sets gewährleistet ist, insbesondere auch für den Fall des Ansammelns von Kraftstoffen o. ä. im Bereich des Rückschlagventils.
- Die Aufgabe wird durch die im Anspruch 1 angegebenen Merkmale gelöst.
- Ein grundsätzlicher Vorteil des vorgeschlagenen Rückschlagventils ist es, dass zu seiner Funktionsfähigkeit keine Membrane oder Federn benötigt werden. Ebenfalls nicht notwendig ist die Verwendung von Gummiteilen zur Erlangung der angestrebten Sperrwirkung. Auch ist das die Sperrwirkung bewirkende Bauteil, nämlich der Verschlusskörper, frei von jeglichen äusseren und inneren Kräften, d.h. es werden keine Bauteile oder baulichen Ausgestaltungen benötigt, um den Verschlusskörper in Inneren des Ventils zu bewegen, sei es in die Oeffnungsstellung oder in die Sperrstellung oder in eine dazwischen befindliche Stellung. Am Verschlusskörper äusserlich angreifende Kräfte können z.B. in Form einer Feder vor-liegen, die bei dem vorgeschlagenen Rückschlagventil eben nicht benötigt wird. Eine im Inneren des Verschlusskörpers erzeugte Kraft, die dessen Lageveränderung unterstützt oder gar bewirkt, kann beispielsweise durch eine Verformung des Verschlusskörpers bedingt werden, die beispielsweise in einer Oeffnungsstellung des Ventils dem Verschlusskörper aufgezwungen wird, um dann die Sperrstellung des Verschlusskörpers zu unterstützen oder gar zu bewirken. Es kann sich hierbei insbesondere um eine im Verschlusskörper erzeugte Verformungsenergie handeln, auf die ebenfalls im Rahmen des vorgeschlagenen Ventils völlig verzichtet werden kann. Unter Einwirkung einer äusseren Kraft wird in diesem Zusammenhang auch die Schwerkraft an sich verstanden, die bei einigen Ventilen erforderlich ist, um die eine oder andere Stellung des Verschlusskörpers überhaupt erreichen zu können. Zusammenfassend handelt es sich bei dem das erfindungsgemässe Rückschlagventil insbesondere kennzeichnenden Merkmal um das Kraftlosstellen des Verschlusskörpers und zwar in jeder beliebigen Stellung des Verschlusskörpers sowie in jeder beliebigen Lage des Ventils. Es versteht sich, dass durch eine solche Ausgestaltung eines Rückschlagventils einerseits die Anzahl der Bauteile des Ventils auf die überhaupt minimal mögliche Anzahl reduziert werden kann. Andererseits wird die Funktionssicherheit des Rückschlagventils immer gewährleistet, auch beispielsweise bei einem Überschlag eines Kraftfahrzeuges, bei welchem ein im Kraftfahrzeug eingebautes Rückschlagventil jede nur erdenkliche Lage einnehmen könnte. Die Bewegung des Verschlusskörpers wird bei dem vorgeschlagenen Rückschlagventil also einzig und allein aufgrund herrschender Druckunterschiede auf der einen bzw. anderen Seite des Verschlusskörpers und die dadurch bedingte Strömung verursacht. Die Druckunterschiede bewirken eine Bewegung des Verschlusskörpers in jeder für den Verschlusskörper nur erdenklichen Stellung und zwar ohne dass es dabei weiterer äusserer auf den Verschlusskörper wirkender Kräfte bedarf oder im Verschlusskörper selbst aufgebauter oder vorhandener innerer Kräfte. Später wird ausgeführt werden, dass der vorgeschlagene Aufbau des Rückschlagventils es u.a. ermöglicht, sämtliche Bauteile des Rückschlagventils aus gleichem oder ähnlichem Material herzustellen, um dadurch eine uneingeschränkte Recyclingfähigkeit des Ventils zu erreichen. Bei dem vorgeschlagenen Rückschlagventil ist es weiterhin von Vorteil, dass der vorgeschlagene Verschlusskörper im Rückschlagventil axial beweglich gelagert ist, wodurch das Verschlusselement zur Sperrung des Rückschlagventils nicht selbst verformt werden muss, wie dies beispielsweise bei der Verwendung von Membranen der Fall ist. Das Rückschlagventil wird im Querschnitt vorzugsweise kreisförmig ausgebildet sein, so dass sich die Dichtkante als ringkreisförmige Anschlagfläche oder Anschlagring ergibt, an welche sich der Verschlusskörper durch seine bewegliche Lagerung dichtend anlegen kann. Ein weiterer Vorteil bei dem vorgeschlagenen Rückschlagventil besteht darin, dass dieses u. a. keine aus Gummi o. ä. Material bestehende Teile aufweist. Die neuen Kraftstoffe sind nämlich zunehmend mit sehr aggressivem MTBE, einem die Verbrennung vergleichmässigenden Methyltertiärbutylether, legiert, der insbesondere Gummi angreift, und somit zu einer beschleunigten Alterung von Rückschlagventilen beiträgt, die aus Gummi bestehende Membrane verwenden. Bei dem vorgeschlagenen Rückschlagventil können die neuen Kraftstoffe keine Schäden mehr verursachen.
- Mit Vorteil kann der Verschlusskörper entweder am Austrittsgehäuse oder am Eintrittsgehäuse des Rückschlagventils angeordnet werden. Für beide Fälle ist die Beweglichkeit des Verschlusselementes sichergestellt, wobei dessen Bewegung durch die unterschiedlichen Druckverhältnisse im Austrittsgehäuse einerseits und im Eintrittsgehäuse andererseits bedingt wird.
- Zur zweckmässigen Anordnung des Verschlusskörpers kann am Austrittsgehäuse oder am Eintrittsgehäuse ein, vorzugsweise in der Längsachse der Gehäuse angeordneter auskragender Zapfen vorgesehen werden. Der Zapfen stellt die Lagesicherung des Verschlusselementes senkrecht zur Längsachse der Gehäuse dar und erlaubt dabei die angestrebte Bewegung des Verschlusskörpers in Längsachsenrichtung der Gehäuse zum oeffnen bzw. zum Sperren des Rückschlagventils.
- Der Verschlusskörper ist vorzugsweise trichterförmig ausgebildet, wobei der trichterförmige Teil durch Anlage an der Dichtkante das Rückschlagventil schliesst und das rohrförmige Trichterende geschlossen ausgebildet ist. Bei Bewegung des Verschlusskörpers im Rückschlagventil kann auf Grund der entsprechenden Druckverhältnisse der trichterförmige Teil zur Dichtkante hin bewegt werden, um das Rückschlagventil zu schliessen, oder auch von der Dichtkante weg bewegt werden, um das Rückschlagventil zu öffnen. Das rohrförmige Trichterende ist geschlossen ausgebildet, um bei an der Dichtkante anliegendem Verschlusskörper die angestrebte Dichtung zu gewährleisten. Dabei ist es zweckmässig, die Gehäuse so wie auch den Verschlusskörper symmetrisch zur Längsachse der Gehäuse auszubilden, so dass der rohrförmige Teil im Mittelpunkt des trichterförmigen Körpers angeordnet ist. Die trichterförmige Ausgestaltung des Verschlusskörpers hat weiterhin den Vorteil, dass er einen von der Strömungsrichtung abhängigen Widerstand aufweist, so dass die sichere Funktion, d.h. die Bewegung des Verschlusselementes in Längsachsenrichtung der Gehäuse, unterstützt wird. Der trichterförmige Teil hat den zusätzlichen Vorteil, dass im Gegensatz zu flachen Membranen eine eventuelle Quellung lediglich zu einer Veränderung des Trichterwinkels, nicht jedoch zu einem Verwerfen in der Ebene der Dichtungslinie, d.h. der Linie an der der trichterförmige Teil an der Dichtkante anliegt, führt. Eine mögliche Veränderung des Trichterwinkels kann beispielsweise durch ein genügendes Spiel zwischen der Auflage des trichterförmigen Teils und dem Verschlusskörper ausgeglichen werden, wohin hingegen ein Verwerfen in der Ebene der Dichtungslinie zu einer Undichtigkeit in Sperrrichtung führen könnte. Daneben kann durch die vorgeschlagene Ausbildung des Verschlusskörpers, der im Regelfall einen nur geringen Durchmesser aufweist, eine bessere Zentrierung geschaffen werden, als dies beispielsweise bei am äusseren Umfang gelagerten Verschlusskörpern möglich ist.
- Mit Vorteil wird das rohrförmige Trichterende auf dem Zapfen angeordnet. Das rohrförmige Trichterende kann in einfacher Weise auf den Zapfen aufgeschoben werden, wobei die Länge des rohrförmigen Trichterendes und die des Zapfens so aufeinander abgestimmt sind, dass sich der Verschlusskörper zwängungsfrei in die gewünschten Stellungen bewegen kann. Der Innendurchmesser des rohrförmigen Trichterendes entspricht dabei im wesentlichen dem Aussendurchmesser des freien Zapfens, so dass die angestrebte Bewegung des Verschlusskörpers keinesfalls behindert wird. Sollten Flüssigkeiten, z.B. Kraftstoff, in das Innere des Rückschlagventils gelangen und der Verschlusskörper dadurch aufquellen, zeigt sich ein weiterer besonderer Vorteil der vorgeschlagenen Anordnung. Die durch eine mögliche Aufquellung bedingte Aufweitung des Innendurchmessers des rohrförmigen Trichterendes behindert das Verschlussventil nicht in seiner Bewegung. Es versteht sich dabei, dass der freie Zapfen sich durch eine eventuelle Quellung in seinem Durchmesser nicht mehr vergrössern darf als die durch eine eventuelle Quellung verursachte Aufweitung des Innendurchmessers des rohrförmigen Trichterendes, was durch entsprechende Materialwahl und/oder Dimensionierung auf einfache Weise gewährleistet werden kann. Insbesondere kann es bei den durch eine eventuelle Quellung verursachte Dimensionsschwankungen zu keiner Lekage entlang des als Führung dienenden freien Zapfens kommen.
- Zweckmässigerweise ist der Bereich neben der Dichtkante als Leiteinrichung ausgebildet. Die Leiteinrichtung dient dabei einer Umlenkung eines in das Eintrittsgehäuse strömenden Mediums, wodurch die Bewegung des Verschlusskörpers in Sperrrichtung unterstützt werden kann. Zwar würde das Rückschlagventil auch ohne diese zusätzliche Ausbildung im Bereich der Dichtkante zuverlässig schliessen, da der Verschlusskörper auf Grund der Druckunterschiede und seiner beweglichen Anordnung in Schliesstellung bewegt werden würde und zusätzlich der trichterförmige Teil gegen die Strömungsrichtung beim Eintritt des Mediums in das Eintrittsgehäuse geneigt ist. Es kann jedoch gewünscht sein, die Bewegung des Verschlusskörpers in Sperrichtung zu unterstützen, was durch die Ausbildung der Leiteinrichtung im Bereich der Dichtkante erreicht werden kann. Dieser Bereich ist dabei so ausgebildet, dass sich eine Umlenkung des Mediums um die Aussenkante des Verschlusskörpers strömungstechnisch so ergibt, dass der Strömungswiderstand in der Durchflussrichtung, d.h. in Richtung des Austrittsgehäuses, kleiner ist als in Sperrichtung, d.h. in Richtung des Eintrittsgehäuses. Ähnlich dem Stator beispielsweise einer Gasturbine wird dabei eine von der Anströmrichtung abhängige Umlenkung des Mediums bewirkt. Strömt das Medium in Sperrrichtung, erfolgt eine Umlenkung in die Gegenrichtung, so dass ein Druckanstieg bzw. der Aufbau einer Druckdifferenz in diesem Bereich entsteht. Dazu ragt der freie Endbereich des trichterförmigen Teils des Verschlusskörpers vorzugsweise in diesen Bereich ein, um die durch die Leiteinrichtung entstehende Druckdifferenz in vorteilhafter Weise auf den Verschlusskörper wirken zu lassen, der diesen unterstützend zur Dichtkante hin bewegt, um das Rückschlagventil zu sperren. Durch den erzeugten Differenzdruck wird beim Durchströmen des Mediums in Sperrichtung ein Druck auf der Trichterinnenseite aufgebaut, welcher den Verschlusskörper unterstützend in Sperrichtung bewegt. Verläuft hingegen die Strömung in Durchlassrichtung, soll durch die Leiteinrichtung der Strömungswiderstand günstigerweise überhaupt nicht, auf jeden Fall lediglich nur gering beeinflusst, d.h. erhöht werden.
- Eine zweckmässige Ausbildung des Bereichs neben der Dichtkante als Leiteinrichtung kann durch eine neben der Dichtkante ausgebildete Kammer erfolgen, welche das in diesem Bereich in Richtung des Eintrittsgehäuses strömende Medium um etwa 180 umlenkt, bevor es an der Dichtkante vorbei in das Innere des Eintrittsgehäuses einströmen kann. Die Umlenkung des Mediums erzeugt den gewünschten Druckanstieg bzw. die gewünschte Druckdifferenz. Die Kammer ist zweckmässigerweise zwischen der Dichtkante und dem äusseren Abschluss des Eintrittsgehäuses angeordnet und bei im Querschnitt kreisförmigem Eintrittsgehäuse als kreisringförmige Mulde oder Sicke ausgebildet. Der offene Bereich der Kammer bzw. der Mulde ist dabei zum Austrittsgehäuse und somit zum in Sperrichtung eintretenden Medium gerichtet. Durch diese Ausbildung wird, sofern die Strömung des Mediums in Durchlassrichtung erfolgt, das Medium in dieser Kammer lediglich in Rotation versetzt, wodurch eine Luftwalze entsteht, die sich in Strömungsrichtung dreht und den Strömungswiderstand kaum erhöht.
- Wie schon bemerkt, ist es vorteilhaft, die Kammer so auszubilden, dass in Richtung des Austrittsgehäuses strömendes Medium weitgehend ungehindert aus dem Austrittsgehäuse ausströmen kann. Dies kann z.B. dadurch erreicht werden, dass die Dichtkante selbst einen Teil der Kammer bildet und, in Richtung des Austrittsgehäuses gesehen, über den Kammerboden hinausragt, so dass aus dem Eintrittsgehäuse austretendes Medium sich nicht strömungswiderstandserhöhend in der Kammer verfangen kann.
- Die Dichtkante ist vorzugsweise als ringförmige Auflagekante für den trichterförmigen Teil ausgebildet. Diese ringförmige Ausbildung bildet einen Ringsitz für das trichterförmige Teil, sobald sich der Verschlusskörper in Sperrstellung befindet. Vorzugsweise ist die ringförmige Auflagekante so ausgebildet, dass sich eine linienförmige Anlage zwischen dem trichterförmigen Teil und der Dichtkante ergibt.
- Zweckmässigerweise ist der äussere Durchmesser des freien Randes des trichterförmigen Teils grösser ausgebildet als der Durchmesser der als ringförmige Auflagekante ausgebildeten Dichtkante. Um überhaupt eine Dichtwirkung zu erzielen, ist es ersichtlich, dass der Durchmesser des freien Randes des trichterförmigen Teils zumindest dem der ringförmigen Auflagekante entsprechen muss. Ist der Durchmesser jedoch grösser, kann er, wie bereits erwähnt, in die neben der Dichtkante geordnete Kammer hineinragen, was zum Ausnützen des Effektes der Kammer von Vorteil ist. Dennoch darf der Durchmesser des freien Randes des trichterförmigen Teils ersichtlicherweise nicht dem Innendurchmesser des Eintrittsgehäuses oder des Austrittsgehäuses entsprechen, da sonst eine Durchströmung des Rückschlagventils in der einen oder anderen Richtung nicht mehr möglich wäre.
- Um eine Lagesicherung in Oeffnungs- oder Sperrstellung des Verschlusskörpers in Längsachsenrichtung der Gehäuse zu erreichen, sind mit Vorteil Einrichtungen am Austrittsgehäuse sowie am Eintrittsgehäuse zur Anlage des trichterförmigen Teils angeordnet.
- Die Einrichtungen bestehen zweckmässigerweise aus radial sich vom Mittelpunkt der Gehäuse weg erstreckenden, voneinander beabstandeten Stegen. Durch die Verwendung von Stegen zur Anlage des Verschlusskörpers bzw. dessen trichterförmigen Teils ist es in beiden Durchflussrichtungen dennoch gewährleistet, dass ein genügend grosser Querschnitt für den Durchtritt des Mediums in beiden Durchstömrichtungen freibleibt.
- Zweckmässigerweise sind die als Auflagekanten dienenden, dem trichterförmigen Teil zugewandten freien Kanten der Stege zur Längsachse der Gehäuse geneigt ausgebildet, wobei die Neigung der freien Kanten im wesentlichen der des trichterförmigen Teils entspricht. Die Auflagekanten der Stege des Austrittsgehäuses und des Eintrittsgehäuses sind somit jeweils zum Austrittsgehäuse hin geneigt. Indem ihre Neigung der des trichterförmigen Teils entspricht, kommt es zwischen dem Verschlusskörper und den Stegen zu einer günstigen, den Verschlusskörper nicht verformenden Anlage. Ersichtlicherweise muss bezüglich des Eintrittsgehäuses dafür gesorgt werden, dass durch die Anlage des trichterförmigen Teils an dessen Stegen die dichtende Anlage an der Dichtkante nicht behindert wird.
- Ein weiterer bedeutender Vorteil bei dem vorgeschlagenen Rückschlagventil besteht in seiner vollständigen Rückführbarkeit, da dessen Bauteile aus ein und demselben Materialtypus bestehen können, vorzugsweise durch die ausschliessliche Verwendung von Polymeren für die Bauteile des Rückschlagventils. Da für die Leitungen zwischen beispielsweise dem Saugrohr und dem Unterdruckbremskraftverstärker zunehmend thermoplastische Polymere eingesetzt werden, kann, sofern die Bauteile des vorgeschlagenen Rückschlagventils aus derselben Polymerfamilie bestehen, die Leitung zusammen mit dem Rückschlagventil zurückgeführt werden. Bei herkömmlichen Rohren und herkömmlichen Rückschlagventilen ist dies nicht möglich, da einerseits eine Trennung nur unter erheblichem Aufwand stattfinden kann und andererseits ein Zerlegen der Ventile zur Entnahme von Gummiteilen oder Metallfedern völlig unwirtschaftlich ist. Durch den vorgeschlagenen Aufbau des Rückschlagventils erübrigt sich eben in besonders vorteilhafter Weise die Anordnung einer Feder und/-oder die Verwendung eines Membranmaterials mit elastischem Rückstellvermögen, welches bislang für die Funktion eines Grossteils der bekannten Rückschlagventile erforderlich war.
- Mit Vorteil besteht das Polymermaterial sämtlicher Teile des Rückschlagventils aus derselben thermoplastischen Polymerfamilie, was die Rückführbarkeit günstig beeinflusst sowie für die Herstellung vorteilhaft ist. Thermoplastische Polymere sind nur in einem kleinen, für das vorgeschlagene Rückschlagventil jedoch ausreichenden Bereich der Deformation wirklich elastisch. Dies kann hingenommen werden, da es ausreichend ist, wenn der Verschlusskörper lediglich die im Regelfall geringen Unebenheiten des Ring- bzw. Dichtungssitzes, also den Bereich der Dichtkante, ausgleicht. Dabei können dieselben Polymere wie für die Zuleitungen zum Rückschlagventil verwendet werden, was zusätzlich die Rückführung bzw. Recycelfähigkeit fördert.
- Zweckmässigerweise können das Eintrittsgehäuse, das Austrittsgehäuse sowie der Verschlusskörper zumindest teilweise aus einem steifen Polymer bestehen, wobei es hierbei zweckmässig ist, die Dichtkante, welche durch Anlage des Verschlusskörpers abdichten muss, aus einem elastischen Polymer auszubilden. Somit können Dimensionsschwankungen durch Quellung unterdrückt werden. Allerdings kann auch lediglich ein peripherer Ringteil des Verschlusskörpers aus elastischem Polymer und die übrigen Teile des Verschlusselements sowie der übrigen Bauteile des Rückschlagventils aus steifem Polymer bestehen.
- In der besonderen Ausführung, in der der Verschlusskörper aus einem steifen Polymer und die Dichtkante aus elastischem Polymermaterial hergestellt ist, kann z.B. durch Verbundspritzguss eine elastische Lippe am freien Ende der Dichtkante aufgebracht werden. Ein Verschlusskörper aus einem steifen Polymerwerkstoff ist gegen Quellung unempfindlich. Ebenso kann der Bereich des Verschlusskörpers, welcher letztlich der Abdichtung dient, mittels Verbundspritzguss aus einem elastischen Polymer an den steifen Ventilen angespritzt werden.
- Als thermoplastische Polymere können alle handelsüblichen Polyamid-, Polyester- und Polyolefintypen ihre Blends sowie die nach den Anforderungen mit Additiven modifizierten Typen verwendet werden. Dabei sind Polyamide aus der Gruppe PA6, PA6,6, PA6,9, PA6,10, PA11, PA12, PA12,12 und Polyester vom Typ PET und PBT besonders bevorzugt.
- Das erfindungsgemässe Rückschlagventil wird nachfolgend anhand von bevorzugten Ausführungsformen näher beschrieben. Es zeigen dabei:
- Fig. 1
- einen Querschnitt durch ein in Oeffnungsstellung befindliches Rückschlagventil
- Fig. 2
- einen Querschnitt gemäss Fig. 1, jedoch in Sperrstellung
- Fig. 3
- einen Querschnitt lediglich durch das Austrittsgehäuse
- Fig. 4
- einen Querschnitt durch den Verschlusskörper
- Fig. 5
- einen Querschnitt lediglich durch das Eintrittsgehäuse
- Fig. 6
- eine Draufsicht auf die Innenseite des Eintrittsgehäuses
- Fig. 7
- eine Draufsicht auf die Innenseite des Austrittsgehäuses
- Fig. 8
- Strömungsverhältnisse im Bereich der Dichtkante bei einer Strömung in Durchlassrichtung
- Fig. 9
- Strömungsverhältnisse im Bereich der Dichtkante bei einer Strömung in Sperrichtung
- Fig. 10
- die Sperrstellung des Verschlusskörpers im in den Fig. 8 und 9 gezeigten Bereich
- Fig. 11
- einen Querschnitt im Bereich der Dichtkante durch eine andere Ausführungsform des Rückschlagventils und
- Fig. 12
- eine weitere Ausführungsform eines Rückschlagventils im Querschnitt
- Figur 2 zeigt den Verschlusskörper 30 in Sperrstellung, in welcher kein Durchfluss zwischen Strömungsaustritt 10 und Strömungseintritt 40 stattfinden kann. Dazu legt sich die Aussenseite des trichterförmigen Teil 31 an den Innenumfang des Eintrittsgehäuses 41 und dort an eine Dichtkante 51 an. Die Dichtkante 51 ist insbesondere aus Figur 5 ersichtlich. Die Dichtkante 51 ist bei Anlage des trichterförmigen Teils 31 in der 1Vähe von dessen freiem Endbereich angeordnet. Vorzugsweise ist der Aussendurchmesser des trichterförmigen Teils 31 so ausgebildet, dass er über die Dichtkante 51 hinausragt. Zur Abstützung des zwischen der Dichtkante 51 und dem rohrförmigen Trichterende 32 befindlichen Bereichs des trichterförmigen Teils 31 wird dieser wiederum an seiner Aussenseite durch am Eintrittsgehäuse 41 angeordnete Stege 42 abgestützt. Die Stege 42 sind im wesentlichen wie die Stege 12 ausgebildet und weisen dazu insbesondere wiederum der Neigung des trichterförmigen Teils 31 angepasste freie Kanten als Auflagekanten 43 auf und sind voneinander beabstandet. Die Anlage des trichterförmigen Teils 31 an der Dichtkante 51 sorgt dafür, dass beispielsweise ein am Strömungsaustritt 10 herrschender Überdruck nicht zum Strömungseintritt 40 gelangen kann, wenn in dessen Bereich ein Unterdruck bzw. ein Vakuum vorherrscht.
- Die Figuren 3 bis 5 zeigen jeweils einzeln den Aufbau des Austrittsgehäuses 11, des Verschlusskörpers 30 und des Eintrittsgehäuses 41, während die Figuren 6 und 7 Draufsichten auf den Innenbereich des Eintrittsgehäuses 41 einerseits und des Austrittsgehäuses 11 andererseits zeigen. Zweckmässigerweise ist das Rückschlagventil im Querschnitt zu dessen Längsachse 17 kreisförmig ausgebildet, wie es insbesondere aus den Figuren 6 und 7 hervorgeht.
- Figur 3 zeigt die an dem als auskragendes Element ausgebildeten Zapfen 14 angeordneten Stege 12 des Austrittsgehäuses 11 und ihre schräg verlaufenden, als Auflagekanten 13 dienenden freien Endbereiche. Das Gehäuse 11 ist so ausgelegt, dass es in einem Spritzgiessprozess mit einfachem Werkzeug in einem Prozesschritt hergestellt werden kann. Die abgestufte Stossverbindung 15 wird so ausgelegt, dass sie mittels Rotations- oder Ultraschallschweissen oder einem anderen geeigneten Verfahren mit dem Eintrittsgehäuse 41 gasdicht verbunden werden kann.
- Figur 4 zeigt den Verschlusskörper 30 mit seinem trichterförmigen Teil 31 und dem einstückig daran angeordneten rohrförmigen Trichterende 32, welches an seinem freien Ende 33 verschlossen ist. Das trichterförmige Teil 31 wird auf den Zapfen 14 aufgeschoben, wobei in der maximalen Oeffnungsstellung die Innenseite 34 des trichterförmigen Teils 31 dicht an den Auflagekanten 13 der Stege 12 anliegt. Im äusseren Randbereich des trichterförmigen Teils 31 befindet sich eine umlaufende Dichtungskontaktlinie 36, die in der Sperrstellung des Verschlusskörpers 30 den Anlagebereich der Aussenseite 35 des trichterförmigen Teils 31 an der Dichtkante 51 darstellt und insoweit ringförmig ausgebildet ist. In der Sperrstellung des Verschlusskörpers 30 legt sich die Aussenseite 35 des trichterförmigen Teils 31 in entsprechender Weise an den Auflagekanten 43 der Stege 42 des Eintrittsgehäuses 41 an. Die Auflagekanten 43 der Stege 42 liegen, zur Längsachse 17 hin gesehen, unterhalb der Dichtkante 51 und stützen den trichterförmigen Teil 31 bei grosser Druckbeaufschlagung zusätzlich ab.
- Figur 5 zeigt das Eintrittsgehäuse 41 mit den Stegen 42 und deren Auflagekanten 43. In der Fortsetzung der Stege 42 zum Strömungseintritt 40 hin belassen die hinter den Auflagekanten 43 in Richtung der Längsachse 17 verlaufenden Innenkanten 44 der Stege 42 einen Raum, welcher grösser ist als der Aussendurchmesser des rohrförmigen Trichterendes 32 des Verschlusskörpers 30, so dass dieser ausschliesslich von dem Zapfen 14 geführt ist. Die Dichtkante 51 ist als ringförmige Auflagekante für den trichterförmigen Teil 31 ausgebildet und stellt somit eine Art Ringsitz für den Verschlusskörper 30 dar. Um u.a. eine gute Dichtwirkung zu erzielen, ist der Durchmesser der als ringförmige Auflagekante ausgebildeten Dichtkante 51 kleiner als der äussere Durchmesser des trichterförmigen Teils. Folglich befindet sich die Dichtungskontaktlinie 36 am trichterförmigen Teil 31 etwas von dessen freiem Rand 37 entfernt auf der Aussenseite 35. Die Dichtkante 51 ist im Verhältnis zu den Auflagekanten 43 so angeordnet, dass sich zunächst eine sichere Anlage der Dichtungskontaktlinie 36 an der Dichtkante 51 ergibt, bevor sich die Aussenseite 35 an den Anlagekanten 43 anlegt. Nach aussen schliesst sich an die Dichtkante 51 eine Kammer 52 an, die bogenförmig ausgebildet ist und von der Dichtkante 51 aus nach aussen gesehen zunächst zurückspringt, um eine Art ringförmige Sicke zu bilden. Die Dichtkante 51 bildet mit der Kammer 52 zusammen einen Stator zur Umlenkung einer zum Eintrittsgehäuse 41 gerichteten Strömung. Die sich in diesem Bereich ergebenden Strömungsverhältnisse werden später anhand der Figuren 8 bis 10 näher erläutert. Auch das Eintrittsgehäuse 41 ist so ausgelegt, dass es im Spritzgiessverfahren an einem Prozesschritt herstellbar ist, wobei dessen Stossverbindung 45 zum Zusammenbau des Eintrittsgehäuses 41 mit dem Austrittsgehäuse 11 entsprechend der Stossverbindung 15 ausgelegt ist.
- Figur 6 zeigt in der Draufsicht der auf die Innenseite des Eintrittsgehäuses 41 die Beabstandung der Stege 42 zueinander. Eine aus dem Eintrittsgehäuse 41 austretende Strömung kann durch die zwischen den Stegen 42 freibleibenden Räume 46 am Verschlusskörper 30 vorbei zum Austrittsgehäuse 11 gelangen. Die Innenkanten 44 der Stege 42 sind von der Längsachse 17 beabstandet, so dass der Zapfen 14 mit dem rohrförmigen Teil 32 ungehindert in diesen Bereich hineinragen kann.
- Figur 7 zeigt die Draufsicht auf die Innenseite des Austrittsgehäuses 11, wobei auch hier durch die Beabstandung der Stege 12 zueinander Räume 16 frei bleiben. In der Oeffnungsstellung des Rückschlagventils wird der freie Rand 37 des trichterförmigen Teil 31 etwa im Bereich der freien Enden der Stege 12 anliegen, wobei eine aus dem Eintrittsgehäuse 41 austretende Strömung durch die Beabstandung der Gehäuseinnenwand von den freien Enden der Stege 12 am trichterförmigen Teil 31 vorbei durch die Räume 16 in das Austrittsgehäuse 11 eintreten kann.
- Figur 8 zeigt den Verlauf der in Durchlassrichtung zum Austrittsgehäuse 11 gerichteten Strömung 60 im Bereich der Kammer 52 und dem freien Rand 37 des trichterförmigen Teils 31. Die Strömung 60 wird durch die Kammer 52 nicht behindert, da deren offenes Ende zur Strömungsrichtung der Strömung 60 weist, wodurch das in der Kammer 52 befindliche Medium lediglich umgewälzt wird, wie es durch die Strömungspfeile 61 angedeutet ist.
- Figur 9 zeigt den der Figur 8 entsprechenden Bereich bei einer in Sperrichtung verlaufenden Strömung 62 in dem Moment, indem der Verschlusskörper 30 sich noch in der Oeffnungsstellung befindet, d.h. der trichterförmige Teil 31 noch nicht an der Dichtkante 51 dichtend anliegt. Die Strömung 62 tritt in die Kammer 52 ein und wird dort an der Innenwandung 55 der Kammer 52 um etwa 180 umgelenkt, wie dies durch die Strömung 57 angedeutet ist. Diese Statorwirkung der Kammer 52 erzeugt in diesem Bereich eine Druckdifferenz, die sich auf den freien Rand 37 des trichterförmigen Teils 31 auswirkt, da der freie Randbereich des trichterförmigen Teils 31 in den Strömungsbereich der Kammer 52 hineinragt. Die Druckdifferenz erzeugt ein Druckgefälle zwischen der Innenseite 34 und der Aussenseite 35 des trichterförmigen Teils 31, wodurch dieses in Richtung des Druckgefälles zum kleineren Druck hin, d.h. zum Eintrittsgehäuse 41 hin, bewegt wird, wie dies durch den Pfeil 64 angedeutet ist. Die Kammer 52, die mit ihrem offenen Ende zur eintretenden Strömung 62 in Sperrrichtung gerichtet ist, unterstützt somit die Schliessbewegung des Verschlusskörpers 30 durch die Statorwirkung der Kammer 52.
- Figur 10 zeigt schliesslich wiederum den der Figuren 8 und 9 entsprechenden Bereich, wobei sich der Verschlusskörper 30 bzw. das trichterförmige Teil 31 in dichtender Anlage an der Dichtkante 51 befindet. Der Druckunterschied zwischen der austrittsgehäuseseitigen Innenseite 34 und der eintrittsgehäuseseitigen Aussenseite 35 des Verschlusskörpers 30 erzeugt eine zum Eintrittsgehäuse 41 gerichtete Kraftkomponente, die durch die Pfeile 63 angedeutet ist und den Verschlusskörper 30 in der Sperrstellung festhält.
- Figur 11 zeigt im Querschnitt eine andere Ausführungsform des erfindungsgemässen Rückschlagventils und zwar im Bereich der Kammer 52. Der hier gezeigte Verschlusskörper 74 ist aus einem steifen, nicht elastomeren Material gefertigt. Die entsprechende Dichtkante 71 hingegen besteht aus einem elastischen Material unterschiedlich zu dem Material des Eintrittsgehäuses 41. Die elastische Dichtkante 71 ist in eine Nut 72 des Eintrittsgehäuses 41 eingesetzt und sorgt bei an ihr anliegendem Verschlusskörper 74 für die angestrebte dichtende Wirkung in Sperrstellung des Verschlusskörpers 74. Es sind Verfahren bekannt, mit denen das Anbringen der Dichtkante 71 in einem Spritzgiessprozess zusammen mit der Herstellung des Eintrittsgehäuses 41 ohne zusätzliches Handling möglich ist. Die Nut 72 erhöht dabei die Kontaktfläche der Materialien der elastischen Dichtkante 71 sowie des Eintrittsgehäuses 41 und ergibt zudem einen Formschluss.
- Schliesslich zeigt Figur 12 eine weitere Variante des erfindungsgemässen Rückschlagventils. Das Rückschlagventil gemäss Figur 12 entspricht im wesentlichen dem in den Figuren 1 bis 10 gezeigten Rückschlagventil. In dieser Ausführungsform ist der Zapfen 84 aber nicht am Austrittsgehäuse 11, sondern am Eintrittsgehäuse 41 angeordnet. In entsprechender Weise ist das geschlossene Ende 83 des rohrförmigen Trichterendes 82 des Verschlusskörpers 80 zum Austrittsgehäuse 11 hin gerichtet, um mit seinem offenen Ende auf den Zapfen 84 aufgesetzt werden zu können. Der Verschlusskörper 80 stellt sich bei dieser Ausführungsform im Querschnitt nicht mehr trichterförmig - wie dies beim Verschlusskörper 30 der Fall ist - dar, sondern als pilzförmiger Körper. Im übrigen entspricht die Funktionsweise des Rückschlagventils gemäss Figur 12 dem des in den Figuren 1 bis 10 gezeigten Rückschlagventils, wobei auch hier insbesondere die, eine Statorwirkung erzeugende Kammer 52 vorgesehen ist.
-
- 10
- Strömungsaustritt
- 11
- Austrittsgehäuse
- 12
- Steg
- 13
- Auflagekante
- 14
- Zapfen
- 15
- Stossverbindung
- 16
- Raum
- 17
- Längsachse
- 30
- Verschlusskörper
- 31
- trichterförmiger Teil
- 32
- rohrförmiges Trichterende
- 33
- geschlossenes Ende
- 34
- Innenseite
- 35
- Aussenseite
- 36
- Dichtungskontaktlinie
- 37
- freier Rand
- 40
- Strömungseintritt
- 41
- Eintrittsgehäuse
- 42
- Steg
- 43
- Auflagekante
- 44
- Innenkante
- 45
- Stossverbindung
- 46
- Raum
- 47
- Innenwand
- 51
- Dichtkante
- 52
- Kammer
- 54
- Pfeil (Strömungsumwälzung)
- 55
- Innenwandung
- 57
- Strömung
- 60
- Strömung (Durchlassrichtung)
- 61
- Strömungspfeil
- 62
- Strömung (Sperrichtung)
- 63
- Pfeil (Kraftkomponente)
- 64
- Pfeil
- 71
- elastische Dichtkante
- 72
- Nut
- 74
- Verschlusskörper
- 80
- Verschlusskörper
- 81
- trichterförmiger Teil
- 82
- rohrförmiges Trichterende
- 83
- geschlossenes Ende
- 84
- Zapfen
Claims (26)
- Membran- und federloses Rückschlagventil für insbesondere gasförmige Medien mit einem Eintrittsgehäuse (41), welches eine Dichtkante (51) aufweist, einem Austrittsgehäuse (11) sowie einem dazwischen angeordneten Verschlusskörper (30), der axial (14) beweglich geführt und in jeder beliebigen Stellung und/oder Lage des Ventils beidseitig druckbeaufschlagbar ist, wobei der Verschlusskörper (30) ausschliesslich auf Grund eines unterschiedlichen Drucks zwischen Ein(41)- und Austrittsgehäuse (11) in Sperrstellung gegen die Dichtkante (51) und in Durchlasstellung von der Dichtkante (51) wegbewegbar ist.
- Rückschlagventil nach Anspruch 1, bei welchem der Verschlusskörper (30) zwangsweise axial geführt ausgebildet ist.
- Rückschlagventil nach Anspruch 1 oder 2, bei welchem der Bereich des Verschlusskörpers (30) für dessen Führung und der Bereich des Verschlusskörpers (30) zum Sperren des Rückschlagventils voneinander unabhängig ausgebildet sind.
- Rückschlagventil nach einem der Ansprüche 1 bis 3, bei welchem der Verschlusskörper (30) am Austrittsgehäuse (11) oder am Eintrittsgehäuse (41) angeordnet ist.
- Rückschlagventil nach Anspruch 1 oder 4, bei welchem das Austrittsgehäuse (11) oder das Eintrittsgehäuse (41) zur Anordnung des Verschlusskörpers (30) einen vorzugsweise in der Längsachse (17) der Gehäuse (11, 41) angeordneten auskragenden Zapfen (14) aufweisen.
- Rückschlagventil nach einem der Ansprüche 1 bis 5, bei welchem der Verschlusskörper (30) trichterförmig ausgebildet ist, wobei der trichterförmige Teil durch Anlage an der Dichtkante (51) das Rückschlagventil sperrt und das rohrförmige Trichterende (32) geschlossen ausgebildet ist.
- Rückschlagventil nach Anspruch 6, bei welchem das rohrförmige Trichterende (32) auf dem Zapfen (14) angeordnet ist.
- Rückschlagventil nach einem der Ansprüche 1 bis 7, bei welchem der Bereich neben der Dichtkante (51) als Leiteinrichtung ausgebildet ist.
- Rückschlagventil nach Anspruch 8, bei welchem neben der Dichtkante (51) eine Kammer (52) ausgebildet ist, welche das in diesem Bereich in Richtung des Eintrittsgehäuses (41) strömende Medium (62) um etwa 180° umlenkt (57), bevor es an der Dichtkante (51) vorbeiströmt.
- Rückschlagventil nach Anspruch 8 oder 9, bei welchem die Kammer (52) so ausgebildet ist, dass in Richtung des Austrittsgehäuses (11) strömendes Medium (60) weitgehend ungehindert aus dem Eintrittsgehäuse (41) ausströmen kann.
- Rückschlagventil nach einem der Ansprüche 8 bis 10, bei welchem die Kammer (52) aus einer ringkreisförmigen Mulde oder Sicke gebildet ist.
- Rückschlagventil nach einem der Ansprüche 1 bis 11, bei welchem die Dichtkante (51) als ringförmige Auflagekante für den trichterförmigen Teil (31) ausgebildet ist.
- Rückschlagventil nach einem der Ansprüche 1 bis 12, bei welchem der äussere Durchmesser des freien Randes 37 des trichterförmigen Teils (31) grösser ist als der Durchmesser der als ringförmige Auflagekante ausgebildeten Dichtkante (51).
- Rückschlagventil nach einem der Ansprüche 1 bis 12, bei welchem der maximale Innendurchmesser der Gehäuse (11, 41) grösser ist als der Aussendurchmesser des trichterförmigen Teils (31).
- Rückschlagventil nach einem der Ansprüche 1 bis 14, bei welchem am Austrittsgehäuse (11) sowie am Eintrittsgehäuse (41) Einrichtungen (12, 42) zur Anlage des trichterförmigen Teils (31) angeordnet sind.
- Rückschlagventil nach Anspruch 15, bei welchem die Einrichtungen aus radial sich vom Mittelpunkt der Gehäuse (11, 41) weg erstreckenden, voneinander beabstandeten Stegen (112, 42) bestehen.
- Rückschlagventil nach Anspruch 16, bei welchem die als Auflagekanten (13, 41) dienenden, dem trichterförmigen Teil (31) zugewandten freien Kanten der Stege (12, 14) zur Längsachse (17) der Gehäuse (11, 41) geneigt ausgebildet sind, wobei die Neigung der freien Kanten im wesentlichen der des trichterförmigen Teils (31) entspricht.
- Rückschlagventil nach einem der Ansprüche 1 bis 17, bei welchem sämtliche Teile aus Polymeren bestehen.
- Rückschlagventil nach Anspruch 18, wobei das Polymermaterial aus derselben thermoplastischen Polymerfamilie stammt.
- Rückschlagventil nach einem der Ansprüche 1 bis 19, wobei Eintrittsgehäuse (41), Austrittgehäuse (11) und Verschlusskörper (30) zumindest teilweise aus einem steifen Polymer bestehen.
- Rückschlagventil nach einem der Ansprüche 1 bis 19, wobei die Dichtkante (51) und/oder der Verschlusskörper (30) zumindest teilweise aus einem elastischen Polymer bestehen.
- Rückschlagventil nach einem der Ansprüche 1 bis 21, wobei die Polymerfamilie aus der Gruppe der Polyamide, Polyolefine oder Polyester ausgewählt ist.
- Rückschlagventil nach Anspruch 20, wobei das steife Polymer aus der Gruppe Polyethylenterephthalat und Polybutylenterephthalat ausgewählt ist.
- Rückschlagventil nach Anspruch 20, wobei das steife Polymer aus der Gruppe PA6, PA6,6, PA6,10, PA11, PA12, PA12,12 ausgewählt ist.
- Rückschlagventil nach Anspruch 21, wobei das elastische Polymer aus der Gruppe Polyetheramide, Polyetheresteramide und Polyetheresteretheramide ausgewählt ist.
- Rückschlagventil nach einem der Ansprüche 1 bis 25, bei welchem das Material der sich an das Ein(41)- und Austrittsgehäuse (11) anschliessenden Leitungen aus dem oder den Materialien der Teile des Rückschlagventils besteht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH792/92A CH685454A5 (de) | 1992-03-11 | 1992-03-11 | Rückschlagventil. |
CH792/92 | 1992-03-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0560221A1 true EP0560221A1 (de) | 1993-09-15 |
EP0560221B1 EP0560221B1 (de) | 1997-06-11 |
Family
ID=4195300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93103540A Expired - Lifetime EP0560221B1 (de) | 1992-03-11 | 1993-03-05 | Rückschlagventil |
Country Status (8)
Country | Link |
---|---|
US (1) | US5375621A (de) |
EP (1) | EP0560221B1 (de) |
JP (1) | JP3266356B2 (de) |
KR (1) | KR100250864B1 (de) |
CH (1) | CH685454A5 (de) |
CZ (1) | CZ279095B6 (de) |
DE (2) | DE4214783C2 (de) |
SK (1) | SK278962B6 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1363000A1 (de) * | 2002-05-17 | 2003-11-19 | Magneti Marelli Powertrain Spa | Dichteinrichtung für Drosselklappen mit einem Rand aus TPE |
WO2010124798A1 (de) * | 2009-04-28 | 2010-11-04 | Prettl, Rolf | Rückschlagventil |
WO2012004575A1 (en) * | 2010-07-08 | 2012-01-12 | Polypipe Terrain Ltd | Fluid control valve |
WO2013117876A1 (fr) * | 2012-02-09 | 2013-08-15 | Mgi Coutier | Clapet anti-retour à membrane |
WO2020160966A1 (de) * | 2019-02-04 | 2020-08-13 | Mann+Hummel Gmbh | Ventilkörper für ein ventil und ventil |
CN113366195A (zh) * | 2019-02-04 | 2021-09-07 | 曼·胡默尔有限公司 | 具有阀主体的阀和曲轴箱通风装置 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19833143A1 (de) * | 1998-07-23 | 2000-02-17 | Mannesmann Vdo Ag | Ventil |
US9416887B2 (en) * | 2000-07-18 | 2016-08-16 | George H Blume | Low turbulence valve |
DE10043079C2 (de) * | 2000-09-01 | 2003-01-02 | Draeger Medical Ag | Rückschlagventil mit Schwingungsdämpfung |
DE10324307B3 (de) * | 2003-05-28 | 2004-04-29 | A. Raymond & Cie | Schnellkupplungseinheit mit integriertem Rückschlagventil |
NO333508B1 (no) * | 2003-10-22 | 2013-06-24 | Per Ingemar Stahl | System for oppvarming av vaeske med solstraling |
US8342168B2 (en) * | 2003-10-22 | 2013-01-01 | Per Ingemar Stahl | System for heating liquid by solar radiation |
DE20318669U1 (de) * | 2003-12-03 | 2005-04-07 | Hengst Gmbh & Co Kg | Rückschlagventil mit Kondensatablauf |
JP2006020934A (ja) * | 2004-07-09 | 2006-01-26 | Nipro Corp | 採血針 |
US7438090B2 (en) * | 2005-01-06 | 2008-10-21 | Dynamic Air Inc. | Booster valve |
CN102333657A (zh) | 2009-02-25 | 2012-01-25 | 惠普开发有限公司 | 止回阀 |
WO2011070690A1 (ja) * | 2009-12-09 | 2011-06-16 | 東洋エアゾール工業株式会社 | 噴射剤の充填装置 |
US20110179958A1 (en) * | 2010-01-26 | 2011-07-28 | Bruce Johnson | Substrate punch assembly |
JP6123407B2 (ja) * | 2013-03-26 | 2017-05-10 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
US9784376B2 (en) | 2013-07-16 | 2017-10-10 | Trane International Inc. | Check valve assembly |
BR112016016803B1 (pt) * | 2014-01-20 | 2022-03-22 | Dayco Ip Holdings, Llc | Válvula de gaveta e aspirador compreendendo a válvula de gaveta |
DE102014001306A1 (de) * | 2014-01-31 | 2015-08-06 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Ventileinrichtung und Kraftfahrzeug |
US10100720B2 (en) | 2015-01-09 | 2018-10-16 | Dayco Ip Holdings, Llc | Crankcase ventilating evacuator |
JP6554552B2 (ja) | 2015-04-13 | 2019-07-31 | デイコ アイピー ホールディングス, エルエルシーDayco Ip Holdings, Llc | ベンチュリ効果を使用して真空を生じさせるための装置 |
BR112018000986B1 (pt) | 2015-07-17 | 2023-03-14 | Dayco Ip Holdings, Llc | Dispositivos para produção de vácuo utilizando o efeito venturi e sistema compreendendo dispositivo para produção de vácuo |
US10190455B2 (en) | 2015-10-28 | 2019-01-29 | Dayco Ip Holdings, Llc | Venturi devices resistant to ice formation for producing vacuum from crankcase gases |
JP7097033B2 (ja) * | 2017-07-31 | 2022-07-07 | 丸一株式会社 | 継ぎ手部材 |
US20220186852A1 (en) * | 2020-12-14 | 2022-06-16 | B/E Aerospace, Inc. | Venting devices for aircraft brewing apparatus |
FR3143087A1 (fr) * | 2022-12-08 | 2024-06-14 | Akwel | Clapet anti-retour. |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB655560A (en) * | 1947-09-30 | 1951-07-25 | British Oilfield Equipment Com | Improvements in or relating to valves for slush and like pumps |
US3473561A (en) * | 1966-03-29 | 1969-10-21 | Bert N Svenson | Check valve with supported closure member |
US3601152A (en) * | 1969-08-15 | 1971-08-24 | Grant F Kenworthy | Unidirectional flow valve |
DE2225756A1 (de) * | 1971-06-08 | 1972-12-28 | Gachot, Jean, Enghien les Bains; Perales, Fernand, Argenteuil; VaI dOise (Frankreich) | Schnellöseventil für pneumatische Bremskreise |
GB1351401A (en) * | 1971-01-29 | 1974-05-01 | Felton G A | Non-return valve |
GB1375281A (de) * | 1971-02-12 | 1974-11-27 | ||
DE2922940A1 (de) * | 1978-06-02 | 1979-12-13 | Imed Corp | Niederdruck-einweg-ventil |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1710214A (en) * | 1926-10-07 | 1929-04-23 | Armaturen & Maschinenfabrik A | Valve for hydraulic mains |
US1795749A (en) * | 1929-04-29 | 1931-03-10 | Elizabeth C Dunlap | Loaded check valve |
US3633613A (en) * | 1970-04-17 | 1972-01-11 | Bendix Corp | Pressure relief means for a check valve |
US4172465A (en) * | 1977-11-07 | 1979-10-30 | Conbraco Industries, Inc. | Check valve |
ES273804Y (es) * | 1982-07-29 | 1984-08-01 | Kentsub Limited | Valvula para admision de aire |
JPH0271178U (de) * | 1988-11-18 | 1990-05-30 | ||
FR2653200B1 (fr) * | 1989-10-13 | 1992-03-06 | Socla | Clapet de non-retour. |
-
1992
- 1992-03-11 CH CH792/92A patent/CH685454A5/de not_active IP Right Cessation
- 1992-05-04 DE DE4214783A patent/DE4214783C2/de not_active Expired - Fee Related
-
1993
- 1993-03-05 DE DE59306706T patent/DE59306706D1/de not_active Expired - Fee Related
- 1993-03-05 EP EP93103540A patent/EP0560221B1/de not_active Expired - Lifetime
- 1993-03-09 SK SK171-93A patent/SK278962B6/sk unknown
- 1993-03-09 JP JP04782293A patent/JP3266356B2/ja not_active Expired - Fee Related
- 1993-03-10 CZ CZ93381A patent/CZ279095B6/cs not_active IP Right Cessation
- 1993-03-11 KR KR1019930003588A patent/KR100250864B1/ko not_active IP Right Cessation
-
1994
- 1994-01-21 US US08/185,458 patent/US5375621A/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB655560A (en) * | 1947-09-30 | 1951-07-25 | British Oilfield Equipment Com | Improvements in or relating to valves for slush and like pumps |
US3473561A (en) * | 1966-03-29 | 1969-10-21 | Bert N Svenson | Check valve with supported closure member |
US3601152A (en) * | 1969-08-15 | 1971-08-24 | Grant F Kenworthy | Unidirectional flow valve |
GB1351401A (en) * | 1971-01-29 | 1974-05-01 | Felton G A | Non-return valve |
GB1375281A (de) * | 1971-02-12 | 1974-11-27 | ||
DE2225756A1 (de) * | 1971-06-08 | 1972-12-28 | Gachot, Jean, Enghien les Bains; Perales, Fernand, Argenteuil; VaI dOise (Frankreich) | Schnellöseventil für pneumatische Bremskreise |
DE2922940A1 (de) * | 1978-06-02 | 1979-12-13 | Imed Corp | Niederdruck-einweg-ventil |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1363000A1 (de) * | 2002-05-17 | 2003-11-19 | Magneti Marelli Powertrain Spa | Dichteinrichtung für Drosselklappen mit einem Rand aus TPE |
US6974122B2 (en) | 2002-05-17 | 2005-12-13 | Magneti Marelli Powertrain S.P.A. | Gates for throttle valves |
WO2010124798A1 (de) * | 2009-04-28 | 2010-11-04 | Prettl, Rolf | Rückschlagventil |
US8608464B2 (en) | 2009-04-28 | 2013-12-17 | Rolf Prettl | Check valve |
WO2012004575A1 (en) * | 2010-07-08 | 2012-01-12 | Polypipe Terrain Ltd | Fluid control valve |
WO2013117876A1 (fr) * | 2012-02-09 | 2013-08-15 | Mgi Coutier | Clapet anti-retour à membrane |
FR2986847A1 (fr) * | 2012-02-09 | 2013-08-16 | Coutier Moulage Gen Ind | Clapet anti-retour a membrane |
US9677677B2 (en) | 2012-02-09 | 2017-06-13 | Mgi Coutier | Check valve with flexible membrane |
WO2020160966A1 (de) * | 2019-02-04 | 2020-08-13 | Mann+Hummel Gmbh | Ventilkörper für ein ventil und ventil |
CN113366195A (zh) * | 2019-02-04 | 2021-09-07 | 曼·胡默尔有限公司 | 具有阀主体的阀和曲轴箱通风装置 |
Also Published As
Publication number | Publication date |
---|---|
DE4214783A1 (de) | 1993-09-16 |
SK278962B6 (sk) | 1998-05-06 |
KR930020058A (ko) | 1993-10-19 |
KR100250864B1 (ko) | 2000-04-01 |
CZ279095B6 (en) | 1994-12-15 |
CH685454A5 (de) | 1995-07-14 |
DE59306706D1 (de) | 1997-07-17 |
SK17193A3 (en) | 1993-10-06 |
EP0560221B1 (de) | 1997-06-11 |
DE4214783C2 (de) | 1995-02-02 |
JPH0611058A (ja) | 1994-01-21 |
CZ38193A3 (en) | 1993-11-17 |
JP3266356B2 (ja) | 2002-03-18 |
US5375621A (en) | 1994-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0560221B1 (de) | Rückschlagventil | |
EP0897317B1 (de) | Endscheibe für ein ringfilterelement mit radial wirkender dichtung | |
EP3025040B1 (de) | Ventil | |
WO1998036817A1 (de) | Scheibe, insbesondere stirnscheibe eines filtereinsatzes | |
DE29521599U1 (de) | Gegenstrom-Luftfilteranordnung | |
WO2010070102A1 (de) | Filterelement und druckluftfilter zum abscheiden von fremdstoffen aus einem druckluftstrom | |
EP1852637A1 (de) | Filter mit einem radialen Dichtungssystem | |
EP1728541B1 (de) | Filterelement für einen Flüssigkeitsfilter | |
DE2207210A1 (de) | Brennstoff-Einfüllkappe | |
DE69915404T2 (de) | Thermoplastische, elastomere Gasfeder | |
EP3978751B1 (de) | Verbundmembran für membranpumpen | |
EP1200722B1 (de) | Drosseleinrichtung mit einer klappe zum einbau in eine flanschverbindung | |
DE102008008328B4 (de) | Luftfiltereinsatz mit Verstärkungsring | |
DE10110189B4 (de) | Kraftstoffbehälter | |
WO2005106238A1 (de) | Düsenbaugruppe und ventil | |
DE102015215933A1 (de) | Flüssigkeitsfilter | |
EP4386254A2 (de) | Druckbehälter mit mehreren seitlichen ausströmöffnungen | |
WO2005042963A1 (de) | Injektor | |
DE202021105982U1 (de) | Druckbehälter | |
DE102021106134A1 (de) | Drehkolbenabdichtung | |
WO2013030083A1 (de) | Filterelement, filteranordnung und verfahren zum herstellen des filterelements | |
WO2002064234A2 (de) | Zylindrische filterpatrone mit stützrohr | |
DE102010042755B4 (de) | Mit Druckluft betriebener Unterdruckerzeuger | |
EP2127851A1 (de) | Vorrichtung und Verfahren zum Expandieren von Behältnissen mit an der Mündung des Behältnisses anliegender Dichtung | |
DE4310452C2 (de) | Kraftstofftank für Fahrzeuge mit einer nach außerhalb des Tanks führenden Leitung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930305 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 19950612 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970623 |
|
REF | Corresponds to: |
Ref document number: 59306706 Country of ref document: DE Date of ref document: 19970717 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050218 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050221 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050310 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050311 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060331 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060305 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070316 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070305 |